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Resistive Transition in a Superconducting Filament
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The contribution of thermal fluctuations to the conductivity of a narrow superconducting fila-
ment is examined. A Fokker-Planck equation based on time-dependent Ginzburg-Landau theory
is used to describe the system. A variational solution of this equation yields an upper bound

for the resistivity as a function of temperature in the limit of small electric field. The re-
sult is accurate above T~ and appears to be a better estimate of the resistivity at and Just be-
low T, than that given by previous calculations.

I. INTRODUCTION

Much interest has recently been shown in de-
scribing the transition between normal and super-
conducting states for narrow filaments. These
filaments of superconducting material can be re-
garded as one dimensional if the cross-sectional
dimensions are much less than $(T), the Ginzburg-
Landau coherence length. Thermal fluctuations of
the order parameter are primarily responsible for
the resistive properties of the sample in such tran-
sitions.

Most of the earlier calculations describing these
resistive properties have been reviewed in the re-
cent paper by Tucker and Halperin' (TH). For tem-
peratures below T, the problem was first treated
by Langer and Ambegaokar~ (LA). Their theory
was improved by McCumber and Halperin' (MH).
Above T„Aslamazov and Larkin4 first determined
the additional conductivity due to fluctuating pairs.
A phenomonological version of their theory (closely
related to the point of view we shall take in this
paper) was presented by Abrahams and Woo. ' This
solution was restricted to temperatures well above
T, in the limit of small electric field. Schmid and
Huraulte succeeded in generalizing this result to
the case of finite fields by employing a linearized
time-dependent Ginzburg-Landau (TDGL) theory.
Masker, Marcelja, and Parksv (MMP) attempted
to extend the theory throughout the entire transi-
tion region in the limit of small field by including
the fourth-order term in a TDGL equation in a self-
consistent Hartree approximation. Below T„ their
results disagree with LA-MH, and experimental
evidence appears to favor the latter. Tucker and
Halperin have subsequently treated the fourth-order
term, representing interaction between fluctua-
tions, in a self-consistent Hartree-Fock approxi-
mation. The TH calculations extend the high-tem-
perature resistivity down closer to T, for finite
fields. Their results disagree with MMP, parti-
cularly for clean samples (long mean free path).

The present paper is an attempt to extend the

linearized TDGL results to lower temperatures in

the limit of small field by a variational method.
We make no special Hartree-like approximations
in treating the fourth-order term in the free ener-
gy, but we determine only the linear response of
the system to an applied field. In Sec. II we for-
mulate the problem starting from a TDGL equation
and develop a variational expression for the con-
ductivity in terms of functional integrals. In Sec.
GI we evaluate this expression using a simple but
nontrivial trial function. In Sec. IV we discuss the
results and compare them with previous work.

We shall assume the validity of the (nonlinear)
TDGL theory for calculating the resistivity near T,.
Questions involving this assumption are beyond the
scope of this paper.

II. BASIC FORMULATION

The standard Ginzburg-Landau expressions for
the free energy and supercurrent density are

F({&3,T)= f(f'r aiq(r)i'+ —,'f)i g(r) i'

~ 5(~ (
—. v —„X)))(r) ~, ())

2e ~ 1 - 2ej,(r) = ——S g~ (r) —. &+ —A (j)(r)+ c.c. .i Sc

Following the notation of Tucker and Halperin,

a= ao[(T —T,)/T, ], t')= a /2m,

and ao and b are constants independent of tempera-
ture.

As derived from microscopic theory, ~ the TDGL
theory predicts that for small slow variations of
{(I)), the time dependence of the order parameter
will be described by

hy —— V gt2ie
~t
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where V= V(r, t) represents the electrochemical
potential and

y = nAO/8 kBT, .
Assuming V=o, we have

8$( r, t) 8F (»t(, T)
Bt 8»j'(r, t)

(4)

This TDGL equation describes the decay of the
average order parameter towards its equilibrium
value. The recent fluctuation theories, e. g. , LA,
MH, and TH, are based on the assumption that (4)
can be generalized to a Fokker-Planck equation
governing the behavior of pQ), the probability dis-
tribution in the space of functions (j((r). The
Fokker-Planck equation is conventionally written
in the form of a continuity equation:

In a "steady-state" or constant-current solution
of (6), the current will be carried by modes which

propagate with velocities

v, = (h/m) [q+ (2e/kc) X ] .
The current density j, from (2) will be given by

I.= (2e/II) Z.v,
I

(j', I

' (6)

With our choice of gauge, A= cft depends upon time.
In the steady state the only explicit time dependence
of p{(t() will occur via the quantities v, : Thus we
can write

Bp + Bp Bv, eR + Bp8t, av, 8t m, v,

In the limit of small electric field, we write p= po
+ p, + ~ ~ ~, where p, represents the first-order cor-
rection to the equilibrium density. Since Spo= 0,
we have, to first order in E,

P, ((» = —z (,»' ~,~'.) -=('r ((» (5)
p

-BE g(Z~')= —
z 2

(@ T.). (9)

The components of the probability current J are

Bgg Bp g
a (6)

where g, is the qth Fourier coefficient of g, and

(j(r, t) = Z„, P (C, (t) e"'
a

In (7), 0 is the volume of the system, and in (6},
r=i/ptfy aW p=l/a T.

(7)

where the partition function Zo is defined as

Z f Bq e8F (0»

Equation (5) defines the operation Z. The distribu-
tion p is normalized to unity:

f 80pQ)=1,
where the symbol f 8(t( denotes integration over the
space of complex functions»(t((r).

Equations (5) and (6) may be justified most easily
by noting that J, has been chosen to describe forced
diffusion in the potential F. To recover (4), one can
take the first moment of Eq. (5), i. e. , multiply (5)
by lC((r) and integrate over (t(r). The resulting ex-
pression reduces to (4} in the case that p((t() is sharp-
ly peaked in g space. More systematically, the
Fokker-Planck equation (5) may be derived from
the TDGL theory by adding a Langevin force to the
right-hand side of Eq. (4). This force is a model
for the heat bath (e. g. , phonons in the metal), which
drives the thermal fluctuations of the order param-
eter. This point of view has been discussed in some
detail by MH.

The equilibrium solution of (6) is simply

p, Q) = (I/Z, ) e8'('»,

Since functional integration is equivalent to integra-
tion over all g„we can integrate by parts to obtain

(g, 2f) = —I' g I 8(t(e ~

x —e'~g y, e'"f q +c.c.
&%a a

a result symmetric in f and g. Also, we have

(f, &f) = —2r Z
~

(j(e
8~

(e f((t'))
a a

From (9}we can write
(12}

Equation (9) is our basic time-independent transport
equation. (The explicit time dependence remaining
in v, may be transformed away by a simple transla-
tion in q space, leaving v, = Kq/m. ) It remains to
solve (9) for th and then to evaluate the conductivity

o.=
I
(j.&l/I&l =(I/IN'I)

I f Bll'p T. l
(III)

To accomplish this, we employ the Kohler varia-
tional method, ' which we reformulate for our pur-
pose as follows.

Choosing two real functions f (lC) and g(»(t(), we de-
fine the inner product

(g,f) = f8»r -'""gA')f A').

The product (g, 2f) will then be given by

r

(g, gf) =+ r g Bye"'g(q)
a

8 BF Bf"
Bq, 'Bq, f'

Bq,
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.p~(pi, &p)=
l

~le"'pl ~pi 2Z
@' ll4p j

0

We determine C, to maximize P, with the con-
straint P+ M = 0 from (14). The result is

(is)

(
pAr, zr ~ (p j)) =o.

0

From (1S), we have

pQ
7', Zpi+ E ~ j, =0,

0

(14)

E (j.).
0

If we can evaluate (P„Zp, ), we can therefore de-
termine 0,.

To estimate p„we choose a trial function r(ijiJ
satisfying

and, consequently,

( )
1 p (Mp g, ,(n, n~) q')p

2I'Z, , (n, )

Up to this point our formalism has been quite gen-
eral with regard to dimensionality. For the one-
dimensional case which is of interest here, we can
write the last equation in the form

( )
MpP~ ($, q'(n, n, , ))P

2I'Zp, (n, )

so that (r, Zv'}= (p„ki')= (r, Zp, ). Combining this
with (12), we have

((pi-r), ~(pi-r})=(pi, ~pl) —(r, «) -o
We conclude that

Thus

pQ
2Z

E
0

Pe b g ($, q(n, ng))P
rm'a, (n, )

(16)

r = ( -"/z, )(Z, c, l g, l').
From (12), we have

(i6)

—(pi& &pi) -- (r, «)
therefore, we must choose r to maximize —(r, Zr),
while satisfying the constraint imposed by (14).

III. EVALUATION OF CONDUCTIVITY

We choose for our trial function v' the simple form

We are able to evaluate the quantities Z p, (n,),
and (n, n, )exac. tly only in one dimension. To do
this we introduce Green's-function notation, defin-
ing

r fbi)(I. )

G(A, 0p, L) =-

0&0)

where the functional integration is performed over
all complex functions ij(x) such that $(0}= gp and
ij(L) = lC, and for one dimension,

Also from (8),

P Ii (r -pi T)
0

ef ~ p q &ge p C, lg, l lg, . l

—=M.
mZQ ai a'

Defining

bqe~~l i', l'-=(n, ),
0

1
Z

Q

Here d is the cross-sectional area of the sample.
It has been shown elsewhere" that G will satisfy
the differential equation

m e~G

2Pd 5 &u, 8pq

where tjI» = u&+ ie&. The Green's function can there-
fore be constructed as a sum of eigenfunctions
x, (0):

and

Ph
M —= —eE,

m

G(gi ltp' L) =P ixi(A) Xi (imp) e

y„will satisfy the equation
we have

and

P c'.(n, )
0 a

' Qg q'C, (n, n, , ) .
0 a a'

m
+ 2pdp5p 8 p+ s p Xi. (18)

The normalization of y is chosen as
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so that

lim G (g„ lI(o; L) = 5 ((('(( —iI(o} .
L 0

We can evaluate functional integrals by express-
ing them in terms of Green's functions and then

employing (1V) and (18). For example,

Z = f 5lI(e o = f d g G((C(, g;L}

=~ f d'
iIo I x,(0o) l' e "' = &

In the limit of large L, the lowest eigenvalue will
dominate, leaving ZQ=e "0 .

Next we can evaluate

(n,) = 5ge ~l g, la
0

rL r L

5ii ee dxq(x) e '
dy g"(y) e' "

ZQL .0 ~Q

2d'ii l d'()o ( dxiI, (x) e-"'go~(0)

x G(A, 4o, x) G ((((o, 6;L —x}

d2
Z x'(, x,(() (,x;( ))(

0 )t, )t'

x'(.x, ((x) (;x,'((.))
-hc -)1' ( L-x)

0

Def ining iIx(». = j d (C(X„(g) gxx~ (rj'r), we have

d e-)tL -)t' L

&n,& =
0 X, )t' zq+X -A (19)

Q q'& n, n, , ) = q(n, )'
a'

and (18) becomes

pe 2@2e, - F aD & q'&n, )'.
Q

(21)

Taking the limit of large L, we obtain a sum of
terms with factors e '" "0' . These terms will be-
come vanishingly small unless &= Q. Defining
e = A —g, we can reduce (19) to

Iim & n, &
= d'&

l ~.~ l' o
'

o . (2o)+q

The product (n, n;) can be evaluated by a longer
but analogous procedure. The results simplify,
however, in the limit of large L; the product aver-
ages are uncorrelated:

( (n,) (n, , ) q x(q'

2 (n,&' q'= q.
Consequently, the summation over q in (18) reduces
to

The fact that products like (n, n, .) are uncor-
related makes (21) a much more general result
than the simplicity of our chosen trial function
(15) might imply. It turns out that trial functions
containing higher powers of I g, i and products
like I g, I I g, , lo reduce to (15) and reproduce (21).
We have not, however, considered functions with
terms like g, g, g, g,*, which will have a non-
vanishing average if q, + q2 = q3+ q4.

To evaluate (20) for & n, ), we must solve (18)
for X and A. and determine the appropriate matrix
elements. This equation is the Schrodinger equa-
tion for a particle in a circularly symmetric two-
dimensional anharmonic potential well. The
eigensolutions must be determined numerically.
We can simplify (18) by introducing scaled varia-
bles R and 8 and scaled eigenfunction g:

2b ils
~K

2 2/4 X)ty

so that the eigenvalue equation becomes

((()„= (x(IR +R ) (&„

where

1 & 1
8R R sR R se

((()„(=(AR'+R') q„(

~
~

d l
dR R dR "' R

Two independent numerical methods were used
to solve this equation with the aid of a computer.
In the first, we set initial conditions for g at the
origin and at large R, based on the required asymp-
totic behavior. We then stepped R in small in-
crements from both ends, using (23) to evaluate
the change in g by a Taylor series expansion. At
some central value of R, the logarithmic deriva-
tives of g from above and below were compared.
The eigenvalue K was varied until these derivatives
matched. Once the correct eigenvalues were de-
termined, the matrix elements M„& which appear
in (20) were computed by numerical integration.
In the second approach, g was approximated as a
polynomial function. Equation (23) provides a re-
cursion relationship from which the coefficients
of successive powers could be constructed. K was

P@4d2 '" h2
K=2 2 nd A =2

2 b2 a.mb Pd mb

The angular dependence of () in (22) will be simply
e "(I= integ-er}, leaving a, radial equation to solve
for g and K:
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then varied until. g became small at a selected
value of 8 outside the potential well. The matrix
elements were calculated from these g's as de-
finite integrals of products of polynomials.

The solutions of (23) will obviously depend upon

A, our temperature-dependent parameter. We
have solved the equation for values of A through-
out the transition region using (20) and (21) to
evaluate v, . For temperatures well above T„A
is large and the quartic term in (23) has a negli-
gible effect on z and g. In this region the eigen-
value equation reduces to an exactly soluble har-
monic-oscillator problem. We then obtain

!
2 m A-1/2 g

Pd4gab

1 m b

2 lah d2

1.0

0.8—
0

Il0 ~I
I

I

reliable in this region. The results of TH and
MMP differ noticeably above T, and our close
agreement with TH is further support for their
results. At temperatures well below T„ in the

and (20) reduces to

2 m j /2 26)1/S

( )=d ( 2~~ A I 2,6' g+q
recalling that e = A. —A . The conductivity from
(21) will be

pdB e 2g2
g I.m'0

S8m gag e gq
p2d4I2b (eR+ 2)3

, (ef+q')' 2v '„(e',+q')' 18 '

Thus

In the limit of large L, q becomes a continuous
variable and the summation becomes an integral:

0.2—

0 b

t.0

0.8—

(b)

0

f o

l
O ~

I ~

I ~

I ~

O'

2

(A»1), (24)
2PI mb

which corresponds to the Azlamazov-Larkin re-
sult.

The numerical results which we obtain for the
resistivity for general A are plotted in Fig. 1.
In most cases, only a single matrix element con-
tributed to the answer; below T„a second term
provided small corrections. Summations over q
were in each case evaluated in the continuum limit.
Certain eigenvalues z of (23) are graphed in Fig.
2 as a function of A. These eigenvalues are as-
sociated with the eigenfunctions producing non-
vanishing M„&.

0.6—

04—

0.2—

o ~

0
—4

I ~

I ~

g ~

I
S

IV. CONCLUSIONS

Our variational calculation provides an upper
bound for the resistivity throughout the critical
region. Comparison with the results of TH and
MMP is given graphically in Fig. 1 for dirty and
clean samples. Our calculations agree closely
with TH in both cases down to T,. Below T„ the
TH results exceed our upper bound; Tucker and
Halperin had estimated that their results were un-

FIG. 1. Resistivity p = (1/ps+ 1/pn) is plotted vs (e/cc) ~

ec is the standard scaling factor for the temperature
variable ~ = (T- Tc)/T, . (e/c is related to the variable
A used in this paper by A=4 (e/ec). The results of TH,
MMP, and MH are based on the zero-current limits given
in TH (Appendix C). TH and MH are shown as solid curves,
MMH is the dotted curve, and the circles represent our
results. (a) p vs e/ec in the dirty limit, l «Ep (b) l =10$p
for the clean limit. The scaling factor ec is mean free
path dependent, causing the difference between the graphs.
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K, &

0

2(A) R

A

/~
/

/

-. -RO

region where LA-MH results are considered re-
liable, our upper bound lies considerably above
their curve, indicating the inadequacy of our solu-
tion here. In the region just below T„however,

FIG. 2. Eigenvalues ~ of Eq. (23) are graphed vs A in
the transition region. The ground-state eigenvalue /&pp

and the three lowest eigenvalues for l =1 are given.
(Since ~~ vanishes unless l =1, only these values of k
were calculated. ) Two additional curves are sketched
to indicate asympototic behavior. For A large and pos-
itive, the quartic term has negligible effect. In this re-
gion eigenvalues should be approximately proportional
to 2v A. For A large and negative, the depth of the po-
tential well, A2/4, sets a scale for the eigenvalues. The
proximity of Kpp and Kp~ below A = -4 illustrates the sma
small effect of the angular-momentum term there.

our results appear to provide a smooth link between
LA-MH below and TH above, completing the de-
scription of the resistivity throughout the transi-
tion region.

The accuracy of our results is difficult to de-
termine directly. The principal limitation of our
method is the choice of trial function. As the con-
ductivity increases at lower temperatures, our
simple choice for v' is less likely to provide an
adequate description of the system's behavior.
Correction terms for our results are difficult to
obtain, because they require a more complicated
trial function. In particular, it seems to be ex-
tremely difficult to construct a trial function which
corresponds to the physical situation at T ( T, as
described by the LA-MH theories. The accuracy
of the numerical calculations is easier to evaluate.
The principal limitation of both methods is their
iterative nature; errors are compounded as succes-
sive terms are calculated. Both approaches work
best above T„where the eigenfunction changes less
abruptly and dies off at smaller R. The errors of
these two methods should be independent of one
another. The numbers computed agree to a high
degree of accuracy. The limitations of the theory
are essentially unrelated to this aspect of the prob-
lem.

In general, we expect our results to remain valid
to lower temperatures than TH or MMP, since the
zero-field fluctuation density is included exactly
here, and only the response to applied field is ap-
proximated. The graphs suggest that this is the
case.
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