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error with the calculated values z„ taking the quan-
tization into account. This over-all agreement is
not obtained mith the calculations without quantiza-
tion,

(ii) A lower dopant N~ in the bulk causes a less
steep potential mell at the surface and increases
z„, as is seen from comparison of curves 2 with

4, 3 with 5, and 6 with 7.
(iii) Applying a forward bulk bias also decreases

the steepness of the potential mell and increases
z,„; a negative bias does the reverse. Compare
curve 1 with 2 and with 3, 4 with 5.

(iv) The difference between calculations of z,„
with and without quantization being taken into ac-
count is less pronounced the less steep is the po-

tential well and the higher the temperature. In
the case of curve 4 the measurements do not enable
us to distinguish between quantized or not quantized
electrons. The energy separation of the quantized
levels in this case is of the order of kT. If a neg-
ative bias is applied (curve 5) or the temperature
lowered (curve 6), the distinction can clearly be
made.

To sum up, the quantization of electrons in silicon
inversion layers has been experimentally verified
at 77 and 300 'K. All previous experimental work
on this quRntizRtion has been done Rt temperatures
of 4. 2 K Rnd lomex'.

The author is indebted to W. J.J.A. van Heck
for assistance in the measurements.
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In the high-frequency limit, general expressions for second- and third-order induced elec-
tronic current densities in a medium are derived. These are valid for any medium with arbi-
trary spatial electronic-density variations. It is shown that the second-order current density
at x-ray frequencies depends directly on the gradient of the unperturbed electronic density, so
that it, is sensitive to density variations both near the surface and near the ionic cores in a
solid.

Recently, Eisenbex ger and McCall' have observed
x-ray parametric conversion due to the lowest-
order nonlinearity in a solid. This was proposed
earlier by Freund and Levine. a They also con-
sidered theoretically the case of mixing of an in-
tense optical wave with a wave at x-ray frequency.
Furthermore, an amplifier at such a high frequency
leading to the availability of highly intense and
monochromatic x-ray sources now seems to be a
distinct possibility. It is, therefore, of some in-
terest to examine critically the calculation of non-
lineax' susceptibilities of a solid atx-ray frequencies.

Although, Eisenberger and McCall' and Freund and
Levine~ have tried to derive expressions for the
second-order susceptibility in a solid at x-ray fre-
quencies, we find that their results are not general
enough to include the very significant effect due to
the potential barrier at the surface. of the solid.

Since x-ray photon energies are much higher than
the surface barrier, we may argue that the effect
of the surface should be negligible. However, in
the high-frequency limit (a+» Es, where Ee is a
typical electronic excitation energy for dominant
transitions), we will show that the second-order
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current density is proportional to the gradient of
the unperturbed electronic density. Thus it is a
direct measure of its spatial variations. It is
sensitive not only to the periodic density variations
near the ionic cores in a solid, but also to the
variation near the surface. In centrosymmetric
solids, like metals, it has already been shown by
Jha4 that the surface plays an important role in de-
termining the second-order nonlinearity even at
optical frequencies. Experimentally this has been
verified5 beyond any doubt.

A self-consistent formulation for a nonrelativistic
calculation of the induced linear and nonlinear cur-
rent densities in a solid, which is valid for arbi-
trary spatial variations of the induced fields, has
been given by Jha and Warke (to be referred to as
I).6 This can be used for all those frequencies for
which h«mc . To be complete, if we also in-
clude the spin-orbit coupling of the electrons in the
medium, which was ignored by Jha and Warke, the
linear current density J„, the bilinear current den-
sity J», and the trilinear current density J»„may
be directly obtained from Eqs. (3.26) to (3.31) of
I with

3C„(~)= -' g e"'" a(q, ~) ~ 5(q),

culation for J» JA» and JAAA are given below.

I. LINEAR CURRENT DENSITY 3~

In the high-frequency limit we obtain the well-
known result

2

J„(Q, (d,) = P a (g„(d,) n(Q -Q,), (7)
Qy

where n(Q-Q, ) is the Fourier transform of the un-
perturbed electronic density n(r), with n(q= 0) = n,
the number of electrons per unit volume. For a
periodic system $„(Q, &,) is nonvanishing only if
Q-Q, = G, where 4 is a reciprocal-lattice vector.
A field with wave vector Q, thus gives rise to fields
with wave vector Q, + G, which may be obtained by
solving appropriate Maxwell's equations. In gen-
eral, the self-consistent linear current density
may be rewritten in the form

J„(r,(d, ) = (ie'/m(d &) R, ( r) n(r), (6)

where

E,(r) = (i,~, /c) a(~,) .
II. SECOND-ORDER CURRENT DENSITY J~~

For (()1) (()2) and (()1+ (()8 Es/'" our consldera
tion leads to

36AA( 1+ 2) 2 a( 1) ' a( 2)2' C
(2) —ie3 nr VE& r ~ E2rJ (r co+co&=AAw p 1 2g 2+ 2((()& y (()&)

(3)

(4)

g(q) = p+ —+ a(s x q)+, (s x V V),
2 2VEc

where a is the self-consistent vector potential, 5
is the electronic spin, p is the momentum operator,
and V is a general single-particle potential inwhich
the electron is supposed to be moving in the medium.
The unperturbed states [ n) in I are now the eigen-
states of the Hamiltonian

K, ( r) () . ()(i ( r)n(r)), ~~~)

where PDF implies terms obtained by permuta-
tions of distinct frequencies. Note that this differs
from the corresponding expressions given in
Refs. 1 and 2 for crystal, since they have not
treated the surface correctly. Our expression
is valid for an arbitrary variation of the unper-
turbed electronic density n(r), whether in a crys-
tal or in a liquid. In fact, by using Maxwell's equa-
tion,

602
(& &~) —

a @i= a
' J~(r, &~),

2

+ V(r)+» (s x V y) ~ p,
2yn 2m c (6) the bilinear induced polarization may be written

in this case in the form

with eigenvalues E .
From the expressions for the current densities

in I we observe that incident and generated fre-
quencies &, appear in the energy denominators in
the form I/(Ze —br'; —Ie). In the high-frequency
limit, when h~, » E~, we keep terms only to the
lowest-order in this parameter. However, we do
not use this expansion when &, is of the order of
an optical frequency or less, for example, when we
consider the case of difference-frequency genera-
tion with 8+, —A&2 -"E~. The results for such a cal-

2m &,~3((d, + ~~)~ ' (13)

8
4vm~a((d, + (d,) (14)

This has exactly the same form as Jha's equation

5"~(r, ~, + ~,) = y» 0(E, ~ E,) + P„(V ~ E,) E,+ PDF,
(12)

where
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for PN2 due to conduction electrons at optical
frequencies. The second term in Eq. (12) is non-
zero at the surface even for the primary field
corresponding to 5= 0.

In the case of difference-frequency mixing, when
&u,2- &u, —(d2-Ee/If, &u„&u2»E2/h, we find

3

JAA(@) 12) 2 2 2 ~ a1 (%) 2* «2) g32m e

x P &a'( e' '
~

a) &~~ e-'~'jIf(-4)
~

~')
e af'

x ~( ' — ' . ~ PDP), (15)
Eoi —E~ —lgp —if

where f(E„) is the Fermi distribution function.
For the case when one of the incident frequen-

cies, say, &, = 0, is an optical frequency with
5+p Eg ~ Ao ~~Eg

&
we obtain

~ 2

J»(r, ~o+ ~2) =, E2(r) l& ~ &o(r)j,47Tm&
(16)

which describes optical mixing, ' and which will
control parametric amplification of x-ray by an
optical pump wave.

III. THIRD-ORDER CURRENT DENSITY J~~~

For all relevant frequencies large, Eq. (3. 28)
of I leads to

&3(r)& ~ (~(r)%&1(r) @2(r)lI. &(~)%&3 &«1
AAA 1 1+ 2+ 3) 2m3~ ~ (d ((() + (() )2 ((() + (() )((d + (() y (() )

&(2, . 3r)& [n(r)2, ] 2, (r)%. [2, ( . [2,n(r)]] prrp)(~1+ &2) &3 (~1+ ~2) "1

Similarly, the intensity-dependent part of the di-
electric function may also be calculated. One
finds

JAAA(q1 q1+ q1& 1 1+ 1)

=
2 3 3 E1(q1) @1(q1) 1(q1)~1

so that for a plane-polarized wave

Ae(q~) , 41)ne' '

~
( )~2

e '(q, ~) 2m3 ~14 c2

Since this is negative, there is no self-focusing
effect for x-rays.

From the preceding results it becomes clear
that in the x-ray region one may obtain simple ex-
pressions for the linear as well as nonlinear cur-
rent densities, which are valid for arbitraryva-
riations of the electronic density in a medium.
In particular, the lowest-order nonlinearity is a
direct measure of its spatial variations in the
medium. The electromagnetic interaction terms
involving the spin-moment and spin-orbit coupling
do not play any important role unless one is con-
sidering the difference-frequency mixing experi-
ment in which 5+, —k&~ is comparable to the typi-
cal excitation energy E~. A more detailed ac-

. count of this work will appear elsewhere.
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