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The effect of impurities on the critical interaction strength for the Mott transition has been
investigated using an extension of the Gutzwiller approach to correlation in the metallic state.
It is shown that the band narrowing due to impurities causes a reduction of the effective inter-
action necessary for the transition to the insulating state. The residual resistivity due to
impurity scattering is considered and it is argued that the conductivity can be written as the
product of the Fermi-surface area and the mean free path. Since the latter is limited by the
average impurity separation the residual resistivity is bounded. This upper bound appears

to be violated for Cr-doped V,0;.

I. INTRODUCTION

A number of metal-insulator transitions have
been observed in the various oxides of the 3d tran-
sition series.! While none of the transitions ob-
served are understood in any quantitative detail, it
is generally accepted? that there are strong Cou-
lomb interactions in these materials and that the
Coulomb interactions play an essential role in de-
termining many of their properties. In particular,
one expects some rather strong effects due to cor-
relation in the properties of the metallic state and
it has been shown? that it is possible to make qual-
itative predictions of these effects by using an ap-
proach due to Gutzwiller* based on the Hubbard
model. It is the purpose of this paper to examine
the consequences of his approach further.

The metal-insulator transition in V,0; has been
studied extensively in the past few years.! One of
the interesting results of these studies is the ob-
served relationship between the effect of negative
pressures and that of doping with Cr or Al.''* Since
both of these ions are stable trivalent ions one
might as a first attempt regard them simply as
deleting a site from the conduction band of pure
V,0;. This deletion causes a band narrowing and,
consequently, a reduction of the critical values of
the interactions for the metal-insulator transitions.
The relationship between negative pressure and Cr
or Al doping simply arises because they both in-
duce a band narrowing which drives the system
more insulating, This result is explicitly worked
out in Sec. II by generalizing Gutzwiller’s approach
to include the effect of impurities. This is ac-
complished by adding a term to the Hamiltonian
which describes the energy difference between the
impurity conduction level and the host level. We
consider the case in which the number of electrons
is equal to the number of host atoms and construct
a trial wave function in which the amplitudes of
those configurations with 2« electrons on the im-
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purities are reduced by 62, At the same time we
retain the reduction of the amplitude of configura-
tions with doubly occupied sites and make the same
type of approximation made by Gutzwiller in finding
the energy. In this way we predict a critical value
of the Coulomb interaction for the metal-insulator
transition as a function of the impurity concentra-
tion and the separation of the impurity level and the
host band. The above-mentioned relation between
doping and pressure becomes explicit in this cal-
culation,

One of the attractive features of the Gutzwiller
approach is that the Fermi surface of the nonin-
teracting Bloch state is retained as the interaction
strength increases. The fact that the number of
carriers (equal to the number of doubly occupied
sites) becomes small as the metal-insulator transi-
tion is approached is represented by a large effec-
tive mass rather than a change in the volume en-
closed by the Fermi surface. To the extent that the
properties of such a metallic state are similar to
those of a state with a small number of carriers,
our picture is similar to that of Mott.® He visual-
izes the metallic state near the metal-insulator
transition in terms of two overlapping Mott- Hubbard
bands. In order to investigate the equivalences be-
tween the two views in Sec. III we derive expressions
using Landau-Fermi-liquid theory for the fre-
quency-dependent conductivity. We find that at fixed
frequency the conductivity is inversely proportional
to the effective mass and therefore goes to zero as
the metal-insulator transition is approached. On
the other hand it is possible to write the dc conduc-
tivity in the presence of a small number of impuri-
ties, in a form involving only the Fermi-surface
area and the mean free path. A lower bound on the
mean free path is obtained by assuming that a quasi-
particle is completely scattered every time it en-
counters an impurity. Thus neither of the quanti-
ties entering the dc conductivity is expected to be
strongly dependent on the interaction strength. This
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result suggests that in the dilute limit the increase
in residual resistivity should not behave in an an-
omalous fashion near the Mott transition. On the
other hand, recently McWhan et al.” have found a
value of 140 pQcm per at.% Cr for the residual re-
sistivity in the metallic state of (V,., Cr, ),0; under
pressure. This increase is more than an order of
magnitude faster than can reasonably be expected
from the formula of Sec. Ill. Possible explanations
of this result are that series expansion in impurity
concentration is breaking down in this case or that
the Fermi-surface area is an order of magnitude
smaller than anticipated from the large values ob-
served for the susceptibility and the electronic
specific heat. An alternative explanation is that
our model does not apply to V,0; and in this ma-
terial the conduction processes are dominated by a
small number of relatively light electrons possibly
from the 4s band and the specific heat and suscepti-
bility are governed by quasilocalized 3d electrons.

Finally we consider the Hall effect. Again using
Landau-Fermi-liquid theory we find the Hall co-
efficient to be related to the area enclosed by the
Fermi surface at low temperatures. At tempera-
tures high compared to the renormalized Fermi
temperature we expect the number of carriers to
be equal to the number of doubly occupied sites
leading to a temperature-dependent Hall coefficient.
Recent experimental results of McWhan et al.,”
however, show only a small difference between the
values of the Hall coefficient of V,0; at 1 atm and
300 °K and at 25 kbar and 4.2 °K.

II. REDUCTION OF CRITICAL INTERACTION

In this section we will consider the application
of the Gutzwiller variational method to the problem
of impurities in a single-band Hubbard Hamiltonian.
We take as our model Hamiltonian

H=2J ti,c!ac,a+to 2 Mg+ U2 [ T
ijo o,i€ll} i

(2.1)
where #;; =0, c], is the creation operator for the
Wannier state at site ; and spin o, and »;,=c!,c;,.
The second term represents the shift of the zero of
energy on the impurity sites {I}. We assume for
simplicity that the hopping integral ¢#;; and the Cou-
lomb energy U are independent of whether the sites
i and j are host or impurity sites.

In the Gutzwiller approximation to the Hubbard
Hamiltonian in the absence of impurities, one con-
structs the matrix elements of the density operator
as a product of two factors. One factor arises from
phase relationships between the set of configurations
where the electron positions are specified. For
this factor one takes the value for the uncorrelated
or noninteracting electron gas. The second factor
comes from the correlation and is computed by
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summing over all possible configurations of the op-
posite-spin electrons with a weighting factor de-
termined by the number of doubly occupied sites.
In this procedure the kinetic energy of the opposite-
spin electrons is neglected completely and they are
treated as though they were infinitely heavy and
random in position. It is straightforward there-
fore to generalize this second calculation to in-
corporate the effects of the impurities. The modi-
fication of the first factor due to the presence of
impurities is a much more difficult matter. We
shall make the simplest possible approximation and
assume it is unmodified by the impurities. This
leads to the unphysical consequence that the model
has a sharp Fermi surface in momentum space even
in the presence of the impurities. This approxima-
tion is only useful as a description of the coherent
effects of impurities, e.g., the reduction of the av-
erage Kkinetic energy in the presence of strongly
repulsive impurities. It neglects completely all
the incoherent-scattering effects of the impurities.
Thus it cannot describe such effects as the onset of
Anderson localization. ® We shall return to this
point in Sec. ITI. In this section we will consider
only the coherent-scattering effects of the impuri-
ties.

The details of calculation of the matrix elements
are rather tedious and are given in the Appendix.
The result obtained for the ground-state energy is

(2.2)

where m is the number of electrons of one spin,

€ [=m™ T crp €(k)] is the average kinetic energy in
band structure of the host. In writing Eq. (2.2) in
this form we have made use of the exact relation-
ship between the weighting factors and the numbers
of appropriately occupied sites in the limit that the
number of sites is very large. The symbols v, «,
and X denote the numbers of doubly occupied host
sites, of electrons of one spin on the impurity
sites, and of doubly occupied impurity sites, re-
spectively. From Eq. (A13) of the Appendix we ob-
tain the result

Eo=2meq(v, k, \)+vU+2xtg+ AU ,

—)1/2

q(v, E’i):m {1-e)(T-v
x[(1=2Z+ )/ 24+012]

+e(k =2 2[(1-2k Y 2AYER, (2.3)

where ¢ (= I/L) denotes the concentration of im-
purity sites and m=m/L, v [=v/(L-1)], & (=x/I),
and X (= /1) are the respective fractional occupa-
tion numbers. The quantity Z denotes the ratio of
the number of electrons of a single spin on the host
sites to the number of host sites:

T=m-x)/(L-1). (2.4)

Minimizing the total energy with respect to v, «,
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and X leads to the coupled set of equations

.Z%z (1-¢) (_—z%f) , (2. 52)
%%=c(_ ;ﬁ) , (2. 5b)
%zc(—g_nz-) ) (2. 5¢)

The solutions of these equations are in general
rather involved and we shall restrict ourselves to
two cases of interest. First let us take the case
U=0. The Hamiltonian then reduces to the well-
known alloy problem which has been considered by
a number of authors. It is of interest to compare
the results obtained by the Gutzwiller method and
those obtained by other methods such as the co-
herent-potential approximation (CPA).%!° The sec-
ond case is the metal-insulator transition in the
presence of a set of repulsive impurities under the
conditions that the number of electrons exactly
equals the number of host sites.

In the limit U~0, Egs. (2.5a) and (2. 5¢) reduce
to

(2.8)

It is straightforward to show that the solutions of
Eq. (2. 6) are

2 T T T T
1.5 THIS WORK -
3
~ 1.0
R
CPA
0.5 -
o ] 1 1 1
o 0. 0.2 0.3 0.4 0.5

FIG. 1. Condition for an energy gap to develop between
the band of states centered at the average energy () on
the impurity sites and the band of states centered at the
average energy of the host sites as a function of the con-
centration (c) of impurities. The upper curve shows the
results obtained by using Eq. (2.11) and the lower curve
those obtained in the coherent-potential approximation by
Velicky, Kirkpatrick, and Ehrenreich (Ref. 10).
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V=0 A=Kk, (2.7)
as one expects in the absence of correlations be-
tween the up- and down-spin electrons, Substi-

tuting from (2. 7) in (2. 3) one arrives at the result

a(RK) ==l (1= ) BV 20 T 2 o 21— 0V 2),
(2.8)
Let us now take the number of electrons equal to
twice the number of host sites (i.e., m=1-¢) and
derive the condition for a metal-insulator transi-
tion. Such a transition will occur when the band
centered at the average energy of the impurity sites
(¢,) splits off from that centered at the average en-
ergy of the host sites. From Eq. (2.4), we have

T=1-[c/(1-c)]k, (2.9)

and substituting this value of ¢ into Eq. (2. 8) we
arrive at the result

[(1_ c— cE)1/2+CI/2(1— 'E)l/zlz .

(2. 10)
The metal-insulator boundary is determined by
simultaneously solving Eq. (2. 5b) and the condition
q(k)=0. After a little algebra we arrive at the re-
sult

q(Tc')=1_c

(2.11)

( 1 1 )2 s
A=Wz * 2] = (-— r_n'e') :
Note this formula applies only for a less than half-
filled band, i.e., 0.5<c<1. For 0<c<0.5 the re-
sults are obtained by using particle-hole symmetry
by the substitution ¢ - 1- ¢. The detailed form of
this condition depends on the band structure of the
host material through the parameter €. Velicky,
Kirkpatrick, and Ehrenreich!® have used the CPA
to calculate the condition for band splitting for a
band with a parabolic density-of-states function of
the form

n(e)= 2/mu?) w® - ), |e|<w

=0, le|>w (2.12)
where w is the band width, In Fig. 1 we make a
comparison between their results and those of Eq..
(2.11). The general shape of the curves is similar
but Eq. (2. 11) leads to a value of ¢, which is larger
by a factor of approximately 1.7. The dilute limit
(c = 0) is given exactly by the CPA and the failure
of Eq. (2.11) in this limit shows that the detailed
numerical predictions are not to be trusted to within
a factor of at least 2.

We wish now to turn to the consideration of the
combined effects of impurities and the intraatomic
Coulomb repulsion U. We are again interested in
the possible circumstances under which a metal-
insulator transition occurs. Since the model we
are considering only describes the coherent effects
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of impurities and ignores scattering effects it will
not be applicable to situations where the impurity
potentials are weak and the impurities have the
same number of d electrons as the host. Instead
we will restrict our attention to strongly scattering
impurities with a different number of d electrons
where we may hope that the coherent effects are
largest. Therefore we take #;,>0 and the number
of electrons equal to the number of host sites and
examine the condition for a metal-insulator transi-
tion.

At the metal-insulator boundary both the fraction-
al occupation numbers v (doubly occupied host sites)
and x (the number of electrons per impurity on the
impurity sites) both go to zero. Clearly X (the
fraction of doubly occupied impurity sites) goes to
zero faster and may be set equal to zero. Under
these circumstances ¢ may be written

q(ﬁ,E)=1T467 {(1= &) (T=TM2[(1- 2T+ DIV 24+ M2

+ektP(1- 2003 ) (2.13)

with
t=3-[c/(1-¢)]k . (2. 14)

Substituting in Eq. (2. 13) and expanding for small
values of k and v, we find

——_ 4 1-¢ 2c - -\V? —1/2] ~1/2 :
q(V,K)—chz{E[n-[(l_cK+v> +V +CK

+0(k%v¥kv).

(2. 15)

The metal-insulator transition boundary is found
by solving the two coupled equations (2. 5a) and
(2. 5b) using Eq. (2. 15) for ¢q. Taking the ratio of
(2. 5a) to (2. 5b), we find

2t,/U=x(2+2Y%a)/(x+ a) , (2.16)

where x*=7/k and a=[2¢/(1-¢)+x%]'/%. We may
rewrite Eq. (2. 5b) as

/1 2 -
z——o'e'):—1+c (—172-12 Clx+a)+ c) <2”2 als 1) .
(2.17)
First let us examine these equations in the two
limits U—~« and {5~ ~. In the latter case, x> 1
and

2ly_g1/2, ang (4):23/2(—1—‘—0—)x. (2.18)
U - € l+c¢

Solving for the critical value of U, we find

8(1-¢), -
Ucrie =i+c) (-¢). (2.19)
In the U~ = limit, x <1 and
2ty/U=2Y2[(1-c)V2/cY2,1] «, (2. 20)

and one finds for the critical value
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(2.21)

For a general value of 2¢,/U it is straightforward
to solve Egs. (2. 16) and (2. 17) and we obtain the
results shown in Fig. 2. At large values of #, and
U the system is insulating and there are critical
values for ¢, and U below which the system will not
form an insulating phase.

It is interesting to compare these results with the
recent experimental results on the addition of vari-
ous impurities to V,0,. ' There are two experi-
mental points to be made. (a) Impurities which are
very stable trivalent ions such as Cr® , A1* sta-
bilize the insulating phase. (b) The effects of such
impurities can be counteracted by applying pressure
and there is a linear scaling relationship between
the concentration of impurities and the pressure.

Consider first the addition of Cr to V,0,;. Since
Cr has an extra electron and a very stable Cr* con-
figuration we can approximate it within our model
Hamiltonian (2. 1) by taking #,<0 and |#,| > U and
m=3(1+c). Because of the particle-hole symmetry
we may rewrite the Hamiltonian in terms of hole
operators., Thus the problem at hand is identical
to the impurity problem with #,>0 and m=3(1-¢).

The critical value of U is then given by Eq. (2. 19).
Expanding for small values of ¢, one obtains

Uers (€)= (= 8€(pay) [1— ¢ (2 _dme) o )]

dc
_ (2. 22)
and € is a function of ¢ through the condition on the
number of electrons. Assuming the second term
in brackets is positive there is a linear reduction

2 -
fo e =7, (= ) [(1+c) 24V 2)2

c=a

INSULATOR ]

¢ =0.01

Cc=0.1

0 10 20
tO/(-E)

FIG. 2. Phase boundary between metallic and insulat-
ing behavior as a function of the intra-atomic Coulomb
interaction U and the repulsive potential ¢; on the impurity
sites for different values of the impurity concentration
under the condition that the total number of electrons is
equal to the number of host sites.
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in the average and if U is held constant, the insula-
ting phase is stabilized. On the other hand, the ap-
plication of pressure broadens the bands and in-
creases (- €) so that

)

din(-%) _ <2 _din(-7%)
(2.23)

dP dc

If we make the reasonable assumption that U is
only weakly dependent on pressure or composition
we get a linear relation between applied pressure
and concendration. The physical origin of the ef-
fect is clear. The effect of the pressure is to
broaden the energy bands and to enhance the kinetic
energy while the addition of Cr or Al because they
are very stable trivalent ions reduces the itinerancy
and therefore the average kinetic energy.

The situation as regards the addition of Ti and
other types of doping is not clearcut experimentally.
For some types of dopant there can be accompany-
ing variations of the stoichiometry which compli-
cates the situation. However, it is clear that with-
in our model the introduction of impurities of dif-
ferent valence and small ¢/, will tend to stabilize the
metallic state. This is likely to be the case in Ti*
doping. !

Ucrit(C’P):: Uy [1+P

II. APPLICATION OF LANDAU-FERMI-LIQUID
THEORY

As we noted in Sec. II the direct application of the
Gutzwiller method to the impurity problem ignores
all the effects of scattering. One can, however,
make some progress towards understanding the
transport effects by using the Gutzwiller approxi-
mation to give information on the Landau-Fermi-
liquid parameters and thereby construct a Landau-
Boltzmann transport equation. The present au-
thors® have calculated the behavior of the effective
mass, magnetic susceptibility, and screening con-
stant near the Mott transition. Using the well-
known relations of these quantities to the Landau
parameters, one obtains the results

m/m*=1-(U/U,)\ , (3.1)
Ag=Uplex) M+ U/U)™ (1-U/U,)2 (3.2)
Bo=Uplep) (1+ U/2U,) (1+ U/U,2 , (3.3)

where A, and B, are the uniform averages of the
singlet and triplet Landau interaction function, U,
(= - 8¢) is the critical value of U, and p(ej) is the
band-structure density of states at the Fermi level.
The Landau parameters whose order is greater than
zero give a measure of the interaction energy when
one has higher-order Fermi-surface distortions
which do not change the total numbers of up- or
down-spin electrons. Since within the Gutzwiller
approximation the interaction energy depends only
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on the total numbers of up- and down-spin electrons
it follows that within this approximation ore has

A,=B,=0, n21, (3.4)

This leads at once to the result for the current
carried when the quasiparticle distribution function
changes:

3’—‘?:/63; 5”10 y (3-5)
ko
where ;; is the velocity of a single quasiparticle
which is renormalized by the effective mass. From
this one finds that the conductivity at a frequency w
in the absence of scattering is given by
2 -
olw)=i & T G -nPo(E;, - 1), (3.6)
@ 3o ¢
where p is the chemical potential and n is a unit
vector parallel to the direction of the electric field.
This can be written

ie%S p vp

Terts @7

olw)=
where S is the Fermi-surface area ard v, is an
average quasiparticle velocity at the Fermi surface.
Thus as the metal-insulator transition is approached
Sp stays constant (at least for a simple model, see
below) and v, ~0. The frequency-dependent con-
ductivity decreases because of an increasing effec-
tive mass, while the effective number of carriers
remains constant.

This is in contrast to translationally invariant
systems where the conductivity at a fixed frequency
is independent of the interaction strength. R is in-
structive to rederive Eq. (3. 5) by a different method
which shows up the essential role played by the band
structure. In the Gutzwiller approximation the bare
particle-occupation number m; has a simple form

(3.8)

where m, is a constant independent of k and °(k)
is the occupation number in the absence of interac-
tions_.» In the presence of an electric field the cur-
rent J is given by

me=mg+ qm°&) ,

3=e_2 ;gqém;q y (3.9)
ko

where 52 is the bare velocity determined by the
band structure and omg,  is the change in the bare-
particle distribution function. Since a full band
carries no current we may assume that the constant
term m, in (3. 8) plays no role, and we obtain the
result

J=e _E q;ga omg . (3.10)
ko

Using the results that qvg =v; and 6m} =bn; , We

recover (3.5). In general, as shown by Resibois, 1
there is a relation between the change in quasipar-
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ticle and bare-particle distribution functions of the
form

5’”:a=‘15":a+;%.7:.,.:','5’":'0' : (3.11)
where 5 is the transformation function. Clearly

within the framework of the Gutzwiller approxima-
tion, y=0.

Up till this point we have considered the conduc-
tivity at a fixed frequency for a pure system. If we
introduce a dilute set of scattering centers with a
relaxation time 7 then the change in quasiparticle
distribution function caused by an electric field act-
ing for a given time 7 is

ong=eE vy To(EE) - p) . (3.12)

In this formula there is a cancellation, for a fixed
value of the time 7, between the enhanced density
of states and the reduced velocity of the quasipar-
ticles. However, in the presence of interactions
the constant quantity is the mean free path L=1vz7.
In the dilute limit clearly L must scale inversely
with the concentration. Thus as the Mott transition
is approached and the velocity vy drops the relaxa-
tion time 7 increases so as to keep the mean free
path L constant. An examination of the detailed
form of the renormalization of 7 due to many-body
effects given by Heine ef al. *® yields the same re-
sult. Thus we find that for a given set of impuri-
ties, the change 6»n; in the quasiparticle distribu-
tion function becomes large as the Mott transition
is approached. However, in the conductivity this
is cancelled by the low velocity of the quasiparticles
and we find

o=e’SpL/127° . (3.13)
The conductivity therefore is independent of the
strength of the interactions.

We had hoped in this work to investigate the pos-
sibility of an increased tendency towards Anderson
localization® in the presence of strong correlations.
This question has been discussed recently by Mott.®
He has given an appealing description of this prob-
lem in terms of slightly overlapping Mott-Hubbard
bands. He suggests that under such circumstances
the effect of disorder scattering can be greatly en-
hanced and that Anderson localization will set in
for a smaller amount of disorder. This point of
view is supported by the recent experiments of
McWhan ef al.” on Cr-doped V,0,. In these experi-
ments it was found that in the metallic phase at low
temperature and high pressure, Cr impurities act
as very strong scatterers. A rise in residual re-
sistivity of ~ 140 uQ cm per at.% Cr was measured
and this is at least an order of magnitude larger
than that observed for transition-metal alloys. This
appears to conflict with the result we obtained in
Eq. (3.12). Possible explanations for this dilemma
are that the expansion in powers of (kL) breaks
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down very rapidly in this situation or that impuri-
ties nucleate a local insulating cluster leading to
exceptionally large scattering centers.'* However,
it should be pointed out that the effect of the cor-
relation is to decrease, not enhance, the scatter-
ing rate 771,

The Hall effect should distinguish between the
case of a small number of carriers and a large ef-
fective mass. It can be shown quite generally using
Landau-Fermi-liquid theory'® that at low tempera-
ture the number of carriers is related to the vol-
ume enclosed by the Fermi surface which is of
course unaffected by the interaction. This sug-
gests that for strongly correlated metals the Hall
effect should be strongly temperature dependent.

At temperatures high compared to the renormalized
Fermi temperature (¢g75) one expects that all cor-
relations caused by the Fermi surface should dis-
appear and that the number of carriers entering

the Hall effect should be related to v, the number

of doubly occupied sites. This latter statement has
been proved, however, only in the atomic limit of
the Hubbard model. 6

Recently, McWhan et al.” have found that the Hall
coefficient at high pressures and low temperatures
is slightly larger than that observed at room tem-
perature and 1 atm. This result argues against a
heavy-mass model. However, an unambiguous in-
terpretation of the Hall effect is not possible be-
cause of the multiple bands expected in V,0;.

1t is clear from the above that the predictions of
the strongly correlated model for conduction pro-
cesses do not agree with experiment. This could
be due to deficiencies in the theoretical treatment
given in this section as discussed above. It could
also mean that the model itself is inapplicable to the
metallic state of V,0;. Possible alternative models
are that V,0; is a semimetal due to its band struc-
ture as suggested by Mott® or an s-d model where
we assume electrons from different bands dominate
the conduction processes and the density of states
as measured by the susceptibility and specific heat.
We shall not enter into a discussion here of the
merits and demerits of these alternative models but
refer the interested reader for such a discussion
to Ref. 7.
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APPENDIX

In this Appendix we derive the expression Eq.
(2. 3) for the coefficient ¢(¥, k, X) of the one-par-
ticle energy. In order to do this we follow Gutz-
willer and assume that in the ground-state wave
function the amplitude of a given configuration is
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reduced by an amount 7% 7}6%, where v is the num-
ber of doubly occupied host sites, 2k is the number
of electrons on the impurities sites, and x is the
number of doubly occupied impurity sites. To ob-
tain the norm of the wave function one calculates
the number of configurations that can be obtained
for given values of v, A, and « and then sums over
the possible values of these three variables.

Doing this one obtains for the normalization of
the wave function the sum

NT (L =D It g2 2 g**
TN (m =k =) (L -1-2m+2k+v)! (m—k = 1)!
R

1
X(K-)\)l (I-2k+X)! (k =2)!

(A1)

Here, as in Sec. I, L is the total number of sites,
I is the number of impurity sites, and m is the total
number of electrons of one spin. Since we will be
interested in ratios of sums like (Al) we can re-
place these sums by their maximum term deter-
mined by setting the rates of change with respect

to v, A, and k equal to zero. In this way we can ob-
tain an expression for 7, 7n;, and 6 in terms of

v, A, and k. The results are
n4=v(L -I-2m+2k+v)/(m -k -v)?, (A2)
2= -2¢+2)/(k -2)?, (A3)
and
62=(K—k)(L—I-2m+2x+v) (A4)

(m-k-2)T-2k+2)

In order to calculate ¢(7, k¥, X) we must calculate
(c}icye). Within the Gutzwiller approximation
(¢}, ;) is assumed to be of the form

<C:r C1r>=q('—/r K, Dw(lv]) ’ (As)

where w(i, j) is the unperturbed correlation function
of the original Bloch state. The ¢ is to be calcu-
lated by taking the random average over all con-
figurations weighted according to the above pre-
scription and normalized by dividing by N. In cal-
culating this average one must carefully take into
account the fact that j and i may be either host sites
or impurity sites with or without a down-spin elec-
tron. Because the counting is symmetric in { and

T. M. RICE AND W. F. BRINKMAN

lon

j this leads to ten distinct sums. After keeping
only the maximum term and dividing by N, we ob-
tain the following expressions for the various pos-
sibilities:

(i) ¢ and j impurity sites with no down-spin elec-
trons,

(k=2 (I-2k+N)/m(L -m) ; (A6)

(ii) 4 and j impurity sites with one site occupied
by a down-spin electron,

n(k =N/ m(L = m) ; (A7)

(iii) 7 and j impurity sites both occupied by a
down-spin electron,

n2(k =3/ m(L -m) (I -2k+2) . (A8)

For contributions where 7 and j are both host sites
the expressions are the same as above with n;~ny,,
x=v, I-~L-1I, and k~ (m -«). There are four
types of terms when i is an impurity site and j is
not. These are

(iv) no down-spin electrons on either i or j,

0m -k -v) (I -2k+X)/m(L -m) ; (A9)

(v) a down-spin electron on j, the host site,

0ny (m -k —v)2(I -2k +2) .
m(L-m)[L -1-2(m-k)+v] ’

(A10)

(vi) a down-spin electron on i, the impurity site,

on(k =) (m =k =v)/m(L —m) ; (A11)
(vii) a down-spin electron on both sites,
2
6mg g (m =k =1)°(k =) (A12)

m(L =m)[L —=I-2(m —k)+v]

By adding all of these contributions together, sub-
stituting the values of n4, n;, and 6, and after
some algebra, we arrive at the result

1 ) (m—-k-v

= )1/2
m(L -m

q(V, K, X)
x (V24 [L -1-2(m ~k)+v]'3

+(k =YV (T -2k+ 7\)“2])2 » (A13)

which is the same as (2. 3).
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The critical field of pure monocrystalline lead has been measured throughout its range. A
vibrating phase-boundary technique was used, permitting continuous observation of the boun-
dary between the normal and superconducting phases within the sample. Because of the co-
existence of both phases at all times, supercooling and superheating effects are avoided. De-
partures from thermodynamic equilibrium are small, as is indicated by the very weak hyster-
esis (as low as several parts in 10000). The deviation curve is strongly positive, as expected
for strong~-coupling superconductors. The measured values of the usual superconductive pa-
rameters are T,=(7.195+0,006) °K, H;=803.4+0,3 Oe, dHc/dT | T, =237.3+1.1 Oe/°K.

I. INTRODUCTION

The very low Debye temperature (~ 96 °K) and
high critical temperature (7.2 °K) of lead class it
as an extreme strong-coupling superconductor. In
contrast to the negative values for the deviation
from parabolic behavior that characterize the crit-
ical field curves of the weak-coupling supercon-
ductors, lead shows a positive deviation curve.
While the Bardeen-Cooper-Schrieffer! (BCS) theory
of superconductivity is in very close agreement
with the deviation curves of weak-coupling super-
conductors such as aluminum,? intermediate- and
strong-coupling superconductors remain difficult
to treat theoretically. An extension of the BCS
theory shows promise of handling this class of
metals.?

The critical field curve of lead merits study be-
cause, in addition to its being a strong-coupling
superconductor, no recent measurements have
been made which determine the curve throughout
its range, obtaining both Hy and 7', for the same
specimen. Since calorimetric measurements of
the heat capacity are dominated by the lattice con-
tribution, the electronic heat capacity cannot be
accurately determined except from thermodynamic
analysis of the critical field curve.

II. EXPERIMENT
A. Sample

The sample, a cylindrical single crystal of lead
2 mm in diam, 12 cm long, and nominal purity
99. 999%, was supplied by Monocrystals Inc. of

Cleveland, Ohio. It was selected from among
three specimens of different manufacture for its
surface regularity and smoothness. A chemical
etch confirmed its single-crystal structure and
freedom from surface defects. The sample quality
may best be judged from its residual-resistance
ratio. After the completion of the magnetic mea-
surements, its electrical resistance was measured
at room temperature and at 4. 2 °K. For the latter,
a series of resistance values at different field
strengths from 560 to 780 Oe were extrapolated to
zero field in order to obtain the normal-state re-
sistance corrected for magnetoresistance effects.
The residual-resistance ratio thus obtained was
R,q3/R, ,=15000 indicating a very high sample
purity.

B. Apparatus

The cryogenic apparatus was designed to permit
operation in three temperature ranges: He®, He!
and above 4. 2 °K, without disassembly or warmup
of the sample. The double-walled cryostat of
Fig. 1 was mounted within conventional glass
Dewars for liquid nitrogen and liquid helium. All
materials used were nonmagnetic and nonsuper-
conductive in order to avoid perturbing the magnet-
ic field near the sample. Two pairs of Helmholtz
coils surrounding the outer Dewar were used to
cancel the horizontal and vertical components of
the Earth’s magnetic field to less than 10 Oe over
the region occupied by the sample. Within the lig-
uid-nitrogen Dewar a solenoid provided the mag-
netic field for the superconductive transition. Its



