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We consider some effects of primary-electron diffusion on secondary-electron emission
from a free-electron model of a polycrystalline target —in particular the angular distribution
and energy dependence of the secondaries. The distributions of primary electrons due to in-
cident 2- and 10-keV monoenergetic beams are obtained by means of a Boltzmann equation.
The fraction of back-scattered primaries is found to be in good agreement with experiment.
The primary distributions excite distributions of secondary electrons which diffuse toward and
are transmitted through the surface. In accord with experiment the large angular ansiotropy
in the emitted secondary-electron distribution predicted by Stoltz is found to be greatly re-
duced by the primary diffusion. The transmission coefficient, not included in previous calcu-
lations, is also of importance in determining the characteristics of the observed secondaries.

I. INTRODUCTION

The problem of secondary-electron emission'
has received renewed interest recently in part due
to the development of the scanning electron micro-
scope. An extensive review of the previous work
on this complete subject has been given by Hachen-
berg and Brauer. ' Briefly, when a target is born-
barded with primary electrons of a given energy
and direction relative to the surface normal, sec-
ondary electrons (& 50 eV) are emitted with a cur-
rent distribution j,(E, 0), which is a function of
secondary energy F. and direction Q. Due to the
difficulty of the measurements, most experiments
yield information about various integrals ofj,(E, 0).
These are the pure angular distributionj, (Q)
= fj o(E, Q) dE, the pure energy distribution j, (E)
= fj,(E, Q) dQ, and the yield = f fj,(E, Q) dE dQ

Jonker measured j,(E, 0) for primaries nor-
mally incident on polycrystalline Ni and found that
the angular distribution of the secondary current

obeyed a cosine law characteristic of an isotropic
distribution of secondaries inside the material.
On the other hand, theoretical calculations pri-
marily due to Stoltz' predicted an angular distri-
bution which is considerably flattened.

Ne consider in this paper the effect of primary-
electron diffusion on secondary-electron emission,
in particular, on the angular distribution and
energy dependence of secondaries when the pri-
mary energy is 2 and 10 keV. The latter primary
energy is characteristic of scanning-electron-
microscope operation. One aim of this work is to
resolve the above-mentioned discrepancy regarding
the angular dependence. Another aim is to cal-
culate the pure energy distribution as a function
of primary direction and energy. Experimentally,
the yield is found to increase with increasing pri-
mary energy up to about 500 eV and then to de-
crease. For a fixed primary energy the yield in-
creases as the primary beam deviates from nor-
mal incidence. This is often attributed to the
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increased number of secondaries created near the
surface.

We confine our attention in the present work to
polycrystalline targets. Single- crystal targets
exhibit angular distributions and yields of sec-
ondaries characterized by sharp structure which

is quite sensitive to the direction of incident pri-
maries. These interesting features are related to
the crystalline structure' which we are ignoring
in this first calculation.

We can view the events leading to secondary-
electron emission in three stages: (a) The primary
electrons enter the sample, scatter, and lose en-
ergy; (b) these primary electrons excite secondary
electrons; (c) the secondary electrons move to-
ward the surface and pass through the potential
barrier.

The distribution of high-energy electrons upon
traversing a material has been of interest for a
long time. In the early work of Bethe, Rose, and

Smith, it was noted that there are two basic pro-
cesses-elastic scattering by the nuclei which pri-
marily changes the incomingelectron's direction
and inelastic scattering by the electrons of the
material (including secondary emission! ) which
accounts primarily for the energy loss. This work
introduced a Boltzmann-equation treatment of the
problem and further assumed that multiple small-
angle scattering was more important than large-
angle Rutherford scattering. In further work with
MeV electrons in thin foils and infinite media,
Snyder and Scott, ' Lewis, and Spencer, "showed
that scattering through both small and large angles
can be of importance for high-energy primaries
in low-Z materials. Lewis" showed that all
scattering angles could be treated using an integral
form of the diffusion term in the Boltzmann equa-
tion.

In considering the semi-infinite medium, Ar-
chard' investigated electron backscattering using
a rather crude model and concluded that the multi-
ple small-angle scattering accounted for back-
scatter for sufficiently high Z for 100-kV electrons,
while single large-angle scatterings' were im-
portant for lower Z. Dashen, "however, argued
that both mechanisms should be of some impor-
tance for all Z. The semi-infinite medium has
been treated in connection with x-ray production
by Green' using a Monte Carlo treatment which
includes all angle scattering, and by Brown, ' who
used a numerical treatment of the Bethe-Rose-
Smith (BRS)' diffusion equation.

In Sec. II we use a modification of Brown's'
method for obtaining a primary-electron distribu-
tion to use in obtaining the secondary-source func-
tion. Based as it is on the BRS diffusion equation,
this calculation includes the small-angle scatter-
ing and not the large-angle scattering. This ap-

pears to be adequate for the range of energy and
Z considered but we remark that a similar treat-
ment could be applied to Lewis's equation.

Considering now the second stage of the process,
the rate of production of secondary electrons,
i. e. , the secondary-electron source function, is
generally calculated in second-order quantum per-
turbation theory' ' with the use of a (screened)
Coulomb interaction. In the case of a fixed pri-
mary-electron density and velocity, within the
free-electron model (intraband case), electrons
are preferentially created with velocities per-
pendicular to the primary beam. This is the source
of the pronounced anisotropy in Stoltz's' calcula-
tion which was not observed in Jonker's experi-
ments. The interband case has not been considered
in detail but shows somewhat less anisotropy. '

In Sec. ID our distribution of primary electrons
is used to obtain the source function for secondary
electrons, using free-electron theory with an un-
screened Coulomb interaction.

The third stage is generally broken into two-
the electron transport and transmission through
the surface barrier. The secondary-electron
transport has been considered by Wolff'9 using the
Boltzmann equation and techniques introduced by
Weymouth. Wolff treated only an essentially
spatially homogeneous isotropic source. Stoltz, '
ignoring the presence of the surface, has con-
sidered a spatially homogeneous but anisotropic
source. The source anisotropy was reduced but
not eliminated by the interaction between the emit-
ted electrons.

The refraction of the secondary electrons by the
surface barrier has been treated previously but
no barrier transmission factor seems to have been
included in previous work. ' We have considered
transport and transmission together because, in
fact, the boundary conditions at the surface are an
important part of the transport problem and should
ideally be considered together with the spatial
inhomogeneity of the source function.

In Sec. IV we introduce our source function into
the Boltzmann-equation approach due to Wolff' to
describe the transport of secondary electrons to
the surface. The complete boundary-value prob-
lem with a spatially varying source function has
not been solved. We have developed methods of
dealing approximately with either a spatial varia-
tion of the source function or the presence of the
boundary, and these are presented and compared.

The results of the specific calculation for 2-
and 10-keV electrons incident on a free-electron-
like material with Z = 28, A = 60, i. e. , characteris-
tic of Ni and E+= 4. 6 eV are presented in Sec. V. (We
originally intended to use all the parameters char-
acteristic of Ni, but its free electron E~ is, in
fact, somewhat larger than that inadvertently used
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here. ) Energy, angular, and spatial distributions
of primary and secondary electrons are given and

compared with previous theoretical and experi-
mental results.

II. DISTRIBUTION OF PRIMARY ELECTRONS

We first describe the Boltzmann-equation ap-
proach due to Bethe, Rose, and Smith which we

use to obtain the primary-electron distribution

f(K, r~), where f is the number of electrons in the
volume d Kd r~ of phase space. Brown has used
this method to calculate x-ray excitation effects.
Assuming small-angle scattering, a unique re-
lationship between the electron's energy 8 and the
path length s it traverses in the material, and a
stationary situation, Bethe e t al. obtained

+ V- f(s, u, r~) . (2. 1)

Here u is a unit vector in the direction of the elec-
tron velocity and

1 1 a~
~g = . sln8y + . psin8& ~8, sin'8, ~ y,

'
(2. 2)

where 8, is the angle between u and the inward
normal to the surface and y, is the azimuthal
angle. The transport mean free path is given by

1

X(s)
= vN (sin&)0 (o, s) (1 —cos&)d&,

1 9+, . sin8, (s, 8, , x), (2 6)X(s) sin8, &8, 1

where x is measured in from the surface as shown
in Fig. 2. This differential equation was converted
to a difference equation and solved numerically by
Brown. ' We found, however, that the detailed
method adopted by Brown presents various difficul-
ties as described below. It was therefore neces-
sary to reformulate the calculation. We first
change the angular variable to u= cos6)&, so that
Eq. (2. 6) becomes

a 8—f(s, u, x}=—u —f(s, u, x)

1 d q d
+ (1 —u ) f(s, u, x}. (2. 7)

The boundary conditions are that at zero path (s = 0)
we have an incoming collimated beam:

f(0, u, x)= const&&5(u —1)5(x), (2. 6)

while for lower energies the particles are outgoing
at the boundary:

the constant prefactor is adjusted to give agree-
ment with the total range predicted by a more com-
plicated expression due originally to Bethe. The
energy and mean free path are plotted versus the
range in Fig. 1.

For a normally incident monoenergetic beam,
constant over the surface, Eq. (2. 1) reduces to

9 9f (s, 8, , x)= —cos8, f(s, 8, , x)

(2. 2)
where o(n, s) is the cross section for deflection
by an angle o of an electron which has traveled a
distance s, due to an atom of the metal, and N is
the number of those atoms per unit volume. Bethe
et al. determined an approximate expression for
the mean free path which we use here: Q.e

1.0

0.9

Q.B

0.7

0. 33x10 As= ' (s —8'), (2 6)

(2 4)
where Z is the nuclear char ge of the s catter ing
atom, A is its atomic number, and S and X are ex-
pressed in keV and cm, respectively.

Various expressions, both semiempirical and
more rigorous, have been obtained for the energy
of an electron as a function of the distance s it
travels in a material. We use here an empirical
function used by Brown and Ogilvie' ' '

0.3

AIR

0.2

Q. l

OO 0.2 0.4
S/R

0.6 O.B

0.6
E/Eo

0.5

0.4

03

0.2

O. l

I.O

where p is the density of the scattering material
(gjcm ), 8 (keV) is the initial electron energy,
and s is the range (cm). This has the functional
dependence of the semiempirical Webster law but

FIG. 1. Mean free path [Eq. (2. 4)] and energy [Eq.
(2. 5)] of 2- and 10-keV primary electrons as a function
of the path length traversed s. Lengths are given in units
of the total range R and energies in units of the initial
energy Eo.
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U=-O

I / I

&s

u=[
I I I

X

we use h, «h„" the form of the Kronecker 5 func-
tion is not at all preserved. This is illustrated in
Table I for h, = &h„. The discrepancy first ap-
peared to be related to a well-known instability
associated with numerical solutions of partial dif-
ferential equations. Upon converting partial
differential equations such as Eq. (2. 7} or the
diffusion equation to difference equations it some-
times occurs that the solution grows exponentially
as a function of time (here s). This disastrous
result, in general, can be prevented by a correct
choice of the ratio h, /h, =y. In our case we can,
in fact, solve Eq. (2. 13) exactly to give

f(l, 0, m) = ('} (l-y)™y, l &m

FIG. 2. Intervals of path length h~ and distance
perpendicular to the surface h .

f(s, u, 0)= 0, s &0, u & 0. (2. 9)

s = lh, ,

x= mh„, (2. 10)

u=1 —nh„.
There is some arbitrariness in converting the

differential equation to a difference equation. To
show how best to accomplish this transformation,
we analyze the two terms on the right-hand side of
Eq. (2. 7) separately. Consider first the case of
no diffusion (X- ~}and u= 1. Equation (2. 7) re-
duces to

(2. 11)

We also require f to vanish for s & R and x & R,
where R is the range. We now convert Eq. (2. 7) to
a difference equation. We divide x, s, and u into
intervals of width h„, h, , and h„, respectively.
We assume, in particular, that h„= I/N„, where
N„ is an integer. We then let

=0, l ( m. (2. 16)

For l = m, we see that f=y, which grows exponen-
tially unless y & 1. This is in fact the condition for
stability. For y= 1, we have, of course, f(l, 0, m)

In the above example, where 0& y & 1 for
l and m la.rge f is given by

1
f(l, 0 m) =—

[2 l (1 )]
xexp [- (m -yl ) /2 ly (1 -y )] . (2. 17)

The width of this Gaussian increases with l causing
the smearing of the 5 function. The problem with
the choice of h, & h„ then is related not to an in-
stability but to the special choice of the 6 function
boundary condition and the fact that the function
varies on the same scale as the grid. In order to
obtain the physically correct solution, it is neces-
sary to take the intervals in s and x exactly equal.

Qne more refinement is needed to treat the first
term on the right-hand side of (2. 7). By the above
reasoning, we need to use a different x interval for
each angle to evaluate the derivatives. Thus we
require

M=h, cose=h, (1 —h„n)=h, h„(N„n) . (2. 16-)

which has the solution

f = constx6(x —s) . (2. 12)

We shall use a fundamental unit h„=h, h„, and then
use a multiple of this 4x to evaluate the derivative.

Now suppose that we replace Eq. (2. 11) by the
difference equation

f(l, 0, m)=f(l —1, 0, m) —(h, /h, ) t/m

TABLE I. Solution of Eq. (2. 11) for y=0. 5.

x[f(l —1, 0, m) f(l —1, 0, m —1)]-, (2. 13)
with boundary condition

f(0, 0, m) = 6 o. (2. 14)

If h, is set equal to h„, Eq. (2. 13) reduces to

f(l, 0, m) = f(l —1, 0, m —1), (2. 15)

whose solution is clearly f= 5,
Thus the initial Kronecker 5 function is preserved

for this special choice of h, and h„. However, if

0 1.000 0 0
1 0. 500 0. 500 0
2 0. 250 0. 500 0. 250
3 0. 125 0.375 0. 375
4 0. 063 0. 250 0. 375
5 0. 031 0. 156 0.313
6 0. 016 0. 094 0. 234
7 0. 008 0. 055 0. 164
8 0. 004 0. 031 0. 109
9 0 002 0 018 0 070

10 0.001 0. 010 0. 044

0
0
0
0. 125
0. 250
0. 313
0. 313
0. 273
0. 219
0. 164
0. 117

0
0
0
0
0. 063
0. 156
0. 234
0. 273
0. 273
0. 246
0. 205

0
0
0
0
0
0. 031
0. 094
0. 164
0. 219
0. 246
0. 246
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The situation is illustrated in Fig. 2, where we see
that unscattered particles traveling a path length
h, go a distance h, h„(N„n-) in x.

Using this result and an expression for the angu-
lar derivative we have

f(l, n, m) = f(l —1, n, m N„+-n)

+ (h, /Vl„)((2 —h„n)n [f(l —1, n+ 1, m)

+ f(l —1, n —1, m) —2f(l —1, n, m)]

+ (1 —h„n) [f(l —1, n+1, m) f(l —-1, n —1, m)]j,
(2. 19)

with the definition of f extended linearly outside the
range 1 ( u (1:

f(l, —1, m) = 2f(l, 0, m) f(l-, 1, m),

f(l, 2N„+ 1, m) = 2f(l, 2N„, m)-f(l, 2N„—1, m) .

(2. 20)
The form of the angular derivative was chosen with

some care and it can be verified that with the defi-
nitions in Eq. (2. 20) the trapezoid-rule "integral"
over u gives a vanishing result:

tor k to a state k by a high-energy electron of wave
vector K scattering to a state K' is given by the
golden-rule expression

Pg»(k, K ) = i(k K iH„, ikK)i 5i;» i,,g,

x5(E„+Ef—E». —Ef, ) . (3. 3)

Representing the electron states by wave functions
of the form g»( R) = e ' '

/ V'i s, with Vthe volume of
the sample, and assuming a screened Coulomb in-
teraction

one obtains

/~R —ri (3.4)

327T e3 4

R »( ) ) =
h Vs(I R Iz »)

x 5(E»+Ef —E» —E|I,) 5R .t.»' », (-3 5)

where e is the electronic charge. We now calculate
the number of electrons per unit time excited into
the state k'by the initial primary in state K. As-
suming &=0, this is

N

Z (V„f)„h„(1—~ 5no & 5n 2N)= 0 .
n=0

(2. 21) 8@me 4

Pzf, = Q P-„g(k, K)=
K,

'
r~s V

This is necessary to conserve electrons as Brown
suggested. '

We now consider the stability condition on the
size of h, relative to h„, which is another key fac-
tor in the calculation. If in Eq. (2. 7) we ignore the
the first term on the right-hand-side, we almost
have the diffusion equation, except for the (1 —u )
and the variation of & with s. The stability criterion
for the diffusion equation23 is

for

K k —(k 'K)2- (k —ks) IR- k I

I R- k'
I '( k' —k z)'

k ~ (K-t )(k, K-k
I (3 7)

and is otherwise zero. Here ks(E») is the Fermi
momentum (energy). If we average P»~, over the
secondary angle 82= ~p. Kwe obtain'

(2. 22)
8mme 2 k~~ 1
8KV 3 k' (k' —k )

(3. 8)

which gives h, /& ( 0. 02 for h„= 0. 2. An actual cal-
culation in which the 1 —u factor is included but
X is held constant gives stability for h, /X= 0. 02 and
instability for h, /X= 0. 03. We therefore use this
criterion in our calculations.

III. SOURCE FUNCTION

The primary distribution is expressed for use
in this section in a spherical-harmonic expansion:

f(s, Q, x) = Q, F,(s, x)P, (cos8,),2l+1

(3. 1)
with

2r 1F,(s, x) = f f P, (cos8, )f(s, Q, , x)d cos8, dp, .

(3. 2)
We now briefly review the calculation, "' in the

free-electron approximation, of the secondary-elec-
tron distribution excited by a given primary elec-
tron. The probability Pg»(k, K ) per unit time for
the scattering of a low-energy electron of wave vec-

2 ek~1/2 4 3

( 8 3(E' El'
Sa(E ) = —So(E )/5

(3. 11a)

(3. 11b)

Following Stoltz we consider Eq. (3. 7) in the limit
that K» k' & ks, and the result is simply Eq. (3.8)
with the 3 replaced by sin 82.

Let us now consider the distribution of secondary
electrons per unit volume per unit energy and solid
angle Qs = (8, , y, ) per unit density of primary elec-
trons. We thus divide the above result by 1/V, the
primary density, and multiply by (I/8» ) k dk /dE
to obtain

1/2 4 32 e k~
mS 8» (E' —E )

(3. 9)
Expanding now in spherical harmonics we have

S(E, Q2) = Q(21+ I)/4mS, (E )P, (cos82)

(3. 10)
with
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S,(E } = 0, l 40, 2 . (S. 1lc)

We now multiply Eq. (3. 9) or (S. 10) by the pri-
mary distribution function [Eq. (3. 1)] and integrate
over K to obtain the total rate of production of
secondaries per unit volume, energy, and solid
angle:

S(E, A, x) = J S(E, As)f(s, Ai, x)K dKdAi
r

~ l

x F, .(s, x)P, (cos8, )K'dKdA, . (3. 12)

Here A= (8, is} gives the orientation of the sec-
ondary-electron velocity with respect to the inward
normal. We now make use of the addition theorem
for spherical harmonics

P1(cos8s} = P, (cos8) Pr(cos8i)

+ 2 ~~
(l —m }!; P, (cos8) P, (cos8, ) cosm (8 —8,),(l+ m)!

(3. 13)
where the P, are associated Legendre functions,
to obtain

2l+ 1
S (E, 8, x) = Q P, (cos8)

g
1T

symmetric scattering potential that, given an elec-
tron in the state E, there will be an electron in
the state E after collision. Here Q~ is the angle
between the velocities in the two states. Using
the expansions

~1 1(al
8&1-i(E «)

ax

+
2

' ' = —g, (E, x)+S,(E, x}
l+ 1 St(1„(E,x)

~ 4D

+
~

1!1 (E, x)p (E, E )"E (4 5)
+ E

for the functions

1t(E, 8, x) = Z 1!1,(E, x)p, (cos8),
2l+1

7l

N(E, 8, «) = Z
4 N, (E, x)P, (cos8), (4. 2)

2l+1
4n

r 2l+ 1
p(E, E, cosO~) = E fp&(E, E )p, (cos g~),

(4. 3)
2l+1-

S(E, 8, x) = F~ S&(E, x)p&(cos8), (4 4)
7T

we obtain the system of equations

x S,(E )F,(s, x)K dK, (3. 14) 1)11(E, «} = Nr(E «) .g E
(4. 6)

with

x [Ao(x) -A2(x) Ps(cos8)], (3. 15)

where the y variable is suppressed in this equation
and those that follow due to azimuthal symmetry.
Then

r me kp4 3

6s K (E E}-
If it is further assumed that the scattering is

spherically symmetric in the center-of-mass sys-
tern and that the metal's electrons are at rest be-
fore collision, we have'

P(E, E, cosO) = —cos06(E —E cos 8) (4. 7)

and hence
eg

A, ( )=
Ii

F(g )dh.
~p

(3. 16)
E

Pi(E, E ) = —Pi (4 6)

IV. SECONDARY TRANSPORT

In this section we derive the observed current
due to the secondary-electron source function ob-
tained in Sec. III. According to Wolff's work,
the Boltzmann equation for the secondary trans-
port can be written as'

—v cos8 ' ' =S(E, 8, x)
&N(E, 8, x)

1

~(E ' ' ' ' g(EN(E, 8, x)+ l N(E, 8, x)

x P(E, E, cosO~)dE dA, (4. 1)

where g(E) is the mean free path of a secondary
electron with energy E, v is its velocity, and
p(E, E cosO) is the probability for a spherically

These equations are to be solved in a semi-in-
finite medium, with a boundary condition corre-
sponding to specular reflection at the surface. This
can be written for 0& 8& &m as

1!1(E, 8, 0) = R(E, m - 8) 1I1(E, 11 —8, 0), (4. 9)

where R is the reflection coefficient discussed at
the end of this section.

The complete solution is very difficult, and we
have not obtained it. Wolff'9 solved the equation
for an isotropic monoenergetic source function
which is homogeneous within the half-space occu-
pied by the metal. Stoltz' considered a spatially
homogeneous anisotropic source function given by
Eq. (3. 15}with AD=As= 1.

In this paper we first outline the calculation for
a spatially homogeneous but anisotropic source
function. This results in a source induced Pp-
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and P2-type anisotropy. We then use that solution
and the full equation in a perturbative manner to
find a P1-type anisotropy which is induced by the

spatial variation of A0 and A, .
The above ignores the boundary condition [Eq.

(4. 9)]. We shall indicate a method of using the

solutions of the homogeneous equation [Eqs. (4. 30)
below] to fit the results to the boundary conditions.
Rather than carry this through, however, we ob-
tain an alternative result for the P, anisotropy
f rom the boundary condition alone.

With the neglect of spatial derivatives, and the
use of Eq. (4. 8), Eq. (4. 5} may be written

E 1/2 dE
4, (E) = S,(E)+ 2

i

g, ( E) P,
~ E

(4. 10)
The relevant Green's functions are then defined by

Gi(E Ep) = 5(E Ep)

with
2(2n+ 3) (n+ 1)

(2n+ 3)'+ 3

' "(:)
c = .os

' ~3 ).(;-)

S = sin

E~ ln E E F E

1 1

E~ —Er (E —Er)'

(:)"'(: )

2n+ 3 E E —EF
(4. 19)

(4. 20)

(4. 21)

(4. 22)

2E0
E() E; G()(E E()) = 2 + 5(E E()} (4. 12a)

2E1/2
G, (E, Ep) = Es/2 + 5(E —Eo), (4. 12b)

2
Gz(E, Ep) =

(EE )s / 2

xcos ln + 6(E —Eo),

(4. 12c)
(4. 12d)Ep

~ E: G, (E, E()) = 0 .

The g functions are given by

00 1»- ZE
+ 2 G, (E, Ep}P( (4. 11)

E 4

where the first few Green's functions can be ob-
tained as

B ( )
dA((x)

dx
Then

(4. 25)

1/2
fi(E, x) = — [Jp(E}Bo(x)—s dz(E)B2(x)]

(4. 26)

Since S,(E)= 0, the derivatives of (4. 15}and (4. 16)
serve as the sole source for a g, (E) term in the
l = 1 member of Eqs. (4. 5). That termisthen given

by

())i(E, x) = f™G, (E, E()) Sai (E(), x)dEo, (4. 23)
EF

with
1/2

s; (E, ) "-(— ( (E=)B (*)——, 8(E )B ( )]

(4. 24)
where

E

g&(E) =
~

G((E~ Eo) S,(Eo)dEo,
EF

(4. 13)
and

1 3
( e "}= &o(E "}+ li(E x)Pi(cose)

where E is a maximum energy - 100 eV such that
the assumptions made in deriving Eq. (4. 5) are
true. Using Eqs. (4. 12}, (4. 13), and (3. 15), and
assuming Q(E) = Q, one then obtains

p 1 5
(E, x) =

4 (j)p(E x) + gz(E, x)P2(cose)

(4. 14)

where

5
+ $2(E, x)P2(cosa), (4. 27)

1 5EF
E E E1/2F

2 1 / 5E rdo(E) = Ez/2 E E ( i/2 + 3E~

y 2 1/2
&0(E, &) =

Xg(E) m
(sA (x)0 (4. 15) (Ei/2 Ei/2) (El/2 Ei/2

)+ ln F m + F
2E (E' ~ Z'"

) (z'~ —z'' ))
i /2

$2(E, x) = — — pA2(x), (4. 16)

where
and

(4. 28)

2m (2m) ge k/,y= 5' (4. 17)
dz(E) = &(E)+

2
E3/2
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2Er / 1 1XrE()yEIE / E i)
n220 n+

8 EJ; " v3 ES
E~ 2n+ 3

3
1

EC EC ~3

Ei = Ecos 8 —W, (4. 36)

and 8= w —8 is the angle which the electron's ve-
locity makes with the outward normal. (We note
that our simple model of the surface potential
somewhat overestimates the reflection. This
error is not of fundamental importance here. )
The transmission coefficient T= 1 —R and thus

E1/2
+ E-E~

E1/2

Em E f
(El/2 El/2) (El/2 El/2)
(El/2 El/2

) (El/2 El/2) (4. 29)

4E(E cos 8- W)'/2cosH
E"' cos8 + (E cos'8 —W)'/2

(4. 37)
The current observed outside the sample is given
in terms of N(E, 8, x) as follows. The current
incident on the surface j', is

Thus far no account has been taken of the bound-
ary condition [Ell. (4. 9)j. In principle, a means
of solving this problem is to add to our result the
solutions of the homogeneous equation, i. e. , Eq.
(4. 5), with S,= 0. If we further ignore the spatial
derivative of g, those solutions are

j (E, 8}dEd/T/d cos8 = T(E, 8)N(E, & —8, 0)

j,dE' dP dcosH' =j,' dEd///dcosH . (4. 39)

x 1/ cosI)dE d//ldcosV . (4. 38)

By continuity, the current outside j, is then given
by

l=0: gp fxE

] ~ gH crE 3/2

l 2, ,RH E-1/2 + $3/2
'V2

(4. 30a)

(4. 30h)

(4. 30c) v sin8 = v
' sin8', (4 4p)

But dE = dE ', d y = d y', and from the ref raction
law we have

Using a more approximate approach, we keep
the pp and P2 terms as those induced by the aniso-
tropic source terms and determine an alternative

T 1 term, g'1, from the boundary condition. In fact,
we choose g'1 to satisfy the weaker condition

d cos 8 E ' cos8'
d cose' E cos~ (4. 41)

where 8' is the angle that the secondary electron
makes with the outward surface normal after pass-
ing through the barrier. Then

g(E, 0, 0) = R(E, v) g(E, v, 0) . (4. 31) j, (E', 8'} = N(E, 2 —8, 0)l/(E '/E) cosH' (4. 42)
This is used to determine g', in

/)I"' (E, 0, x) = —1(/z(E, x) + —gI(E, x) P, (cos8)

5
+ 4„$2(E, x) P2(cosH) (4. 32)

in a straightforward manner. Now if this is to be
a solution of the complete system (still neglecting
spatial derivatives) for ll/1, then we should have

and

JE(E, 8 ) T(E, 8)N(E, v —8, 0) cosH'

j,'(E', 0) T(E, V)N(E 1/ 0)

Thus as E'-0, Eq. (4. 43) yields

j, (0, 8')
2

(p p)
cosH (4. 44)

~1 ~1+ 01 (4. 33)

where tt)1 is a solution of the homogeneous equation,
i. e. , ~E ' . We shall compare the results be-
low.

If the metal is represented by the Sommerfeld
well of depth W= 12 eV shown in Fig. 3, the reflec-
tion coefficient for electrons incident from the
inside is given by

Et:0$ g-W

ity

ECOS~ g

(E )1/2 (E&)1/2 2

( & ) (E )1/2 (E& )1/2 t (4. 34)

(4. 35)

where the components of energy along the surface
normal are defined in the figure,

E~ = Ecos 8,

VACUUM

11

X METAL

FIG. 3. Potential as a function of distance in the region
near the metal surface.
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TABLE II. Parameters used in calculation of primary
distribution,

tion [Eq. (2. 20}]in n. To ensure that the bounda-
ry condition [Eq. (2. 9)] is satisfied we require

E~(keV)
hu

ph„(g cm)
ph~ (g cm)
pR (g cm)

2
0. 2
0. 13x10
0. 65x 10 '
2. 31x 1p 5

356

10
0. 2
0. 24x 1p
1.2 x 10-6

3.57x 10 4

298

f(l, n, —1)= 0, O-n~5, l&0. (5 2)

For the 53' case we consider an annular source
of electrons in order to preserve azimuthal sym-
metry. This is obtained by using the initial dis-
tributionn

2sf(0, n, m) = 2 5~5 o (5. 8)

We next consider the total number of electrons
emitted with a given energy. That energy distri-
bution of observed electrons is given by

j,'(E') = jo(E', 8)dg dcos8

2l+1j,(E') = v+ Nt(E 0)Mr2

where

(4. 46)

COS 8y
T(E, ~) P, (cos(v —8)}cos8dcos8 .

(4. 47)
We normalize this current to unit incident pri-
mary flux. The primary flux F is

where

4u &8 k dk
~S

(4. 48)

m'&'(2g)'&'
dg 8' (4. 49)

and88/as isgivenbyEq. (2. 5). When AoandAsare
taken to be equal to one, as in Stoltz's calculation,
the flux which must be used in the normalization is

F' = RÃcos8&/m .

V. RESULTS

(4. 50)

The primary-electron distributions were calcu-
lated from the difference equation [Eq. (2. 19)] for
three cases: 2- and 10-keV electrons normally
incident on the sample, and 10-keV electrons in-
cident at e, - 53' for which cos8&= 0. 6. The param-
eters used are shown in Table II. We calculate
f for s = h, (l+ 1) from the angular and spatial dis-
tribution for s=h, (l). The starting values of f
for normal incidence are

2wf(0, n, m) = 5„05 0+ 25„ (5 1)

Notice that we have included the linear extrapola-

= 2vv ~ T(E, 8)N(E, w —8, 0) cos(} d cos8,
ge

(4. 45)
where 8, is the maximum angle [given by Eq. (4. 40}
as arccos(W/E)] for which electrons can pass
through the surface. Using Eq. (4. 2) we obtain

together with the condition in Eq. (5. 2). The fac-
tor & is included to make the normalization of this
"two-sided 5 function" the same as that at n = 0
which is one sided. " The secondary emission
resulting from the annular source corresponds to
the azimuthal average of that due to a beam coming
in at a fixed angle. The resultant pure energy dis-
tributions are therefore the same as for oblique
incidence.

Due to the computing time limitations imposed
by the stability conditions we integrated the equa-
tions down only to about 4 of the initial energy and
used a linear extrapolation of quantities of interest
for the rest of the range. Also, due to the choice
of x intervals in Eq. (2. 18), it was appropriate to
calculate instead of f,

mp+ N-g

f(l, n, mo+2)= Z f(l, n, m),

where m = 5 for normal incidence and m = 3 for the
53' case.
f is now expanded in spherical harmonics. Fo,

the distribution function integrated over angle, is
plotted in Fig. 4 for 10-keV normally incident
electrons, where the bar notation will not be used
in what follows. The insert shows the detailed
shape of the tail of the distribution and the linear
extrapolation used to evaluate results given below.
These results are very similar to the results of a
Monte Carlo calculation by Green. "

Figures 5 and 6 show the F& and F2 components
for 10-keV normally incident electrons. We see
that for s = x they are as large as the Fp compo-
nent. This is due to the initial angular 6 function.
However, the higher components decay more rapid-
ly as a function of energy. It is interesting to
note that the current, which is proportional to F, ,
is going into the sample for higher energies (shorter
path) in each plot but is going out at lower energies.
The results for the 2-keV normally incident elec-
tron were similar to those the of 10-keV case.

Figure 7 shows the density of primaries relative
to the initial beam density

Pp S~~~~ 0. 1 h, (dg/ds)s

(5. 4)
for the 2-keV and 10-keV normally incident elec-
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FIG. 8. Fractional distribution of backscattered
electrons as a function of energy. (a) This work; the
dashed portions of the curves are calculated using the
extrapolation shown in Fig. 5. The angles are angles of
incidence. (b) The dashed curve shows Brown's calcu-
lation; the solid curves —Darlengton's experimental re-
sults, and the histogram —Bishop's Monte Carlo calcula-
tion. These are all for normal incidence; the angles
shown are the angles of observation.

far as we have calculated it) in line with the ex-
perimental results of Green and the Monte Carlo
calculations, while the energy dependence is in
agreement with Bishop's results.

The coefficients &0 and A& characterizing the
source function for the secondary electrons are
given as a function of position in Figs. 9 and 10
for the 2- and 10-keV cases, respectively. As
described in Sec. IV, we next calculated $0 and

[Eqs. (4. 15)and (4. 16)j for the distribution
function t(t' [Eq. (4. 14)]. Here we are neglecting
both the spatial dependence of the source function,
and the boundary condition. $0 and g& are shown
as a function of energy in Figs. 11 and 12 for the
2- and 10-keV cases, respectively. We next cal-
culated g, and g', , in the first of which we neglect
the boundary but include the spatial inhomogeneity
approximately, and in the second of which we ap-
proximate the boundary conditions but neglect the
inhomogeneity. The secondary-electron mean
free path is taken to be 20 A. These results are
also given in Figs. 11 and 12. We see that for the
2-keV case there is a considerable difference be-
tween g& and ql'&, which appears to be the conse-
quence of the considerable variation of the source
function in a secondary-electron mean free path.
In the 10-keV case, the source function varies less,
and the difference is smaller. It is also evident
that g" becomes negative for 8 & & m because of the
large value of g, for this case, a weakness of the
calculation. The difference between (, and g', com-

I

g- 0o

IO

C4
~C

5—
O

OJ

4

C)

o 3—

30

0.02 0.04 0.06 0.08 O.IO
x/R

O. I2 O. I4

FIG. 9. Coefficients Ao and A2, for 2-keV normally
incident primary electrons, as a function of distance x
from the surface. Lengths are given in units of the total
range R, and units of Ao and A2 are defined by Eq. (3.16)
with E in eV.

[ )

0.0I 0.02 0.03 004 005 0.06 0.07 0.08
x/R

FIG. 10. Coefficients Ao and A2 for 10-keV normally
incident primary electrons and for 10-keV primary elec-
trons incident at an angle of 53', as a function of distance
x from the surface. I engths are given in units of the
total range R, and units of Ao and A, are defined by Eq.
(3.3.6) with E in eV.
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FIG. 11. Coefficients of a Legendre expansion of the
secondary-electron density at the surface due to a 2-keV
normally incident primary-electron beam as a function
of secondary-electron energy with respect to the vacuum
level.
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pares reasonably with the E ' solution of the ho-

mogeneous equation for / = 1 in which the spatial
inhomogeneity terms have also been neglected, and

which is also plotted.
The above results were used to calculate the

secondary-electron current outside the surface.
To study the angular dependence we plot
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FIG. 12. Coefficients of a Legendre expansion of the
secondary-electron density at the surface due to a 10-keV
normally incident primary-electron beam as a function
of secondary-electron energy with respect to the vacuum
level.
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FIG. 13. P [Eq. (5.6)], the difference between the
ratio of the secondary-electron current outside the sur-
face at a given angle 8' to that in the forward direction,
and cos8', as function of 8'. The plots are for 2-keV
normally incident primary beams and secondary-electron
energies E ' with respect to the vacuum of (a) E ' =4 eV,
(b) E'=SeV, and (c) E'=24eV. In each figure, curve
a shows Stoltz's results, i.e. , Eq. (4.14) with AD=A&
=TI, 8) =1; curve b shows Stoltz's results when T(E, 8)
is included; curve c shows g' [Eq. (4.14)] with the calcu-
lated values of Ao and A&, curve d shows g" [Eq. (4. 27)];
curve e shows g'" [Eq. (4.32)].
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versus the external secondary angle O'. For a
cosine law we would have P= 0. These results are
shown in Figs. 13 and 14 for 2-kev and 10-keV
normally incident electrons, respectively. The

various figures show g, g", and tI)" together with
Stoltz's results (i. e. , f' with AD=Am--1) for three
secondary energies. Stoltz's results are shown

without the transmission factor and with its proper
inclusion.

Finally, the results for the pure energy distri-
bution as calculated from g', g", and/'", aswellas
results related to those of Stoltz with T included
are shown in Figs. 15 and 16 for 2- and 10-keV
incident primaries, respectively.
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FIG. 14. P [Eq. (5.6)], the difference between the
ratio of the secondaxy-electron current outside the sur-
face at a given angle 8' to that in the forward direction,
and cosa', as a function of O'. The plots are for 10-keV
normally incident primary beams and secondary-electron
energies E' with respect to the vacuum of (a) E'=4eV,
(b) E'=SeV, and (c) E'=24eV. In each figure, curve a
shows Stoltz's results, i.e. , Eq. (4. 14) with Ap ——A2
=T{E, 8) =1; curve b shows Stoltz's results when T(E, 8)
is included; curve c shows g' with the calculated values
of Ap and A2' curve d shows Q" [Eq. (4.27)]; curve e
shows g"' [Eq. (4.32)J.

Our calculation of the primary-electron distri-
bution differed in several respects from that of
Brown which was, however, based on the same
equation [Eq. (2. 1)]. First, we took the angular
variable to be cos8, since the angular 5 function
is well defined in terms of cosa. In Brown's work
5(e) appeared which is not well defined since it
is multiplied by sine which vanishes at 8= 0.
[Brown took sin(0) as a small positive number in
his calculation. ] We also used a simpler differ-
encing scheme. Finally, the intervals used were
different since we found that we had to use a
smaller x interval for stability, and to prevent
the spurious spreading of the incoming beam.
This was a real restriction on the calculation in
terms of computer time.

We have not calculated the x-ray production
parameters of major interest to Brown. The com-
parison (Sec. V) of our results with the total
backscattering fraction and energy distribution
of backscattered electrons, as calculated by
Brown and as measured, indicates, however, that
we are somewhat more successful in these pre-
dictions. Comparison of our backscattering frac-
tions and I'0 with Monte Carlo calculations indicates
that our neglect of large-angle scattering is not of
crucial importance for the parameter ranges con-
sidered. These scattering events could be in-
cluded by using Lewis's" equation.

Turning now to the production of secondary elec-
trons, the simple free-electron model we have
used is hardly original and precludes a discussion
of band-structure and crystal-structure effects
which would be interesting to pursue in later work.
Then, too, the free-electron model underesti-
mates the total yield.

While we feel that the primary-diffusion prob-
lem has been treated well, we have not made simi-
lar progress with the problem of secondary diffu-
sion. We have obtained two solutions which em-
phasize either the inhomogeneity of the source
function (g' ') or the presence of the boundary ((" ).
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Ana&ysis of the Fe"-Vo Center in the Tetragonal Phase of SrTi03
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The paramagnetic resonance spectrum of the iron oxygen-vacancy (Fe '-Vp) pair in the
tetragonal I4/mcm phase of SrTiO3 at 78'K is analyzed in detail. The spectra observed at
K band are fully accounted for using the accepted structural properties of the crystal in the
low-temperature phase. Whereas in the high-temperature cubic 0„' phase the Fe '-Vo spectra
are axial, in the D4&- I4/mcm phase second-order perturbation terms of an orthorhombic
E(T)(S,-S~) term have to be taken into account with E(T) =1.82' (T) cm, p(T) being the in-
trinsic rotational (order) parameter of the transition measured in radians. The analytically
well understood spectrum justifies its use for the analysis of the structural phase transition
observed in SrTiO& under applied stress and for the investigation of critical phenomena.

I. INTRODUCTION

In this paper a detailed analysis of the paramag-
netic resonance spectrum of the Fe'- Vo center-
a charge-compensated Fe" impurity-in strontium
titanate at 78'K is presented. The resonance of
this center has been attributed to a three-valent-
iron impurity substitutional for a Ti4' ion with a
nearest-neighbor oxygen vacancy, and analyzed
previously in the cubic phase by Kirkpatrick,
MGller, and Rubins, ' hereafter referred to as KMR.

The analysis consisted essentially of the Fe'-
ground-state splitting in the presence of a large
axial crystal-field term D[S, ——,'S(S+ 1)] with the
z axis parallel to one of the three equivalent (100)
crystal axes. It has subsequently been refined by
two groups by taking into account fourth-order terms
in the spin Hamiltonian yielding agreement with the
essential point of the KMR investigation. ~ Since
then the center was also observed in BaTi03 and
KTaO„' and the same kind of centers have now also
been observed for other transition-metal ions such


