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We observed experimentally that the detected signal-vs-generator current deviates from line-
arity. The deviation has a shape similar to that of a Lorentzian. Preliminary arguments lead us
to the conclusion that if the maximum deviation occurs at a generator voltage V~, the emitted
recombination peak should tend to a width given by V~- 2b,. By calculating the spectrum of
phonons emitted at a given generator voltage and hence the detector response signal, we have
shown that the above prediction is essentially correct. We also give a brief discussion on the
behavior of a superconductor when used as a phonon frequency convertor.

I. INTRODVCTION

In a previous paper' we presented experimental
results pertaining to the behavior of a pair of su-
perconducting Pb-Pb tunnel diodes when one diode
is used as a phonon generator while the other is
used as a detector. The diodes were evaporated
on opposite faces of a sapphire single crystal which
served as a medium for phonon transmission from
generator to detector. Electron tunneling is used
as a means for producing quasiparticle excitations
in a fashion easily controlled by the applied voltage
V —2~, where 24 is the superconductor's energy
gap. Such excitations decay primarily via electron-
phonon interaction and hence all input energy is
transformed into phonon energy distributed in a
band extending from zero energy to an intense peak
at 24 followed by a rapidly decaying tail for higher
energies. The phonons thus generated propagate in
the sapphire crystal to the detector which is biased
at a voltage V~ & 2A. The detector response signal
S is produced primarily by those phonons of energy
& —24 which, in breaking Cooper pairs, result in
an increase in the steady-state quasiparticle popu-
lation and hence an increase in the tunneling cur-
rent. A great deal of information is contained in
experimental plots of the signal S or its derivative
as functions of V or I, the generator voltage and
current, respectively. As previously shown' the
basic character of such experimental curves can
be deduced theoretically by the aid of a simple
three-level system composed of two discrete quasi-
particle levels at energies b and 34, respectively,
above the ground-state level, viz. , the Fermi sea,
which contains all Cooper pairs. With calculations
based on this model we were able to show how the
superconductor's density of states, by influencing
the spectral distribution of the phonons emitted at
a given voltage produces in the signal derivative
the characteristic drop which immediately follows
its sharp rise at V= 44. We were also able to show

the effect of the average recombination life time on
the variation of S with I. Since the average recom-
bination rate increases with increasing population,
one finds that S~I" holds, if the phonon shower
incident on the detector is sufficiently intense that
the steady-state population it produces is large
compared to the thermal population. In the opposite
extreme, the so called linear limit, one obtains
ScrI

Experimental evidence, however, points out that
even in the linear limit there is an observable devi-
ation from linearity in the dependence of S on I for
V&44. Such a deviation would arise from the fac-
tors not taken into account in the discrete three-
level model, namely, the actual spectral distribu-
tion of the emitted phonons and the continuous spec-
trum of particle levels. In other words, this devia-
tion from linearity should contain vital information
about the spectrum of the generated phonons, and
as we shall see later, it is possible to determine
the width of the recombination phonons at &-2b,
from the value of the generator voltage at which
the maximum deviation occurs.

We begin this paper by outlining the experimental
results which show the exact dependence of S and
its derivative on I. The deviation from linearity
as obtained experimentally is discussed, and a
physical interpretation is given. In Sec. III, atheory
is developed for calculating the emitted phonon
spectrum at given generator voltage as well as the
detector response signal. In both cases a simpli-
fied discrete-level model is used. The calculated
phonon spectrum is discussed in detail in Sec. IV,
while comparison between calculated and measured
signals is carried out in Sec. V. Finally, in Sec.
VI, some computed results are presented pertain-
ing to the use of a superconductor as a phonon fre-
quency convertor.

II. EXPERIMENTAL RESULTS

The experimental techniques used here as well
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FIG. 1. Generator voltage V, detected signal S, and
its derivative BS/BI vs generator current I for samples
No. 1.

as data acquisition and processing are exactly the
same as those previously described. ' Tin samples
were prepared on two parallel faces of an intrinsic-
germanium single crystal having dislocation den-
sity smaller than 1000 cm . The barrier between
the two stripes forming the diodes was prepared by
oxidizing the first stripe in a stream of dry oxygen
for 12-18 h. The resulting diode resistance is
-0.005 0 for an area of 1 mm'. Good reproducibil-
ity was obtained with the resistance varying almost
linearly with the oxidation time. Tin was used in-
stead of lead because tin has a slower recombina-
tion rate and hence yields a signal-to-noise ratio
one to two orders of magnitude larger than lead.

The experimental results are depicted in Figs. 1
and 2 for two different pairs of diodes. The genera-
tor resistance in Fig. 1 is -3 times higher than
that in Fig. 2. The sudden jumps (horizontal, ver-
tical, or combination) in the curves labeled with S
arise from zero-base-line instabilities of the sam-
pling scope and have no physical significance. It
is obvious that these instabilities produce no effects
on the derivative measurements.

The salient features of the experimental results
are summarized as follows:

(i) The signal S for V&4k deviates markedly
from its expected behavior. This deviation con-
stitutes the major topic in this paper and will be
discussed in greater detail.

(ii) At V=44 there is a sharp kink in S which is
reflected as a sharp rise in &S/&I. Here one en-
counters the onset of phonon generation with = 24
coming from those quasiparticles injected at E = 3&
which relax to the top of the gap.

(iii) The characteristic drop in &S/&I for 44 —V
—6A shows clearly the effect of the superconduc-
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FIG. 2. V, S, and 8$/8I vs I for samples No. 2.

tor's density of states on the spectral distribution
of the emitted phonons.

(iv) For V —64 the signal derivative rises mono-
tonically but with undulating rate showing a point
of steepest ascent at V= 6h. However, subsequent
onsets of a steep rise do not exactly coincide with
the values V= 2n4. This is to be expected because
at these "quantum" points V= 2nd the maximum
possible number of 24 phonons generated per par-
ticle is incremented by one for those excitations
now injected at E = (2n —l)h.

We turn now to the main topic of this paper, name-
ly, the dependence of S on I for V&44 and its devia-
tion from linearity. To derive the exact shape and
magnitude of this deviation we do not use the mea-
sured values of S vs I. Instead, we use the measured
values of &S/&I in order to obtain greater numeri-
cal accuracy. In addition the results thus obtained
are unaffected by the erratic behavior of the sam-
pling-scope base line. The derivative in Fig. 2 is
first numerically integrated using Simpson's rule
in the range 0 I I(4n) — T—his giv. es the signal (in
arbitrary units) as a function of the current as
shown by the dashed line in Fig. 3. Note that it
reproduces the corresponding portion of S in Fig.
2 with the erratic noise completely eliminated. The
portion of the integrated signal for I—0. 4 A is fitted
to a straight line using the least-squares fit to a
Chebyshev expansion. The required deviation is
then computed by subtracting from each value of
the integrated signal the corresponding extrapolated
value obtained from the straight-line fit. This
yields the deviation from linearity depicted by the
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FIG. 3. Detected signal (dashed line}, obtained by
integrating 88/9I in Fig. 2, and its deviation from line-
arity (solid line).

solid curve in Fig. 3. Except for the effect of the

residual noise in that portion where the straight
line fit was produced the deviation is everywhere
positive, i. e. , the signal is larger than the extrap-
olated linear dependence. We observe that the devi-
ation has a Lorentzian shape with a maximum at
I=0. 95 A and V/4=2. 45. The maximum deviation
is '7. S37p of the value of the signal measured at the

same voltage.
To interpret these results let us consider a group

of particle levels in the energy range 4 —E —1.24.
Single-particle transitions from one level to another
within that group are associated with the emission
or absorption of a phonon of energy 0 — —0. 24.
Such transitions occur at a relatively slow rate be-
cause of two reasons. First, the phonon density of
states is small and tends to zero as -0. Second,
the coherence factor entering the electron-phonon
matrix element for such transitions goes to zero
at the top of the gap. We shall refer to such a group
of levels as "weakly coupled" because particles in-
jected into any of these levels are hardly scattered
to any other level within the group. For the sake
of simplicity let us ignore recombinations in which
the two participating particles originate from two
different levels. With this in mind we may consider
each level in a weakly coupled group as an indepen-
dent source of recombination phonons. Let us now

inject N particles in each of the two lowest-energy
levels at 4 and E'. Two groups, each of approxi-
mately ~ phonons, will be emitted one of energy
= 2b, , the other of ' = 2E'. Since similar argu-
ments hold for the detector, the two groups of pho-
nons will produce two independent groups of quasi-

particle excitations in the detector, one at 4 and the
other at E'. The steady-state populations are ¹

at 4 and NT' at E' where v and 7' are the recombina-
tion life times at 4 and E', respectively. The de-
tected signal is proportional to N(r+ r') &2K7., since

Thus, if the incident shower contains pho-
nons of energy &2b, , the detected signal will have a
positive deviation from linearity in its dependence
on the generator current. Notice that the weakly
coupled levels influence both the generation and the
detection processes. Let us consider now what hap-
pens when we increase the injection width by in-
creasing the generator voltage and current. As long
as the particle levels which receive injection are
weakly coupled, the deviation of the signal from
linearity will increase, and the emitted phonon spec-
trum has a width at least as large as the injection
width. When the injection width is made sufficient-
ly large to include levels which are not weakly cou-
pled, excitations injected into these latter levels
will decay via a two-step process, namely, relaxa-
tion to a lower level followed by a recombination.
It is obvious that at this point the deviation of the
signal from linearity starts dropping. Since one
may reasonably expect that the relaxationwilltrans-
fer injected particles not only to the top of the gap
but also to all weakly coupled levels adjacent to it,
one may deduce that the emitted phonon spectrum
at larger currents will settle to a width equal to
(V —2), where V is the generator voltage, mea-
sured in units of 4, at which the maximum signal
deviation occurs.

The above discussion clearly shows that the de-
pendence of the detected signal on the generator
current and the deviation of this dependence from
linearity contains suff icient experimental informa-
tion which leads to the determination of the width of
the recombination phonon peak in the emitted pho-
non spectrum. In the sample cited in Fig. 3 this
width is equal to 0. 45&. In Sec. III, a calculation
of the emitted phonon spectrum followed by a corn-
putation of the signal it produces in the detector will
verify these deductions.

III. THEORY

To calculate the emitted phonon spectrum and
the response signal we use the following simplified
model. This model consists of K= 40 discrete ex-
cited-particle levels in the range 4—E &3h, equal-
ly spaced in energy with a level separation w =*6,
in addition to the Fermi sea at zero energy which
contains all Cooper pairs. Only electron-phonon
interaction is taken into account. The phonons in-
teracting with the particles fall into two groups:
the relaxation phonons of energy neo with 1 —n
—(K-1) and the recombination phonons of energy
2+ (n —1) tu with 1 «n —K. The limitation we im-
pose on the energy ranges of excited particles and



EMITTED PHONON SPECTRUM AND ITS INFLUENCE QN. . . 4393

phonons simplifies the bookkeeping to a great ex-
tent. However, the theory as developed below can

easily be extended to a wider energy range. The
choice of the energy range in this paper is adequate
for a comparison with the experimental results de-
scribed in Sec. II.

We assume that the particles interact only with

longitudinal phonons in normal processes. Under
these assumptions the electron-phonon matrix ele-
ment valid for the small energy range considered
here can easily be obtained from Bardeen4 and Zi-
man. ' For a particle transition from state k' to
state k' with the absorption of a phonon of angular
frequency v the square of the matrix element is
given by

Iff» I' (k/=2MNVv) (-,'E.q)'g .

If the transition involves the emission of a phonon
one has to replace the phonon occupation number g,
by (1+g,) to take into account both spontaneous and

induced emissions. The phonon wave vector q sat-
isfies the conservation of momentum q = k —k'. In

(1), M is the atomic mass in g, N is the number of
atoms/unit volume, V is the volume of the sample
in cm~, and EF is the Fermi energy in erg.

Next we need expressions which determine the
transition probabilities in which a phonon of energy
Sv is emitted or absorbed in the superconducting
state. These probabilities are given by expres-
sions (4. 25)-(4. 2V} of the Bardeen-Cooper-Schrief-
fer (BCS) paper. With proper modifications we
shall adapt these expressions to the discrete level
model described above. To outline the method we
start with (4. 25) of Ref. 6, viz. , the expression

Q2
4 IB((,. I

1—,f(1 -f '}5(E' —E —}tv),
a a'»F EE

(2)

which describes the rate of absorption of phonons
of energy Sv in particle transitions from states
(k, E) to states (k', E'). Here the excited quasipar-
ticles are taken to be in thermal equilibrium where
the occupation number of a state E is given by the
Fermi-Dirac distribution f. Note that the coher-
ence factor that enters these transitions is of the
form (1 —4'/EE') and tends to zero if both E and
E' tend to 4,.

In the discrete-level system we consider that
each level contains all those excited particles which
otherwise occupy states in the energy interval be-
tween this level and the next higher level. To con-
vert the sum in (2) into a sum over events occurring
between discrete levels, we integrate (2) over two
small elements of phase space, one element be-
tween k and k+ dk, the other between k' and k'+ dk'.
Keeping k constant, the integral over k' is carried
out first using the spherical coordinates (q, 8, (f )
with 8= & (k, q). The sum over k and k' is reduced

Next we carry out the sum over k followed by the
transformation k-E using the relations

e= k k /2m —Er
and

E2 g2 +2

which yield an additional multiplying factor of the
form

V m E~k —dE .

Finally, one takes 5(E' —E —Kv) dE'=1 implying
that E' must satisfy the conservation of energy E'
=E+ kv. When these factors are inserted in (2) to-
gether with definition of the matrix element from (1}
and the relations: v= v, q, where v, is the longitu-
dinal sound velocity, = Sv, 2mEF= hkF, and ~
= 6w N(hv, ); the transition rate (2) can be put in
the form

AA „f,(1 —f()g(y (3)

with j & i and l =j —i. The constant A and the ma-
trix A&& are given by

and

A = Vk(, r( Ww/3wiVl v, (((v

A(( = (1 —1/E(Eq) p(p((E( —E()

(4)

(5)

Here we have used the normalized energies

W=w/n=dE/6,

E, = E/r( = 1+ (i —1)w,
E(=E'/r(= 1+ (j —1)W,

and

((((= (a&/ r(= E( —E, = f W .

(6)

The ratio of the density of states in the supercon-
ducting phase to that in the normal phase is

E /(ER 1)liw

The occupation probability of ith level is denoted by

to a sum over k multiplied by the factor 2w(V/8w )
& q'dqsinede, where the integral over Q gives the
factor 2m. Next we make the transformation 8-E'
using the relations

e' = (E'/2m )(k + q' —2kq cos 8) —E J,

and

EI 2 ~82 g2

where &' is the Bloch energy of the state k' mea-
sured relative to Fermi energy EF. The above fac-
tor is thus modified to

V m qE'
4' Pk 'e
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gr= (e ' —1) (9)

where P= rr/k»T, k&r is the Boltzmann constant, and
T is the temperature. Note that the phonon density
of states is proportional to ~,/~'rr as in the Debye
model where ~, is included in A

&&
and ~ in A.

The transition rate in (3) gives the number of
particles/sec which make a transition from level
i to a higher level j absorbing an equal number of
phonons of energy»rrr. It is evident from (3) and

(5) that this rate is proportional to the number of
particles in level i, the number of empty states in
level j, and the number of phonons present of en-
ergy i.

Other transitions rates are derived in a similar
fashion. Thus for transitions from level i to a
lower level j with the emission of phonon the rate
is

AA»&f»(I - f&)(1+g r) (10)

with i & j and l =i —j. From (4. 26) and (4. 27) of
Ref. 6 one obtains for transitions where a Cooper
pair in the Fermi sea breaks with one particle go-
ing to level i, the other to j, and a phonon of ener-
gy (E;+E&) is absorbed, the rate

AB &(1 —f )(1 f&)g'r, —

and for the inverse process the rate

AB;&f f&(1+gr) (12)

where l =i+j and g', is given by (9) after replacing
&, by ', =E&+EJ. The matrix B;& is given by

B;&= g(1+ 1/E»E&) p» p&(E»+E;) (13)

The manner in which the above rates is expressed
is such that all constant terms are included in A
while the coherence factors together with phonon
and particle densities of state are included in the
symmetric matrices A&J and B,&. The occupation
numbers will constitute the variables in the de-
tailed-balance equations. It is customary to write
these equations in terms of the actual number of
particles occupying a given level. It is obvious
that with proper care one can use occupation num-
bers instead. We also assume that the above rates
remain valid when the occupations numbers differ
from their respective values in thermal equilibri-

f, which in thermal equilibrium is given the Fermi-
Dirac distribution, viz. ,

f» -— (e '+1) '.
In the present model f; is the ratio of the number
of particles occupying the ith level to the number
of states belonging to that level. Similarly, g,
gives the ratio of the number of phonons of energy
& to the total number of phonon states belonging
to the level , . In thermal equilibrium g, is given
by the Bose-Einstein distribution

AA» &[N» (1+M, N&) —N&M,-], (15)

where terms containing products of three occupa-
tion numbers have cancelled out. However, we
still have products of two occupation numbers. To
get a solution of the detailed-balance equations in
closed form we have to linearize terms like (15) by
assuming that the excess population in the steady
state is small compared to thermal population.
Thus, putting N, = f, +n; and M, =g, +m„with n,
« f, and m, «g, in (15) the thermal equilibrium
terms cancel as discussed above and we obtain to
first order in n and m the expression

AA, & [(1+g,—f, )n, —{f, +g, )n& —(f& —f, )mr] .

(16)
The first-order detailed-balance equations thus

obtained are as follows. For the ith particle level
we get

2 A»&[(1+gr —f&)n» —(f»+ gr) n& —(f& —f») m
» 1

gn]

+ Q A;&[(g, + f&)n, —(1+g, —f, )n&+ (f, —f&)m, ]
jnf+1

+ Q B,&[(g', + f&)n;+ (g', + f»)n&

—(1 f» - f&) m'r ]= », (-17)

where the first sum is valid for i &1 and l =i —j,

um. Thus, we will make the transformations
I I If»-N»= f»+n», gr-M»=gr+mr, andgr-Mr=gr+mr

where n&, m„and m& are the excess population
densities in the steady state of the excited system.

The detailed-balance equations are derived sub-
ject to the law of particle conservation which states
that in the steady state the number of particles en-
tering a given level per second equals the number
leaving that level per second. We thus obtain sums
over terms like

AA»& [(1-N&)N;(1+M, ) N&(1 -N»)M-»], (14)

which gives the net transition rate between a given
level i and a lower level j. The first term in the
square brackets is the number of particles per
second leaving level i to level j emitting a phonon
while the second term is the number per second
that enters level i coming from j and absorbing a
phonon. If one substitutes for the N's and M's in
(14) their respective thermal-equilibrium values
one finds that the term will vanish as required by
the principle of detailed balance which states that
in thermal equilibrium the number of particles per
second which enter a given level by a particular
path equals the number arriving per second by the
reverse path. Note also that (14) can be immediate-
ly simplified to read
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the second for i &K and l =j —i, while the third for
all i and l =i+j. The quantity F; is proportional
to the number of particles per second injected by
the tunneling current into the ith level, i. e. ,

Y, = 2I,/eA, (18)

where I, is the tunneling current assigned to level
i, e is the electronic charge, and the factor of 2
comes from the fact that identical excitations are
produced by tunneling on either side of the barrier.
The balance of the relaxation phonons mi is given
by
K-l
+ A., ) [(1+g)-f.)& )

- (g(+f.,))&.]

K-l
E A. ..,(f. f,).~ 2,)-, , (12)

y, = 9NV(f(4/(4)v) Wy/A, (21)

where the phonon escape rate y is considered as a
constant given by y= vied, where d is the combined
thickness of both films.

In the numerical procedure one computes the co-
efficients of the individual n's as given by the sums
in (19) and (20) and thus transform these equa-
tions to the simpler form

E
Q q)„n„= II,m(,
nial

with 1-l- K —1 and

(22)

which is valid for 1- l ~K- 1. The balance of the
recombination phonons I', is given by

l-1
Z B„,( „(gt+f, „)n„
nl

l-1
Z B , , (1 —f„,—f, ,) 2',) l, (2D)
n~l

which is valid for 2- l - K+ 1. The coefficients y,
and y,

' are proportional to the rate at which the
phonons escape from the film. They are also pro-
portional to the phonon density of states as given
by the'Debye model. We thus have

~ (P' (f —fi) & Q . .)n 1

K-i+1
~ »P((Pl fr) "(Pl f )"i

f=l

l-1
—4",',() —f—f,,)E P, , „„)=r,, (24)

n=l

where the range for each sum is the same as that
already defined for (17). After computing the co-
efficients, (24) reduces to

E
Z R(fn, = Y(
j=l

(25)

= CA[V„E(a„)—(2/V„)K(a„)] (26)

where C is the dc diode conductance, K(a„) and

E(a„)are complete elliptic integrals of the first
and second kind, respectively, and &„
= [1 —(2/V„)o]Uo. For the discrete level system
we convert the integral in (26) into a sum to ob-
tain

for 1 ~1 ~K thus giving K linear equations to deter-
mine n j, the excess population density in each of
the K levels. Then using (22) and (23) together
with n„one obtains m, and m'i .

To evaluate the matrices A and B in (5) and (13)
we need an appropriate definition of the density of
states pi which in turn determines the number of
states to be assigned to the ith particle level. Be-
cause of the singularity at the gap of the theoreti-
cal density of states we encountered some difficul-
ties. We finally decided on determining pi in a
manner consistent with the variation of the tunnel-
ing current with the voltage. This choice also en-
ables us to determine two distinct densities of
states one obtained from the theoretical variation
of the tunneling current with the voltage using the
BCS density of states, while the other is obtained
from the experimental current-voltage character-
istic. At an applied voltage V„= 2+ (n —1)w the
tunneling current J„is given by7

Z.= C & J, " ' p(E)p(V„E)dE-

l-1

P, 1 „n„=V, lml
n=l

(23) d„= C aW Z( pfp„ f,q,
j=l

(27)

with 2 —l-K+ 1. Once the matrices Q and I' and
the vectors U and V are computed one can elimi-
nate m, and m', from the particle equation (17) us-
ing (22) and (23) to obtain

i~12 A;, [() P, —f, )P, —(P, ~ f;)P~
jul

K
—«'(fi —f ) & () . .)n~l

K

~ & A P ((P f4) —(1 (( —f )"s
j~2+1

where p j is the density of states belonging to the
jth level. The solution of (27) gives

P2 = (d2/do)' 1 Po = do/(2P&do)1

and
n-1

P
—"—E PP &„=)/2P„,

0 j=2
(28)

where J0= C~W. With J either calculated from
(26) or obtained from the experimental I Vchar--
acteristic (28) gives the required densities of states
for the BCS and experimental cases as shown by the
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solid and dashed lines in Fig. 4, respectively. In

the experimental case the starting value J, had to
be chosen sufficiently close to the inflection point
on the I-V characteristic in order to obtain a
smooth solution of (28). For each density we shall
compute the emitted phonon spectrum and the de-
tector response and discuss the significant role
played by the density of states.

To calculate the number of particles per second
injected by the tunneling current into the ith level
one writes

J„=E I(
ja1

and uses (27) to get
8

1&=J„p p &r„,p&p . s)„. , (28)
jaf

To calculate the response of the detector to in-
cident phonons of a given spectrum only slight
modifications in the above equations are required.
The balance of the relaxation phonons is now given
by

E
@,„n„+—'= I,m, ,

n*l

while that of the recombination phonons is
K JfQ P, i ~ „s" A

——V, im',
n=1

(30)

(31)

where J& and J', are the numbers of incident pho-
nons of energies & and ', , respectively. Using
(30) and (31) to eliminate m, and m', in (17) and
taking all terms containing J, and J& to the right-
hand side, the particle equation for the detector
assumes the form (25) with Y, given by

Y = P Aig(fg —fi) Ji ~ A&i(f; fi)Zi
j~1 Vr j~ i+1 v,
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FIG. 4. Density of states assigned to the discrete
levels; solid line for the BCS case Qeft scale), and dashed
line for the experimental case (right scale).

&u(& fi --f )~)/~
j=1

(32)

where the first sum is valid for 2 —i —Ã and I = i —j,
the second for 1 —i —K- 1 and l = j —i, and the third
for 1 —f' —K and l =i+j.

Solution of (25) using (32) gives the steady-state
excess population densities n; in the K levels of the
detector. Using the n, thus obtained we calculate
the detector signal using the expressions

S=D Z ni pi pi,
la1

where D is a constant, p, is as defined by (28)
while p& is given by

(33)

p'i = l(E i i+ s)' —l1"'- 4«+ Vs)'- ll"', (34)

with Vs=detector bias in units of h.
We also use the solutions n, together with (30)

and (31) to compute m, and m', , i.e. , the spectral
distribution of the phonons emitted by the detector.
This distribution is certainly different from that of
the incident phonons and reflects the effectiveness
of the superconductor as an energy convertor. ~

It is obvious that Eels. (30)-(32) can be used to cal-
culate the output phonon spectrum resulting from
an arbitrary input distribution of J, and J& . Using
a constant-input distribution we will compute the
output distribution and the conversion efficiency.

In the numerical calculation one has to insure
the validity of the results obtained by finding out
whether they fulfil some conservation law. In cal-
culations pertaining to phonon generation the total
number of recombination phonons emitted should ex-
actly equal one-half the number of injected parti-
cles. In the detector we use energy conservation
as a check to insure that the total input energy in
the incident phonons is exactly equal to the total
output energy in the emitted phonons. All calcula-
tions were carried out in double precision and the
conservation laws were fulfilled at least up to eight
digits.

In Secs. IV-VII, we discuss the properties of the
calculated spectrum and compare the computed de-
tector response with that obtained experimentally.
The calculations are carried out for a Sn-Sn diode
of d=3000 A and V=3X10 cm . From the exper-
imental I- V characteristic we took 4= 0. 57 meV
corresponding approximately to the onset of the
steep rise in the current. The operating tempera-
ture is -1.05 K giving P= 6. 3. From McMillan,
we obtained the density of states for one spin at the
Fermi level = N(0) = 0. 883 && 10~3 eV ' cm~, E~ = 10 33
eV, and L)= 0. 01723 eV. On.ce the occupation num-
bers n, and m, are computed one obtains the num-
ber of particles in a given level = 2N(0)VAWp, n,
and the number of phonons escaping into the sub-
strate = QNV(n/&un)'yW&d, m,
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IV. CALCULATED PHONON SPECTRUM

As pointed out previously the emitted spectra
are calculated for two, distinct, particle densities
of states, one representing the BCS case, the other
the experimental case as depicted respectively by
the solid and dashed curves in Fig. 4. In this sec-
tion we will discuss the variation of the emitted
spectrum with increasing injection width and point
out the effects which may be attributed to coherence
as well as those which are due to the density of
states. For simplicity we will use the bracket
(i,j } to denote either a transition from level i to
level j with the emission (absorption) of a phonon
for i & (&)j, or a recombination (pair breaking) in-
volving a particle in level i and a particle in level
j with the emission (absorption) of a phonon. In
referring to the relaxation (recombination) phonons
we will use the integer l(l') to denote a phonon of
normalized energy ~, = l W[&', .= 2+ (I' —1}W], with
l= li —j I (l =i+j —1). The injection widthwillbe
denoted by N, the number of levels receiving ex-
cited particles via tunneling at an applied voltage
V= 2+ (N —1) W.

When injection is limited to level 1 only, i. e. ,
N= 1 and V= 2, the distribution in energy of the
number of phonons emitted per second has a sharp
peak at & = 2 as depicted in Fig. 5. The width of
this peak measured in units of 4 is 0. 041 for the
BCS case and 0. 075 for the experimental case.
Obviously this finite width is produced by transi-
tions (1,j) where a considerable fraction of the par-
ticles injected into level 1 are scattered by the
thermal phonons to higher levels whence their sub-
sequent recombination results in the emission of
phonons of +' &2. Indeed, one finds that only 0. 42
of the total number of particles injected into level
1 recombine directly to the Fermi sea. Thus, if

y& denotes the number of phonons of = 2 and y&

the total number of recombination phonons emitted
per second, one finds y,/y, = 0. 42.

lt is obvious that for N= 1 the transitions (1,j)
will result in a net absorption of phonons for all
l as shown in Fig. 5 by the negative values for

& 2. This net absorption sustains an increase
in the steady-state population of all levels j &1

with a maximum at j= 5. The fact that the maxi-
mum absorption in Fig. 5 occurs at l=4 rather
than l = 1 shows clearly that adjacent levels are
weakly coupled as discussed in Sec. D. Even when
N is increased to 2 there is net absorption for all
l indicating the extremely weak coupling between
levels 1 and 2.

Let us see what happens when N is increased to
6. The emitted spectrum is shown in Fig. 6 and
the particle occupation (i.e. , the increase in the
number of particles occupying a given level above
its thermal value) is shown in Fig. 7. The width
of the recombination phonons has increased to 0. 28
which is larger than the injection width, (N —1)w

= 0. 25. This is in agreement with the discussion
in Sec. II where it was stated that as long as the
levels which receive injection are weakly coupled
the emitted spectrum has a width at least as large
as the injection width. The idea that these levels
may still be described as weakly coupled is eluci-
dated by two observations obvious from Fig. 6.
First the recombination spectrum has two peaks
of approximately the same height (ratio -0. 74) at
l'= 1 and l' = 6 corresponding to the equal peaks in
the number of particles injected into levels 1 and

6, respectively. Second, there is still a large net
absorption of low-energy phonons now extending
over the range 6 —l —10.

Note that the second recombination peak occurs

0.7

I~0.5—

o04-
A
tel 0.3-
I-

& 0.2

o~0
5
CL
~ 0.0-

0.1-

0.2 I I I I I I I

0.0 05 I.O I.5 2.0 2.5 3.0 3.5 4.0
NORMALIZED ENERGY ~/D

FIG. 6. Emitted phonon spectra with injection into
6 levels (N= 6); solid line for BCS case and dashed line for
the experimental case.
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at l'= 6 and hence represents a recombination of
the form (1, 6) rather than (6, 6) which would result
from direct recombination of two particles from
the highest level receiving injection (N = 6) with the
emission of a phonon /' = 11. The reason for this
is obvious, namely, the recombination (1, 6) has a
faster rate than (6, 6) and since the particles par-
ticipating in (1, 6) come from levels receiving max-
imum injection rate the second peak is almost as
sharp as the first. For larger N the second peak
always occurs at l' =N and though it diminishes in
magnitude and sharpness, it remains visible in a
linear plot up to N= 31.

The effect of the particle density of states is
also quite clear. Because the BCS density of states
has a sharp peak at the gap the excitations pro-
duced by tunneling will have two sharp peaks one
at E& and the other at E„. Thus the steady-state
particle occupation and the emitted recombination
spectrum will each have two sharp peaks at corre-
sponding energies. Any deviations from the BCS
density should be reflected in corresponding devia-
tions in both the particle occupation and the spec-
trum. Hence going from the sharp BCS density to
the rounded experimental density results in round-
ing and smearing of the peaks observable in the
particle occupation and the phonon spectrum. These
effects are clearly visible in Figs. 6 and V. More
important than the rounding, however, is the shift
of the first peak of the recombination phonons from
l' = 1 for the BCS case to l'= 2 in the experimental
case. This shift will persist for larger N and will
ultimately result in a larger width of the spectrum
emitted in the experimental case.

In the low-energy portion of the spectrum shown
in Fig. 6 one observes that there is net phonon

emission for 1 —l —N —1, followed by net absorp-
tion for N —l —10, and small broad-peaked emis-
sion for 11—N —E. Similar behavior is obtained
for N —10. However, with N —11 there is net pho-
non emission for all /. This behavior is illustrated
in Fig. 6 by the curves labeled z„/I„and z„,/I„,
where z„ is the number of relaxation phonons emit-
ted per second in transitions like (N+1, 1) and I„
is the number of particles per second injected into
level N.

The energy at which the maximum number of re-
laxation phonons are emitted also varies with N.
For N —14 the maximum occurs at l =N —1. How-
ever, for N &14 the maximum remains stationary
at l =13. Then, it moves slowly with increasing N
towards lower energy and finally settles at l = 10
for N —31. This behavior can be understood once
the influence of the coherence factor on the elec-
tron-phonon interaction strength is clarified.

Once thermal equilibrium is disturbed by inject-
ing excited particles into levels i, with 1 —i —N,
the rate of upward transitions induced by the ther-
mal phonons to levels j &N will increase. A new
steady state is established with levels j now con-
taining more particles than in thermal equilibrium.
%hether these upward transitions will result in net
phonon absorption over a certain energy range
l =j —1 will depend on which of the levels i=i,
make the major contribution to n&. For example,
if the levels i, are close neighbors to j the phonons
absorbed have / = 1 and no net absorption is ob-
served. If, however, the levels i, are remote from

.2

0

0 5 10 I5 20 25 30 55 40

FIG. 8. Number of relaxation phonons emitted (z&)
relative to number of particles injected (t&) and its vari-
ation with injection width N.
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j net absorption of phonons for l -j —1 is obtained.
The rate of the transitions (i,j ) with i &j is depen-
dent among other things on the number of thermal
phonons T, multiplied by the appropriate coherence
factor. Denoting this product by p&, „where

one observes that the coherence factor produces a
large reduction in the interaction strength for small
l and i. It also shifts the peak in T, to larger val-
ues of l. This behavior is illustrated in Fig. 9 by
four dotted curves representing g&, , vs l for fixed
values of i. We also show in Fig. 9 g&, & vs i which
represents the interaction strength to next neighbor
(l = 1). We note that q&, , is smaller than II, , , up to
l =10. Beyond the region where the curves inter-
sect g&, , gradually increases while q&, drops rapid-
ly to zero. Thus for N &10 remote levels are sus-
taining the increased population in levels j &N which
results in the observed net phonon absorption. By
referring to Fig. 9 one can easily interpret most
of the properties described in the previous para-
graphs as well as the behavior of the spectrum
shown in Fig. 6 for &2.

Another important aspect is the effect of co-
herence on the rate of spontaneous emission of re-
laxation phonons (&u & 2). Depicted in Fig. 10 is
the phonon spectrum emitted with N =K= 40. Since
g, rapidly falls with increasing l (e. g. , g, = 2. 7,
0. 12 for l = 1, 6, respectively), one expects that all
particles injected into higher energy levels i (say
i &15) spontaneously relax to the immediate vicinity
of level 1 (the top of the gap) emitting phonons with
l = i —1. Thus, the relaxation phonon spectrum
should reflect the exact distribution of the injected
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FIG. 10. Emitted phonon spectra with injection into all
40 levels; solid curve corresponds to the BCS case (left
scale), dashed curve to the experimental case (right
scale).

particles, i. e. , it should start rising smoothly at
to a sharp peak at L=N —1. Such behavior

is completely absent in Fig. 10. In fact, if one
plots z„,/I„vs N, i. e. , the number of phonons
emitted in the relaxation (N, 1) relative to the num-
ber of particles injected into levels N one finds,
as shown in Fig. 8, that a maximum occurs at N
= 14, where only one-third of the particles injected
relax to level 1. The absence of the peak at l =N —1

clearly indicates that particles injected in i =N do
not relax exclusively to the immediate vicinity of
level 1 but rather spread over a large number of
low-energy levels. This is further illustrated by
the behavior of z,o/I„with increasing N as depicted
in Fig. 8. One finds that this ratio rapidly in-
creases to unity at N = 16 and continues increasing
beyond unity for larger N. A quantity proportional
to the spontaneous emission rate is

&,„=S,[1-E,E,) ']p„. l=i -j
where S, and p~ are the final phonon and particle
states belonging to l and j, respectively. This
quantity is plotted in Fig. 11 for various final states
j as a function of the initial state i. One observes
that all curves tend to come closer together for
larger values of i. For example, relaxations from
i = 20 to any level between 1 and 10 occur at various
rates which lie within the same order of magnitude.
Thus particles relaxing from level 20 are distrib-
uted among the lowest 10 levels while those relaxing
from 30, for example, spread over 15 levels. This
obviously results in a reduction in the fraction of
particles going directly to level 1 and hence a re-
duction in z„~/I„ in Fig. 8. Another obvious con-
sequence is the disappearance of the phonon peak
expected at l =N —1.
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If particles injected into high-energy levels re-
laxed exclusively to level 1, the peak in the re-
combination spectrum at - 2 would continue to
sharpen indefinitely with increasing N. The fact
that relaxation distributes these particles over a
large number of low-energy levels leads, there-
fore, to the conclusion that the recombination
width will rapidly (iII 15) tend-to a constant value.
It also leads one to expect that even for V &4 the
spectral width will remain essentially the same as
that calculated here for V&4. The spectral widths
calculated for the BCS and experimental cases tend

to the values 0. 206 and 0. 265, respectively, as
shown in Fig. 12. The odd shape of the curves at
low voltage comes from the second recombination
peak shown in Fig. 6. As mentioned previously,
this peak occurs at l' =N. With increasing N the
peak slides down the curve towards higher energy
causing the width first to rise to an abnormally
high value and then to drop rapidly and tend to its
final value.

Of particular interest are the quantities 2y, /I,
and y,/y, depicted in Fig. 13. They illustrate in
the simplest manner the behavior of the system
as previously described. The quantity 2y, /I,
determines the number of particles recombining
from level 1 relative to the number injected into
that level. It hence determines the outcome of the
two competing processes, namely, particle loss
from level 1 to higher levels due to thermal-pho-
non absorption and particle gain in level 1 due to
emission from higher levels. One finds that the
loss prevails for N &12 while the gain steadily rises
with increasing N &12. In spite of this steady rise
in gain one finds that the ratio y, /y, tends to a con-
stant for N &12. This indicates that the spectral
width will not continue to decrease with increasing
2y, /I, but will rather tend to a constant value as
previously discussed. It is interesting to note that
only =0. 174 of the total number of recombination
phonons emitted have an energy exactly equal to the
gap.

V. COMPARISON BETWEEN CALCULATED AND MEASURED
SIGNALS

As discussed in See. III, the phonon output from
the generator at a given N is taken as input into
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FIG. 13. Number of phonons y& emitted due to recom-
binations from level 1 relative to either the number of
particles I& injected into level 1, or the total number of
recombination phonons yt.
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FIG. 14. Detected signal (dashed) and its deviation
from linearity (solid) computer for the BCS case.

the detector. The response signal of the detector
is then calculated at each value of N. Next, we
determine a straight line passing through the first
two points on the curve representing the signal as
a function of the generator current. We assume
that this straight line represents the linear re-
sponse. The deviation is then calculated by sub-
tracting values given by the straight line from the
corresponding values of the computed signal.

The results computed for the BCS case are de-
picted in Fig. 14. These results agree in two re-
spects with what we expected. First, the initial
deviation is positive and rises to a maximum.
Second, the magnitude of the deviation relative to
the signal is small. At the position of the maxi-
mum, the ratio of the deviation to the signal is
only 2. 63X10 . The smallness of the deviation
in the BCS case was expected because of the sharp
peak in the density of states at the edge of the gap.
It is obvious that this density of states, in influenc-
ing first the generation and then the detection pro-
cesses, will result in a steady-state population in
the detector which is quite sharply peaked at level
1. The contribution of level 1 to the signal cur-
rent is, therefore, relatively large and hence a
small deviation of the signal from the linear re-
sponse is obtained.

The discrepancy, however, lies in the fact that
the deviation in Fig. 14 goes negative at large N
and that its maximum occurs at V = 2. 4 instead
of 2. 2 as expected from the spectral width depicted
in Fig. 12. We have no good explanation for this
behavior. It is true that truncation errors may
accumulate because of the large number of sums
involved in the computation of the signal. This
may happen in such a way as to produce systematic
drift in the signal from its true value. Such er-

rors are apt to be more effective in the BCS case
because of the small magnitude of the deviation
relative to the signal. However, we have no esti-
mate of the magnitude of such errors and the dis-
crepancy should be attributed to an unknown cause.

The signal and its deviation computed for the
experimental case are shown in Fig. 15. Com-
parison with Fig. 3 shows an excellent agreement
between the computed and measured quantities.
Both deviations, the computed and the measured,
have almost identical shapes, remain always posi-
tive, and are of the same order of magnitude rela-
tive to their respective signals. At the position of
the maximum the deviation amounts to 2. 92% and
7. 93/& of the signal as determined from the com-
puted and measured results, respectively.

In Fig. 15, the maximum deviation occurs at
V = 2. 25, while the computed spectral width is
0. 265 as shown in Fig. 12. This is exactly the
result we set out to prove, namely, that the width
of the recombination peak is approximately given
by (V —2). Since the experimental results in
Figs. 2 and 3 give V = 2. 45, we conclude that in
the experiment the emitted recombination phonons
have a width = 0. 45. Obviously, we did not ex-
pect that the value of V measured experimentally
will equal that obtained from the above calculation
for two simple reasons. First, the transition
rates in the experimental sample may be different
than those adopted in the computation. Second,
the steady-state populations of particles and pho-
nons in the experiment may not be as small rela-
tive to the thermal populations as they should be
to exert negligible change in the transition rates.

VI. SUPERCONDUCTOR AS FREQUENCY CONVERTER

Narayanamurti and Dynes have shown experi-
mentally that if a heat pulse is incident on a super-
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conductor, the output pulse contains a sharp pho-
non peak at - 2. Obviously, input phonons of
energy &24 will break Cooper pairs and the result-
ing quasiparticles relax and then recombine pro-
ducing phonons of - 2 in addition to low-energy
phonons. To obtain an idea about the conversion
efficiency of such a process we used part of the
detector equations derived in Sec. III to calculate
the spectral distribution of the phonon output corre-
sponding to a given input. Two different input
spectra were used, one as generated by a super-
conducting diode while the other has a uniform
distribution (i. e. , equal number of phonons in each
level) with an arbitrary cutoff energy ~,. The
calculations were performed using the density of
states belonging to the experimental case. We
first consider an input having a uniform distribu-
tion with 0. 5~10"phonons in each level.

It is interesting to note that for &, & 2 there is a
small but finite phonon "up" conversion. The tail
ends of the output distribution for ~, = 1 (solid) and
w, =1. 6 (dashed) are shown in Fig. 16. The be-
havior for (' —2 in Figure 16 is quite similar to
that for —0. 3 in Fig. 6. There is net phonon
absorption for = 2 followed by the "up' conver-
sion (net emission) for ~ &2. 2. The incident pho-
nons, being all of energy &2, can only excite the
thermal quasiparticles present in upward transi-
tions towards higher-energy levels. Since the
thermal particles reside principally in the immedi-
ate vicinity of the gap edge, the partial depletion
of their population due to incident-phonon absorp-
tion calls for Cooper pairs to break to establish
the quasiparticle balance. This obviously results
in net phonon absorption for =2. It is also ob-
vious that the incident phonons have "over" popu-
lated particle levels of energy &1.2. The recom-
bination from these levels gives the net phonon

emission for &2. 2. In other words the incident
low-energy phonons shift the center of mass of the
quasiparticle distribution to higher energy result-
ing in the behavior depicted in Fig. 16. Since this
process is critically dependent on the number of
thermally excited particles, frequency up conver-
sion is small and the output is roughly 4 orders
of magnitude below the input.

The output spectrum shown in Fig. 17 was ob-
tained from a uniform input distribution with , = 4.
A good portion of the input high-energy phonons
has been lost and their energy transferred to low-
er-energy phonons. The maximum gain occurs in
a sharp output peak at &= 2. The output spectrum
looks quite similar to that emitted from a super-
conducting diode (see Fig. 10) except that the hori-
zontal axis in Fig. 17 is at 0. 3&&10".

The phonon conversion gain at a given energy,
defined as the number of phonons gained (i. e. ,
output-input) divided by the incident number is
shown in Fig. 18. It is obvious that this curve is
exactly valid only for a uniform input distribution
with , = 4. Other input distributions with different
cutoff will give a different conversion gain depend-
ing on the number of input phonons available for
down conversion. One finds, for example, that
when , is increased from 2 the recombination peak
starts from zero and rises almost proportionately
to „ to attain the value shown in Fig. 17 at , = 4.
It is expected that this rise will continue at an even
faster rate with increasing , &4. Similar behavior
is observed for the peak at = 0. 5. However, the
conversion loss (gain &0) in Fig. 18 for &u &2 ap-
proaches a constant value =0. 26 independent of the
energy. Therefore, it is plausible to assume, that
with an arbitrary input, the spectral distribution
of the output will have a shape similar to Fig. 18
superposed on the input distribution with the heights
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