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over which V~(r) is integrated to obtain V~(k) is
decreased and therefore if V~(k) is to be unchanged,
the magnitude of V~(r) must be increased. There-
fore, we can say in the empirical pseudopotential
As and R, are two independent parameters (since
R, affects V~(r) whereas As does not), but in the
rigorous pseudopotential R, and A2 are two depen-

dent parameters; i.e. , since both affect only the
potential within the R, sphere, for any value of R,
one can find an A,2 which will locate the d bands
correctly but not give their correct width. %e
thus conclude that the empirical pseudopotential
of Pong and Cohen should yield good energy bands
for all members of the transition-metal series.
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50ne might naively expect the states at the bottom of the
d band to be more tightly bound. That this is not the case
follows from a consideration of the nodal structure of a
3d radial function with energy. Below the 3d resonance
the wave function has no nodes and in fact becomes expo-
nentially large as r gets large. Above the 3d resonance a
node occurs at a value of r which decreases as the energy
increases. The bottom of the d bands lie below the 3d res-
onance while the top of the d bands have an energy such
that the node occurs for values of r only slightly greater
than the largest inscribed sphere.
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A general relation between the radiative electron™capture cross section and the optical-absorp-
tion cross section for impurities in semiconductors is derived in a straightforward way without
recourse to detailed balance arguments. The method of derivation is applicable to a wide range
of related problems. Specializing the result to a form previously obtained by Blakemore reveals
discrepancies in degeneracy factors.

INTRODVCTION

In an earlier paper, Blakemore' applied detailed-
balance arguments to develop a relationship between
the photoionization cross section and the radiative
electron-capture cross section of an impurity in a
semiconductor. In this note, a more general re-
lationship between the radiative electron-capture
cross section c„(E,) and the optical-absorption
cross section o(5&v) is derived in a simple and
straightforward way without making recourse to
detailed-balance arguments. The generalized re-
sult is then specialized to the situation treated by

Blakemore. The result obtained differs from Blake-
more's only by numerical factors involving degen-
eracies [cf. Eqs. (8) and (12) below].

In a completely quantum mechanical formalism,
many transitions can be thought of in terms of the
interchange of energy between two systems, e.g. ,
optical transitions involve energy exchange between
an atomic system and a radiative field. It is com-
mon to view energy transitions between two quan-
tum mechanical systems exclusively in terms of
parameters defined for only one of the systems,
e.g. , either electron capture involving capture
cross sections, electron velocities, electron den-
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sity of states, etc. , or radiative emission involving
optical cross sections, photon density, etc.

DERIVATION

General

Spontaneous Emission

For photons F(E) =F(S&u) =N(g~) Va(h&u) =NG(5&@)
&& Va„(h&u), where N is the average photon occupation
number per radiation mode, Va„(h&u) is the velocity
of propagation of radiative energy, and G(h&u) d(S~)
is the number of radiation modes in d(kv). We
know from quantum mechanical theory that N should
be replaced by N+ 1 for emission processes. In
the case of spontaneous emission N-0. The photon
flux effective in inducing spontaneous emission is

F, a(e(u) = V, „(h(u)G(R(u) (2)

The total number of atomic system states, n~,
which can participate in photon emission involving
a transition from a filled continuum-conduction-
band state to an empty ground state of a donor is
given by the product of the probability that an elec-
tron is in the continuum state, gg„and the number
of ionized donors, Nnga(1 -fa),

nr =No g.gaf, (1-fa)' (8)

Here, ND is the total density of donors, gD is the
degeneracy of the donor ground state, I -1'a is the
portion of ionized donors, g, is the conduction-band
degeneracy, and f, is the portion of occupied con-
tinuum states. The quantity n~ is conveniently re-
ferred to as the density of trapping states.

The ground state of a donor can be empty if the
donor is ionized or is in an excited state. Blake-
more gives a useful discussion about the influence
of excited states on distribution functions. For

While in the example pertinent to this discussion,
the radiative electron capture and spontaneous pho-
ton emission are normally expressed in terms of
equations which look quite different, the two view-
points have in common the transition rate (d appro-
priate to the process. This identification is the

key to relating the two different cross sections.
The equation which relates the transition rate to a
corresponding cross section is well known,

~(z) =o(z)F(Z)n, .
Here &u(E) is the transition rate (sec 'cm" ), F(E)
is the particle flux (number particles cm sec '),
o(E) is the cross section (orna), and nr is the total
number of atomic system states per cm which is
available to participate in transitions. In the fol-
lowing Eq. (1) is particularized first to a photon
flux and second to an electron flux. The two result-
ing expressions describe the same physical process
and are thus equal.

for the spontaneous-emission rate involving the
radiative recombination of conduction-band electrons
with donors.

Electron Capture

Turning now to the electron-capture cross sec-
tion, the particle flux in Eq. (1}is interpreted as
the flux of electrons in the conduction band,

F„(E,) = V„(E,) n(E, ) = V„(E,)g, p(E,)f, , (5)

where V„(E,) =(2e, /m, )'~ and e, =z, —ea The.
number of trapping states for electrons is just
the number of ionized donors times their degener-
acy

nr =go Na(I fa). - (8)

Combining Eqs. (5) and (6} into (1), the recombina-
tion rate expressed in terms of the electron-cap-
ture cross section o„(E,) reduces to

~(~~) = o.i(zc) V.i(z.) p(zc) Na gn gaff(I fa)-
(7)

This equation for radiative recombination compares
with Eq. (4).

DISCUSSION

Since Eqs. (4) and (7) described the same physi-
cal process, they are obviously equal; hence the
relation

( ) ( )
v, „(h~)G(tu))
v„(z.) p(z, )

(8)

must be satisfied. Equation (8) is a generalized
form of a result recently obtained by Blakemore. '
In the form presented in Eq. (8) the relationship
between o„(E,) and o(he@) is intuitively clear.

This general result can be specialized to the
form given by Blakemore by taking the energy and
group velocities as equal, VE& = VG,

' and substitut-

our purposes, it is adequate to define a new quan-
tity fa to represent the probability that some one of
the total set of bound states of the donor is occupied.
Then the portion of ionized donors is 1 fa.-Actual-
ly, the computational error introduced by replacing
I -fz& by 1-fa is often negligible, the error being
greater for shallow impurities.

The degeneracy factors g, and g& have been pre-
viously discussed. The point to be emphasized
here is that an ionized donor presents gD empty
ground states to an electron in the conduction band
but a neutral donor contains only a single electron
in the ground state, i. e. , only one of the g& ground
states can be occupied at any one time.

Collecting the results given by Eqs. (2) and (3)
into Eq. (1) yields

(u(e(u) =o(@(u) Va„(a(u)G(a(u)Nagr gg, (1-fa)
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ing in the defining relations:

G(e~) = n'(e~)(N~)'/( vc)' &,

p(E, ) = (2v) ~(2m, /83)~'3&,"
(9)

(10)

V., (Z, ) = (2~,/m, )'" (11)
all valid for parabolic bands. Equation (6) then
reduces to

(@ )
— {s )

~ ~ ~ (1
~c&c

where h&u=&D+e, . Equation (12) compares with
Blakemore's Eq. (12). Differences in the way im-
purity and band degeneracies enter Eq. (12) can
occur because of the degree of arbitrariness avail-
able in defining cross sections. However, the

occurrence of g~ in Blakemore's Eq. (12) appears to
be in error; the additional factor of —,

' in his Eq. (12)
is correct because his photon cross section o, in-
cludes the spin degeneracy while v(h~) defined here-
in does not, i.e. , ~o& =o(5&v). The normalization
of o(h&u) used here is precisely defined by Eqs. (23)
and (24) of Ref. 4.

The point of view exemplified in arriving at Eq.
(8) or (12) is of general utility and intuitive simplic-
ity. The arguments are clearly trivially applicable
to acceptors. Further, no recourse to detailed bal-
ance is required.
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An isolated interstitial in silicon at the bond-centered position is investigated using the theory
of solid-state scattering and a pseudopotential for the defect potential. The present study is
an extension of the work reported recently for the interstitial at the nominal site. One feature
is common to the two cases, namely, no bound state is found in the band gap associated with
this defect. However, owing to stronger interactions between the atoms at the small distances
in this case, the change in the one-electron energy due to the interstitial is larger and the
bound state below the valence band lies much deeper.

In a recent article (hereafter referred to as I),
an isolated interstitial in silicon at the nominal site
(tetrahedral position) was studied using the tech-
niques of solid-state scattering theory. In this
approach, one expands the wave function of the
defect system in terms of the Wannier functions for
the perfect crystal and generates the matrices for
the defect potential and the Green's function on the
Wannier-function basis. The relevant results are
then obtained in terms of a determinental equation.
The change in the one-electron energy arising from
the interstitial was found to be —0. 67 Ry, and no
bound state associated with this defect was found in
the band gap. The vacancy formation energy thus
obtained (l. 00 Ry) was far too high, even allowing
for the fact that inclusion of lattice relaxation,
around the defects and the changes in Coulomb
interaction due to redistribution of charge would

lower the value of the formation energy.
A more plausible position for the interstitial was

suggested by Watkins ' to be the bond-centered
position where, owing to shorter distances between
the atoms, the interstitial contribution will be much
larger thus bringing the value of the formation
energy down. Watkins et al. suggested several
alternative positions. The bond center is only one
of them. This article reports the results of
studying the interstitial at the bond-centered posi-
tion.

The calculations were performed using the method
and some of the quantities obtained in I. The same
type of symmetry relations between the potential
matrix elements holds t Eq. (4. 6) of I] except that
Rz is now replaced by zero. The matrix elements
for different lattice-site vectors R, break into
groups such that a vector R~ can be connected with


