PHYSICAL REVIEW B

VOLUME 5,

NUMBER 11 1 JUNE 1972

Exchange Constants and Knight-Shift Anisotropy in Single-Crystal LeadT

J. Schratter*® and D. Llewelyn Williams
Physics Department, Univevsity of British Columbia, Vancouver 8, British Columbia, Canada
(Received 6 July 1971)

Nuclear-magnetic-resonance studies of the angular dependence of the resonance frequency,

the linewidth, and the second moment have been made upon a lead single crystal.

The “ex-

change-narrowing’” model has been shown to be inapplicable to lead. The angular variation of
the second moment has established that the contribution from the second-nearest neighbors

is very small and values are obtained for the pseudoexchange and pseudodipolar coefficients
for the first-nearest neighbor of J; =4.64 kHz and b;=1.75 kHz, in moderate agreement with
the theoretical values of Tterlikkis, Mahanti, and Das of J;=4.81 kHz and b;=1.48 kHz. A
small anisotropy of the Knight shift which has the expected angular dependence has been ob-

served for the first time in a cubic metal.

1. INTRODUCTION

The NMR linewidth inheavy metals is substantial-
ly larger than the width calculated from the dipolar
interaction alone.! The main contributions re-
sponsible for this increase are the pseudoexchange
and pseudodipolar® interactions. The former is of
scalar nature and produces the so-called exchange
narrowing in the case of like spins and broadening
for unlike spins. The latter has the same tensorial
form and symmetry as the dipolar interaction and
always broadens the line.

Van Vleck! has shown that the second moment of
the absorption line in substances containing only one
magnetic isotope is not affected by the pseudoex-
change interaction. This makes it possible to sep-
arate out the pseudodipolar contribution in a sec-
ond-moment measurement. Lead is a suitable
metal for this type of investigation since it contains
only one magnetic isotope (21% abundance), and,
moreover, is of spin I= 3, thus escaping the addi-
tional difficulties which might arise from quadru-
polar interactions.

Previous experimental work on the linewidth
mechanisms in lead®~® was done on powdered sam-
ples and under the assumption that the NMR line
obeys the Anderson-Weiss model’ of extreme ex-
change narrowing. The justification for this as-
sumption came from the fact that the NMR line in
lead had a cutoff Lorentzian shape, as predicted
by this theory. In this case the linewidth is pro-
portional to the second moment divided by the rate
of exchange. ""® Thus one can obtain information
about the pertinent interactions by measuring line-
widths instead of the experimentally more difficult
second moments.

In this work we studied a lead single crystal in
order to directly observe the angular dependence
of the second moment and thus obtain additional in-
formation not obtainable from powder results. It
was initially intended to tackle this problem follow-
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ing the method of Sharma, Williams, and Schone®
in their study of white tin, where it was found that
the angular dependence of the linewidth had the
form expected for that of the second moment. This
was taken as evidence for the proportionality be-
tween the second moment and the linewidth predicted
by the Anderson-Weiss model, and the coupling
constants were then largely determined from the
linewidths. However, we find that the linewidth in
the case of lead does not exhibit the expected angu-
lar dependence characteristic of the second mo-
ment, although the lines are Lorentzian in the
center, and we are thus forced to attempt direct
determinations of the second moments. Definite
conclusions are presented regarding the radial de-
pendence of the exchange constants and the values
are compared with the previous experimental re-
sults and the theoretical calculation recently made
by Tterlikkis, Mahanti, and Das.

The fractional difference in resonance frequency
between metal and reference compound, called the
Knight shift, !* depends in general on the direction
of the applied magnetic field with respect to the
crystalline axes. " One commonly writes AH=KH,
where K is a second-rank tensor. The isotropic
part of the shift, given by K,,,= 3 Tr{K}, has been
studied extensively, mainly in powder samples
which are perfectly adequate for this type of work.
The anisotropic shift has been investigated in met-
als of symmetry lower than cubic using both powder
and single-crystal samples.

If the anisotropic contribution is large the powder
samples may prove adequate enough; however,
single-crystal samples become of paramount im-
portance when accurate measurements are re-
quired.

Using group-theoretical arguments Boon!® has
shown that in the absence of spin-orbit coupling the
anisotropic Knight shift in cubic metals is identical-
ly zero. A small anisotropic contribution is ex-
pected in the case of strong spin-orbit coupling.

4302



5 EXCHANGE CONSTANTS AND KNIGHT-SHIFT ANISOTROPY...

No such effect has been seen prior to this work.

Lead is again a choice candidate for a search for
this effect since it is a heavy cubic metal with a
large Knight shift and a relatively small linewidth.
We have therefore carefully studied the angular
variation of the resonance frequency of our reso-
nance lines and we find a small anisotropic con-
tribution to the Knight shift which is consistent with
the expected angular dependence.

II. EXPERIMENTAL METHOD

The signals were observed with a Pound-Knight
spectrometer whose frequency was swept with a
varicap PC116 mounted in the tank circuit. The
magnetic field, kept constant at 9. 5 kG, was pro-
duced by a rotatable 12-in. Varian magnet and was
monitored continuously by a glycerine probe situated
near the sample. In a typical measurement, the
field did not vary by more than 30 mG during the
time taken to record a resonance line. However,
corrections were made for variations of more than
15 mG. The absolute value of the field measure-
ment was of little importance since we were not
interested in establishing the isotropic Knight shift
to very high accuracy. However, our field mea-
surement had to be invariant with respect torota-
tions of the magnet. To check this, we placed a
deuteron probe at the site of the lead sample and
measured the ratio between its resonance frequency
and that of the field monitor probe as a function of
angle. This ratio was found to be constant within
1 partin 10% which corresponds to 10 mG and is
therefore perfectly adequate for our measurements.
The homogeneity over the specimen volume was of the
order of 3 partsin 10%. A setof Helmholtz coils
mounted on the pole faces provided the modulation
field needed for phase-sensitive detection. The mod-
ulation frequency was 38 Hz. The crystal specimen,
supplied by Metals Research Ltd., was of 99. 99%
purity, cylindrical in shape (12-mm diam X 25 mm
in length), and had the cylinder axis along the [110]
orientation. It was mounted with this axis perpen-
dicular to the magnetic field such that, by rotating
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the magnet, one swept the dc field in the plane con-
taining the [001], [111], and [110] axes.

It was found that the orientation of the crystal
could be determined accurately by recording the
magnetoresistance signal at liquid-helium tempera-
tures. The latter plays the role of a strong but
constant base-line shift for a given orientation,
but is strongly orientation dependent. For instance,
it has a sharp extremum when the field is along the
[111] axis.

The measurements were made at 1.2 K by pump-
ing on liquid helium. At this temperature the T,
contribution to the linewidth is negligible.

III. RESULTS

The experimental line in a bulk-metallic speci-
men is a mixture of absorption and dispersion
modes as a result of the variation in the phase of
the radio-frequency field with depth of penetration
into the metal. * The small skin depth reduces the
effective sample volume to a thin outer layer of the
specimen, but with a sensitive spectrometer one can
obtain reasonable signal-to-noise ratios. One of
the better signals obtained with a modulation low
compared to the linewidth is shown in Fig. 1. We
have analyzed the lines to obtain resonance fre-
quencies and linewidths by fitting a set of modulated
mixtures of absorption and dispersion modes of
Lorentzian lines using the formalism developed by
Wahlquist. !* The fits are satisfactory for modula-
tion amplitudes up to about 30% of the linewidth
(defined as the width at half-intensity of the absorp-
tion mode), and suggest that the lines are of Lor-
entzian shape over regions up to two linewidths
from the resonance frequency. It is not possible
to fit the lines with a Gaussian profile. However,
the behavior of the line at large modulation ampli-
tudes is not understood. No lines of modulation
amplitude larger than 25% of the linewidth were
used for the data presented throughout this work.

The modulated mixed mode of a Lorentzian line
at the output of a lock-in amplifier of infinitely
short time constant is of the form

R FIG. 1. Fitted experimental line.

l The symbols are explained in the text.

it should be noted that the figure repre-
sents a reduction of 1: 6 of the data, which
masks the clarity of the cutoff points.
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W — C(H,+ hycost)| cost dt
W2+ (Hy+ hpcost)® ’
(1)
where the line shape y depends on the mixture of
the modes C, the half-width at half-intensity of the
absorption mode W, and the modulation amplitude
h,, but does not depend on the modulation fre-
quency. W is a normalizing constant, and Hy=H,
- H,, where H, is the sweeping field and H, the
resonance field. A point-by-point representation
of the line shape given by Eq. (1) was obtained by
computer. Each point was then corrected for time-
constant effects by computing the expression

1 (f t -t
- ’ _bE =ty e
y(t)"Rc L "(”ex‘)( RC)dt ’

where KC is the time constant of the lock-in am-
plifier. We felt that these corrections were neces-
sary since our lines are asymmetric and the line-
widths anisotropic in character. The calculated
line shapes fitted our experimental results very
well. It is worthwhile mentioning that the quality
of the fitting shown in Fig. 1 is characteristic of
all other lines as well.

The sample was chosen of low purity to prevent
any possible de Haas-van Alphen oscillation effects.
A preliminary experiment to check for these oscil-
lations as well as to get an idea of our accuracy was
performed at 1.2 K. We determined the position
of the larger peak of the derivative of the resonance
line for different field values and small variations
in ¢ around 0° (the angle is measured between the
direction of the field and the [001] axis). The root-
mean-square deviation of the peak position for nine
lines was 24 Hz in 9 MHz.

The angular dependence of the linewidth is shown
in Fig. 2. It has been shown by O’Reilly and Tsang'®
that the most general allowed angular dependence
of the second moment (M,) for a cubic crystal, as-
suming interactions of dipolar symmetry, is of the
form

T
x=x"+Cx=Aj [

May=P(x*+y*+2* - @), 2

where P and @ are two independent parameters and
X, 9, z are the direction cosines specifying the ori-
entation of the magnetic field with respect to the
crystallographic axes. It will be immediately noted
from Fig. 2 that the angular variation of the line-
width is not in accordance with this dependence, in
contrast to the white-tin results. We are there-
fore forced to attempt a direct determination of the
orientation dependence of the second moment. This
is indeed difficult since the resonance lines are
Lorentzian for the central region and the signal-
to-noise ratio is poor in the wings.

The second moment is defined as

My= [y (W dx [ X" (w)dx
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where x=w - wy, i.e., the deviation of the fre-
quency from the resonance frequency w,. We may
note that if the observed line is a mixture of modes,
i.e., x=ax"(w)+bx (w), this relation may be writ-
ten replacing x” by x without affecting the result
since x’'(w) is an odd function of x. Of course, er-
rors in the resonance frequency, determined from
the previous curve fitting, will introduce some er-
ror, but this is a very small effect. The second
moment may also be defined in terms of the deriva-
tives of the resonance line:

Mf(%J:‘ x3 %ﬂ@dx)/([w x d—ix(w)dx) .

The second-moment calculations were made using
this expression and making the following approxi-
mation to the experimental line in view of the weak
signals in the wings. The computer was fed the

following parameters of the experimental line as
illustrated in Fig. 1; W, h,, C, as defined above,
the resonance frequency v,, the left- and right-
hand-side points at which the line begins to deviate
from the Lorentzian fit (L and R), and the two cut-
off points L, and R, determined by a linear extrap-
When the shape of the

olation to the base line.
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FIG. 2. Angular dependence of the linewidth W. ¢ is
the angle between the [001] crystallographic axis and the
direction of the magnetic field in the (110) plane. The
error bars represent the root-mean-square deviations of
the experimental results. The dashed curve represents
the predicted angular variation of the second moment.
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FIG. 3. Angular dependence of the second moment.
The error bars represent the root-mean-square deviations
of the experimental results and the solid line is the best
fit in keeping with the allowed angular dependence.

line showed nonlinear cutoffs, the tail contribution
was calculated manually. The computer determined
the total second moment and also the different con-
tributions to M, from different parts of the line.

It turns out that the dominant factor is L, (since

on the left side of the line the absorption and dis-
persion contributions add) and the other parameters
are of much less importance. One may argue that
vy and L, must have the same influence on M,, since
their difference enters the computation. However,
in practice the error in determining v, is much less
than that in determining L, and in this sense L,

is the determining factor. This result is indeed
fortunate since R,, the right-hand cutoff, is hard
to determine. The second moments were then cor-
rected for modulation by subtracting %42 accord-
ing to the result of Andrew.!” The results are
shown in Fig. 3. It will be seen that there is some
scatter in the results, but a definite pattern
emerges which allows definite conclusions to be
drawn as will be shown in Sec. IV.

The experimental Knight-shift results are shown
in Fig. 4. The smooth curve represents the best
fit for the expected angular dependence: It yields
for the resonance frequency

Vo= 9004. 41 +0. 285 (3 sin*p+cos*y - 0. 6) kHz.

From Fig. 2 we see that the linewidth at y=25°
is approximately the same as that at y=90°, and
the fact that we obtain reasonable differences in the
resonance frequencies at these two orientations is
an indication that the anisotropy of the Knight shift
is not due to fitting errors introduced by the anisot-
ropy of the linewidth.

IV. DISCUSSION
A. Exchange Constants

The second moment of a single-crystal line, con-
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taining only one magnetic isotope, is given by!

2
My=3y4R%II+1)f 25 (1 +B,)2<(—1i§;f;s—293)—> ,

R R (3)
where it is assumed that all crystal sites are equiv-
alent, and the sum is calculated with respect to one
site chosen as the origin. R, is the distance of
nucleus_k from the origin, 9, is the angle between
ﬁ, and H, y is the nucleus-gyromagnetic ratio, f
is the abundance of the magnetic isotope, and B,
=R3b,,/v %, where b,, is the pseudodipolar coupling
constant defined by®

Hij=b,, ((fifj) ‘3(Ii : R‘%(IJ.R“)) )

i
where H }",’ is the pseudodipola;r interaction between
spin I; and spin I, (joined by R ;) via the conduction
electrons. A fairly complicated theoretical expres-
sion for b;; was given by Bloembergen and Rowland
in their original paper, * and more recently by Tter-
likkis, Mahanti, and Das, !®* who made a relativistic
second-order perturbation calculation, using Dirac-
orthogonalized-plane-wave functions. As far as we
know, the only theoretical calculation of b,, for the
case of lead has been attempted by the same au-
thors!® using the formalism developed in Ref. 18.
Even though they have used some of the details of
the lead Fermi surface, which has been extensively
investigated with de Haas-van Alphen oscillation
techniques by Anderson and Gold, !° their calcula-
tion essentially provides an isotropic result for
the coupling constant b,;,, as has been the case with
all theoretical calculations of b,; in metals to date.
In real metals, however, it is known®'® that b,
does depend on the orientation of the position vector
joining the two nuclei. Measurements on powders

9004.5
0
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FIG. 4. Angular dependence of the resonance frequency.
The error bars represent the root-mean-square deviations
of the experimental results and the solid line is the best
fit in keeping with the allowed angular dependence.
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cannot establish this orientation dependence. We
hope that work on single crystals will stimulate
calculations that take this anisotropy into account.
The oscillatory character of the radial depen-
dence of b;;, as well as the above-mentioned anisot-
ropy, makes it often difficult to choose the shells
which have the major contribution to the second
moment of the line. If, for example, b;,(R;,) hap-
pens to have a zero at the nearest-neighbor dis-
tance, then it is the shell formed by the next-near-
est neighbors which gives the major contribution
to the linewidth. Since different shells belong, in
general, to different symmetries, it is again the
work on single-crystal samples that can help decide
upon this point. Alloul et at.°'® have used the spin-
echo technique on powdered samples to determine
the coupling constants b, and J;;. The spin-echo
measurement furnishes for each shell £ a modula-
tion frequency given in first approximation by

V= '2'%.— = % (J et
where 27, is the period of the modulation and J, is
the coupling constant of the pseudoexchange interac-
tion. In order to determine J, and B, independently,
the spin-echo data must be combined with cw data
on second moments. Since the latter were experi-
mentally difficult to obtain, Alloul et al. used the
Anderson-Weiss model which predicts®

2.36f3 (v zﬁ/Rgl + bol)z
27 Jl ’

2 +B,,>) : @)

W= (5)
where only the first-nearest-neighbor interaction
has been taken into account. The experimental echo
envelopes showed only one clearly defined modula-
tion period, ® 27,=305+15 usec. It was not clear
whether it was produced by the first- or second-
nearest neighbors. The experimental half-line-
width was W=1.22+0.04 kHz. Using these data
and the relations (3) and (4), they obtained two sets
of data for the coupling constants, corresponding
to the two possible choices in which v, is attributed
to either the first or second shell of neighbors,
respectively.

O’Reilly and Tsang!'® have shown that two inde-
pendent parameters are required to specify the most
general allowed angular variation of the second mo-
ment in cubic-crystal structures. In the case of
lead, which has a fcc structure, this dependence
is of the form given by Eq. (2). Equation (3) can
be written in the form?!®

2 0
My= 12” BRI 1)f E (1+B)?*Y} (9‘,‘5 o1) Y561 07)
kR

121r (1+B,)

=yt f E ——e"‘— [X5 (6, ¢0) X5(6, ¢)

+$ X5 (6., 0x) X506, 9],

SCHRATTER AND D. L. WILLIAMS 5

where X | are lattice harmonics of the crystal, '®
(6,, ¢,) are the spherical angles made by R,, and
(8, ¢) are those made by H with the crystallographic
axes. Using the appropriate expressions for the
lattice harmonics, we finally obtain

My=2y*n2II+1)f 25 (1+ B,)%S,,
k

(6)
s,,=4—1§g (37.5 (0, ~ 0. 6)0 — 2. 50,+17.5] ,

where 0, = x4 +yt+2} refers to the direction cosines
made by Rk and o to those made by H with the crys-
tallographic axes.

We have generated, by computer, the crystal
lattice of lead and calculated the expressions
d®3, S, for the different shells (d is the lattice con-
stant). We show in Table I the results for the first
seven shells.

We note that d®3, S, for all shells is of the form
s=plo - lql) with p positive for some shells and
negative for others. For instance, shell Nos. 1,

3, 4, and 7 have the same symmetry characterized
by s;=—-1p,1(c -1.67), whereas the second shell

is characterized by s,= | p,l (0 - 0. 33). It is impor-
tant to realize that the different symmetries can-
not be changed by the factors (1+ B,)?, which are
always positive.

In the (110) plane, o= $sin*y+cos*y, and - (¢
-1.67) and (0 - 0. 33) have the form shown in Fig.
5. Comparing the dependence of s; and s, on ¢ with
that of M, given in Fig. 3, we see immediately that
the second shell cannot make the major contribution
to the second moment. Further, as can be seen
from Fig. 3, the experimental anisotropy is very
pronounced. If one were to fit the curve to the
expression (2) without knowing the theoretical ex-
pressions appearing in Table I, one would have to
pick 1< @<1,67. However, contributions from
shell Nos. 2 and 5 tend to make @<1.67. There-
fore, unless shell 6 happens to make a large con-
tribution to M,, which is very unlikely, our ex-
perimental results force us to pick Q=1.67. This
result indicates that (1+ B,)?=~0, i.e., the atoms of
shell 2 contribute at most slightly to the pseudo-
dipolar interaction. A detailed theoretical calcula-

TABLE I. Results of computer calculationof d®3 ;S; for
first seven shells.

Shell dsZiS;

1 -90(c—1.67)

2 22.5(c—0.33)

3 -6.67(c—1.67)
4 -1.41(c—1.67)
5 3.17(c—0.115)
6 -0.74(c-1)

7 -1.05(c—1.67)
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FIG. 5. Theoretical angular dependence of s; and s, as

defined in the text.

tion of b;; would be able to show whether this is due
to the fact that b,,(| R, ;1) happens to have a node at
the distance of the second-shell atoms, or whether
by (R;;) =0 due to the symmetry details of the Fermi
surface.

If we now make the simplifying assumption that
only the first four shells contribute to M,, and
B;= B;= B, = B, then we obtain from Eq. (6)

My=-3y*r2IUI+1)f d(1+ B)?[98. 1(0 - 1. 67)]

10-¢ 2

X(W) kHz*® .
The fitted experimental curve is given by M,= —4.1
X (0 - 1. 67) kHz? and shown in Fig. 3. Taking y
=5.59%10° radsec”'G™!, d=4.90 A at 1 K, £=0.21,
I=3, we obtain (1+ B)®=2.23x 10% then B=13.9
or —15.9. We pick the positive value in keeping
with the theoretical calculations of Ref. 10. This
yields

2 3/2
%:%%—B:l.vs KHz ,

in fair agreement with the theoretical value of b,,/
27=1.48 kHz obtained in Ref. 10.

Combining this result, which is now free from
the Anderson-Weiss-model assumption, with the
spin-echo result (3), we obtain for the Ruderman-
Kittel coupling constant the value

2 3/2
-% (1+B)=4.64 kHz .

S 1
21 T,
The theoretical value obtained in Ref. 10 is J,/27
=4, 81 kHz.

We note that J/b=2.6. The Anderson-Weiss
model® requires J/b> 1. The fact that our lines
are Lorentzian in the center, but do not show the
proportionality between linewidth and second mo-
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ment in an angular-dependence study, seems to in-
dicate that the above condition has to be more strin-
gently satisfied if the proportionality is to be as-
sumed. Kittel and Abrahams?!' have shown that
resonance lines of magnetically dilute crystals also
have a cutoff Lorentzian shape. The 21% dilution

in the case of lead does not seem to be low enough
to explain the experimental Lorentzian lines; it
may, however, be possible that it did somewhat
contribute to the effect.

B. Anisotropic Knight Shift

Boon'® has shown that when spin-orbit coupling
is taken into account, the general expression for
the anisotropic Knight shift is of the form

3
K,,,:J’ %Tr [F (T) P}(cose)+0,(T) P}(coss)sing

-0,(F)Pj(cosb)cosp] . (7)

PT(cos) are the associated Legendre polynomials.
F(T) G, j=x, y, z)is a symmetric-tensor field
invariant under the symmetry operations of the
crystal and represents the effect on the electron-
spin alignment of the orbital motion of the electrons
through the anisotropic g factor. 0,(r) is a pseudo-
vector field also invariant under the symmetry op-
erations of the crystal and is due to cross terms

of the conduction-electron nuclear -dipolar interac-
tion and the spin-orbit coupling. The vector r(7,

6, ¢) describes the electron position in the labora-
tory frame whose z axis is parallel to the magnetic
field. The integral is over all space.

Using the character tables® for the cubic groups,
we find that the pseudovectors O; form a three-
dimensional basis for the irreducible representa-
tion T;, whereas P }(cos6)sing ~zy and P}(cos6)

X cos¢ ~ zx belong to the three-dimensional basis for
T,. The last two terms in the integral are there-
fore zero in cubic symmetry. The symmetric ten-
sor is given by the following expression®®:

FiD=gud Z gu(p) Ly,
»

8i;=80 2

p#EP

SPILIP") (P IN;Ip) + (pIN{IP") (p'ILyIp)

€, — €,

, (8)

where g is the free-electron g factor, u, is the
Bohr magneton, f(¢) is the Fermi distribution func-
tion, y,(F)=1p) are the eigenfunctions of the un-
perturbed Hamiltonian p2/2m + V(F), I is the or-
bital-angular -momentum operator, and N= (h/
2m®c®) (VV(F)xp). The detailed perturbation pro-
cedure leading to this result can be found in Ref.
13.

Let us write

F,=3(3F, -TrF)+3TrF .
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Since F,, is invariant under the symmetry op-
erations of the crystal, we conclude that the first
term transforms as 3z% - 72~ P} (cos6), whereas
the second term forms a basis for the identity rep-
resentation of the group. Since the latter is multi-
plied by P%(cos6), which belongs to a basis for the
irreducible representation E, its contribution to the
integral must vanish, and we are left with

1

—S drr [3F,,(7) = TrF] P%(cos6) .

Ka,,=3

Let us define A(T) by
3[3F,,(7)

A(T) will then transform according to the identity
representation and the anisotropic Knight shift be-
comes

K=l (d ")A( LY, ¢)F,

where Y7 are the spherical harmonics. To de-
termine the explicit angular dependence of this ex-
pression we will make use of the lattice harmonics
in cubic symmetry used by O’Reilly and Tsang'®
their second-moment calculation.

Using the coupling rule for spherical harmonics
and the spherical-harmonic addition theorem we
can write

22 2
Y%(e)Y%(e)=(—4fm > [C((szl?O) ¥ (6)

L=0,2,4

ssanr D 3 CELOOF

L=0,2,4 M=-L 2L+1

- TrF]=A(F) P%(cosb) . (9)

xY4* (', ¢p) Y¥ (0, @),

where 6’, qb are the polar angles of ¥, 6, & are
those of H with respect to the crystallographic axes,
and C(22L, 00) is a Clebsch-Gordan coefficient.
Expanding the spherical harmonics in terms of lat-
tice harmonics, we obtain

Ko-@n/? ¥ Lc(22L,00))°

Lybya,i 2L+1
dsr 1t wai (gr 47\ yhai
X WA("')XL ', ¢') X" > (0, @),

where ¢ labels the representation, « labels differ-
ent sets of functions belonging to the same repre-
sentation, and ¢ labels the different basis functions
within a representation. Since A’(»’) belongs to
the identity, only those lattice harmonics which
form a basis for the identity representation of the
cubic group will survive in the sum. Since this
basis is one dimensional, the sum over i has one
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term only, and we are left with (call u=1 the iden-
tity representation)
Ka=@an? 22 [c2L, 00)]2X1L° (6, &)

Lya
j A (Y')Xla* (0 ¢ )

The identity -representation lattice harmonics in
cubic symmetry are given in Ref. 16: For L<4
there are only two of them:

5251/ 2

» Xi=—gg— &*+3te2t -9,

1
“@nt?

where ¥, y, z, are the direction cosines.
a*r’ asr' -
=—I 73 A’ (1’ and D=j77§ A,( r’) Xi’ (9', ¢’) ,
(10)

we obtain K, = (47/5) C+ 27 ()2 D(x* + y* + 2* - 2),
where %, y, Z are now the direction cosines made
by the magnetic field with the principal axes of the
crystal. C is isotropic and therefore cannot be de-
termined experimentally by an angular-dependence
study. We 1ncorporate it in K,,, and write K=K,
+21 ()2 D(x*+9* +2* = 2). The average over all
space of the second term is zero, as it should be.
The angular dependence is completely determined
by the above expression.
If we denote again by y the angle made by the

field with the [001] axis in the (110) plane, we have

Denoting

K=Kyo+21(})/2D(3sin*p+cost p-2) .

Our experimental result can be written in the form
K=K,,,+(0.285/v,)(3 sin*p+ cos*y - 0. 6), where v,
is the resonance frequency of the reference com-
pound, Picking® v, =8.90772+4 MHz, we obtain
Kio=1.085% and D="7.8x107%,

Since the electron eigenfunctions as well as the
Fermi surface of lead are fairly well known, D
could be calculated from the expressions (8)-(10).

V. CONCLUSION

Our study of the nuclear magnetic resonance in
single-crystal lead has shown that the “exchange-
narrowing” model of Anderson and Weiss is inap-
plicable. Further, we have established that the
contribution of the second-nearest neighbor to the
second moment is very small and we have ob-
tained values for both pseudoexchange and pseudo-
dipolar coefficients for the first-nearest neighbor.
A small anisotropy of the Knight shift has been de-
tected for the first time in a cubic metal and it is
hoped to pursue this measurement in higher fields
and also in purer samples, where it is expected
that de Haas-van Alphen-type oscillations in the
Knight shift may also occur.
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We consider some effects of primary-electron diffusion on secondary-electron emission
from a free-electron model of a polycrystalline target—in particular the angular distribution

and energy dependence of the secondaries.

The distributions of primary electrons due to in-

cident 2- and 10-keV monoenergetic beams are obtained by means of a Boltzmann equation.
The fraction of back-scattered primaries is found to be in good agreement with experiment.
The primary distributions excite distributions of secondary electrons which diffuse toward and

are transmitted through the surface.

In accord with experiment the large angular ansiotropy

in the emitted secondary-electron distribution predicted by Stoltz is found to be greatly re-

duced by the primary diffusion.

The transmission coefficient, not included in previous calcu-

lations, is also of importance in determining the characteristics of the observed secondaries.

I. INTRODUCTION

The problem of secondary-electron emission!=?
has received renewed interest recently in part due
to the development of the scanning electron micro-
scope. An extensive review of the previous work
onthis complete subject has been given by Hachen-
berg and Brauer. ' Briefly, when a target is bom-
barded with primary electrons of a given energy
and direction relative to the surface normal, sec-
ondary electrons (<50 eV) are emitted with a cur-
rent distribution j%(E, Q), which is a function of
secondary energy E and direction 2. Due to the
difficulty of the measurements, most experiments

yield information about various integrals of jYE, Q).

These are the pure angular distribution j9( )
=[j%E, Q)dE, the pure energy distribution j%(E)
=[j4(E, 2)dQ, and the yield = [ [j%E, Q)dE dS.
Jonker* measured j%E, Q) for primaries nor-
mally incident on polycrystalline Ni and found that
the angular distribution of the secondary current

obeyed a cosine law characteristic of an isotropic
distribution of secondaries inside the material.
On the other hand, theoretical calculations pri-
marily due to Stoltz® predicted an angular distri-
bution which is considerably flattened.

We consider in this paper the effect of primary-
electron diffusion on secondary-electron emission
in particular, on the angular distribution and
energy dependence of secondaries when the pri-
mary energy is 2 and 10 keV. The latter primary
energy is characteristic of scanning-electron-
microscope operation. One aim of this work is to
resolve the above-mentioned discrepancy regarding
the angular dependence. Another aim is to cal-
culate the pure energy distribution as a function
of primary direction and energy. Experimentally,
the yield is found to increase with increasing pri-
mary energy up to about 500 eV and then to de-
crease. For a fixed primary energy the yield in-
creases as the primary beam deviates from nor-
mal incidence. This is often attributed to the

’



