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The failure of the harmonic approximation for the lattice dynamics of solid H&, D2, He, and
He at densities corresponding to pressures below the order of 10 atm is well known. We pre-
sent evidence that the equation of state for solid H2, D2, He, He, and Ne at high densities may,
however, be calculated successfully in the harmonic approximation. Equation-of-state curves
at high density for H2, D2, He, He, and Ne' (all for the fcc phase at T=O K) are given and
compare well with results from Monte Carlo or cluster-expansion treatments using a Jastrow
wave function. The comparison with experiment shows good agreement in the high-density
range for He, He, and Ne . For D2 and H2 the theoretical results agree closely with each
other at high densities, but not so well with the experimental data of Stewart in that region,
suggesting inadequacy either of the potential or of the experimental data. For the Lennard-
Jones and Buckingham potentials used for pressures ranging from a few thousand to several
million bars the Domb-Salter approximation gives an accurate result for the zero-point ener-
gy of the harmonic crystal. Our results lead us to conclude that for good high-density compu-
tations the necessary short range correlations are adequately accounted for in the harmonic

, approximation.

I ~ INTRODUCTION

The lattice dynamics of solid Ha, D~, He', and
He at densities corresponding to low pressures
must be treated by the methods applicable to quan~
turn crystals. In particular, the harmonic approxi-
mation (HA) predicts instability for all four crys
tais at densities corresponding to pressures below
the order of 10 bar. We shall present evidence
however that for higher densities the harmonic ap-
proximation works with increasing accuracy.

It is also shown that, for the potentials used and
over the density range examined, the Domb-Halter
approximation' gives an accurate result for the
zero-point energy of the harmonic crystal. For
fcc Ha at T =0 'K, results obtained in this approxi-
mation are compared with two other calculations
based on methods suitable for quantum crystals:
a Monte Carlo computation using a Jastrow wave
function and a truncated-cluster-expansion treat-
ment of a similar wave function by the method of
L. H. Nosanow, with the important difference that
different Jastrow functions ' from Nosanow gave
computational convergence over a wide density
range. A Lennard- Jones 6-12 and a Buckingham
exp-6 potential are used for HP. For fcc He, He,
and Ne 0 at T = 0 'K, the Lennard-Jones potential
is used and compared with Monte Carlo results.

In addition to the substantial agreement in the
energy and pressure at high density calculated by
these various methods, the decreasing ratio of
kinetic to total energy at increasing density and a
similar decrease for the ratio of rms particle dis-
placement to nearest-neighbor distance indicate
the validity of the harmonic approximation at high
densities.

Il. ZERO-POINT ENERGY AND PARTICLE DISPLACEMENT
AT T= 0 IN THE HA

E= Vo+ Z kv&(k) = Vo+ —2Nh(&a')
2

with

(2. 2)

(~") -=——~ ~"(k)=1
3N, (2. 3)

for a lattice of N particles. We will be interested
specifically only in the fcc lattice. For the poten-
tials used here Vo is obtainable from published
tables' or by simple computation.

The second term, or zero-point energy, can be
calculated by expressing the first moment (&u) in
terms of the even moments of the lattice vibration
spectrum. As shown below (2. 14) the even mo-
ments are obtained from the trace of various powers
of the dynamical matrix. For a given potential the
even moments may be evaluated numerically by a
method due to Isenberg. ' In fact this scheme will
be used at only a few densities to show that the
simpler Domb-Salter approximation (explained
below) gives accurate results for the zero-point
energy (although the full scheme can be used
routinely with slightly more effort).

From the identity

In the HA the Helmhotz free energy for the lattice
ls

E= Vo+ —E N&u&(k)+ —Z ln(1 —e ~""J+')1 1

(2. 1)

where Vo is the potential energy for the rigid lat-
tice. At T = 0 this reduces to
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(u, (k) = (uo[ 1 —(u,'(k)'/(uo]'i'

where

(2. 4)

(2. 5)

inverse first moment. In the same way as for the
first moment we may write

we have

With the notation

(2.8)

(2. 7)

so

.,)
1 ~( „-—, J(2r)

0 & +O
(2.20)

00 1 )

((u) = Z (uj(k) = (u() Q ( —1)"SN, j '„., r) (uo"

(2. 8)
The g(2r) can be written in terms of the even mo-
ments using (2, 7) with (2. 5). The parameter (uo

is to be chosen for rapid convergence.
The (uj(k) are, of course, eigenfre(luencies of

the dynamical matrix D:

2
&u'(l)) = — g ( —1)" ',„.(2. 21)

2~(uo

III. DOMB AND SALTER APPROXIMATION

((ur) =3(u" /(3 +r) (S. 1)

In the case of a Debye spectrum the spectrum
moments are given by the relation

«««'(k)8(. )
= 0 tk)e(.), j = 1,2, 3;

(2. 9)

Using this expression, the zero-point energy per
particle for the Debye crystal is

(k) g 4'.a(1),-(f *, (2. 10)
h&(u) = s h(uu (S. 2)

a2
4 o(ll —1'i)=42„()(ll')=

( ) (,)
. (2. 11)

The total potential energy of the lattice is V and

u, (l) denotes the particle displacements from
equilibrium. From the completeness relation

and (2. 9) the second moment may be expressed as

SN((u ) =Z, Tr D (k) (2. 13)

From this equation and the definition of the dy-
namical matrix (2. 10) the even moments may also
be expressed in terms of the force constants. In
particular, for the second moment

Multiplying (2. 9) by the dynamical matrix the re-
quired number of times and using the completeness
relation gives the general expression

SN((u'") =Q, Tr D "(k) (2. 14)

g (
)„-,' J(2r) 3

(u r(ek)) 4
(3. 5)

This sum is hereafter referred to as the Domb-
Salter factor. Similarly we might hope to approxi-
mate the relation

(S.8)

derived from the Debye spectrum by

Domb and Salter suggest as a better approximation
to the zero-point energy replacing (uu in (3.2) by

(uu(~) as determined from the relation

(u', ( )=&&~')

and &(u ) is determined exactly from (2. 15). With

(uo=(uu(~) in the exact relation (2. 8), the zero-
point energy may be written

1""=-'N(u (~) Z ( —1)" ' (3 4)D y (uar(80)

If the Domb-Salter approximation were exact, we

would have

&~') =(1/3~)P. 4..(0) .

Starting with the expression

(2. 15)
&~ ') =3(u&'( ) .

From (2. 20) this is true if

(S. 7)

( o(f)) g &
o (l))

5 g cotho pKRj(k)
2NM, (u& (k) g ( )„——,

' J(2r) 3
r (u'"(~) 2

(3.8)

(2. 18)

(2. 17)(u'(l)) - Z as T-0
2NM o (uj k

At T =0 the square displacement is related to the

This sum will be called the squared displacement
factor.

The first seven even moments for an fcc lattice
with interactions between three nearest-neighbor
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particles
cp

mole
mole He

TABLE I. Domb-Salter and displacement factors. The sums representing these factors were truncated after the sev-
enth even moment. Examination of the size of successive terms indicates that this truncation may cause an error of
roughly + 0. 002 for the Domb-Salter factor and +0. 02 for the displacement factor. The moments involved were evalu-
ated with the assumption of interactions with three nearest-neighbor shells.

Lennard-Jones
potential

Domb- Displace-
Salter ment
factor factor

0. 740
0. 740
0. 740
0. 740
0. 741
0. 741
0. 742
0. 744
0. 748

1.47
l. 47
l. 47
1.47
1.47
1.46
1.46
1.45
1.43

ll. 66
5.49
4. 0
3.0
2. 31
1.82
1.46
l. 185
0. 98

l. 16
0. 545
0.398
0.299
0.229
0. 181
0. 145
0. 118
0. 097

0. 86
l. 84
2. 51
3.35
4. 37
5. 52
6. 90
8. 49

10.3

0. 748
0.352
0.257
0. 193
0. 148
0. 117
0. 094
0. 076
0. 063

1.34
2. 85
3.90
5. 19
6. 76
8. 56

10.7
13.15
15.9

shells were evaluated at several different densities
by the method of Isenberg for the Lennard-Jones
and Buckingham potentials used. Using these mo-
ments in (3. 5) and (3.8), the accuracy of these
approximations is shown (Tables I-VI).

IV. POTENTIALS AND FORCE CONSTANTS

to determine (u& ), this allows a partial check to be
made on the computations of the even moments
by the Isenberg method. For the Buckingham
potential

6
@g„(&)=. . . , —expn(l -~, )

The potentials used here are the Lennard-
Jones 6-12 potential

V(~) =4e [(o/~)" (o/r)']— (4. 1)

with a=36. 7'K and 0=2. 958 A for H» and
&=10.22'K and cr=2. 556 A for He and He . ' For
H~ the calculations were repeated with the Bucking-
ham exp-6 potential

«s(0 I &

)
1 8x, (l)xo(l)

where all distances in units of r; the nearest-
neighbor distance is substantially larger than r ~
at all densities considered.

V. EQUATION OF STATE IN DOMB-SALTER

APPROXIMATION

where"

The data in Table I shows that the Domb-Salter
approximation for the zero-point energy holds over

n =14.9, =3.339 A,

c = 38.02 'K, r ~ = 0. 7864 A

The force constants for a crystal characterized by
these potentials are easily derived. For the
Lennard-Jones case

24m 28 8
~ (l) = ~ x (l)x~(l)

l& rs

TABLE II. For the density range shown the maximum
error in using the Domb-Salter approximation is less
than 1.5' for the Lennard-Jones potential and less than
3.5lo for the Buckingham potential. The results for the
Lennard-Jones apply for any crystal with the density in
units of particles /0 since the potential strength and par-
ticle mass enter as a scaling factor for the frequencies
tsee Eq. (4.3)t and cancel from Eq. (3.5) and (3. 8).
The same is not true for the Buckingham potential since
the parameter & also appears.

4 3

where all distances are in units Of cr,

c' 8(0) =-Z c', p(l) (4 4)

Since the sums in 4 „(0)are tabulated for the
I ennard-Jones potential and may be used in (2. 15)

Domb-Salter
factor

0. 725
0.733
0.739
0.743
0. 754

Displacement
factor

1.54
1, 51
1.48
1,46
1.40

I

p(mole/cm3)

0. 748
0.324
0. 134
0. 081
0. 053
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P(E, A, V(=—(4(2S —S )

(77$' —10S )
+ (2 ) ~

(4 4$14 $2)1/2 &i (5 ~ 1 )

where V is the volume per particle (or molecule
for H, ). The deBoer parameter

a = 8/(Me)" 2 (5.2)

and

the density range considered with an error of less
than 3. 5% for both potentials. We shall calculate
the equation of state using this approximation as it
allows a simple form in the case of both potentials.

For the Lennard- Jones potential

+ expcyS3 —$6 (5. 4)

All distances in (5. 4) and (5. 5) are in units of 1'

and e, = e/(1 —8/n),

The nearest-neighbor distance d is in o. units. The
form (5.1) follows easily from using Domb-Salter
approximationfor the zero-point energy r(3. 2) and
(3.3)] with the second moment determined from
(2. 15) and (4.4). Differentiating with respect to
the volume gives (5. 1).

With the Buckingham potential

5 8'
exp n((2 S' —2S' —2o.'$2) —40S

V 8 (Me, )' '~ [~2(expn(o. S' —2S') —5$')]

S" = Q1 (1/r", ) (2' in units of o )

For the fcc lattice

(5.3)
VI. DISCUSSION

(5. 5)

S 14 4539211/d Se 12 8Ql 9372/ds

$12 = 12. 131880 2/d', $'4 = 12.Q58 992 0/d

The energy and pressure calculated in the Domb-
Salter approximation (for an fcc crystal with
masses and potential parameters appropriate to

TABLE III. Domb-Salter approximation for H2 (Lennard-Jones potential). p is the density and d is the nearest-neighbor
distance.

p
(mole/cm3)

0.2023
0. 1902
O. 1789
0. 1686
0. 1590
0. 1502
0. 1420
0. 1344
0. 1273
0. 1207
0. 1145
0, 1088
0. 1034
0. 0984
0. 0937
0.0893
0. 0852
0.0813
0. 0777
0.0742
0. 0710
0. 0679
0. 0651
0.0624
0. 0598
0. 0574
0. 0551
0.0529
0, 0508
0. 0489
0. 0470
0. 0452

0, 2266E 01
O. 2313K 01
0.2360K 01
0, 2408K 01
0.2455K 01
0.2502K 01
0.2550E 01
0. 2597K 01
0.2644K 01
0.2692K 01
0.2739K 01
0.2786K 01
0, 2834E 01
0.2881E 01
0.2928K 01
0.2976K 01
0.3023K 01
0.3070K 01
O. 3118K 01
0.3165E 01
0, 3212E 01
0.3260K 01
0.3307K 01
0.3854K Ol

0. 3402K 01
0.3449K 01
0.3496E 01
0.3544E 01
0. 3591K 01
0, 3638K 01
0.3686K 01
0.3733E 01

Zero-point
energy

(K)

0.4284K 04
0.3651K 04
0.3156K 04
0.2735K 04
0.2376E 04
0.2068K 04
0. 1803E 04
0. 1575K 04
0. 1378E 04
0. 1208K 04
O. 1059K 04
0.9305E 03
0. 8181E 03
0. 7198E 03
0.6336E 03
0. 5578K 03
0.4912E 03
0.4323K 03
0.3803K 08
0.3341K 03
0.2931E 03
0.2565E 03
0.2237E 03
0. 1944K 03
0.1679K 03
0. 1438K 03
0. 1219E 03
0.1016E 03
0, 8247E 02
0.6397K 02
0.4490K 02
0.2096E 02

Static
potential

energy ('K)

0. 1657K 05
0. 1239K 05
0.9245K 04
0.6876K 04
O. 5086K 04
0.3731K 04
0, 2795E 04
0. 1927K 04
0. 1338E 04
0. 8931K 03
0.5575K 03
0.3056K 03
0. 1178K 03

—0.2102K 02
—0, 1222K 03
-0.1947E 03
—0.2452K 03
-0.2790K 03
—0.3001K 03
—0.3116K 03
—0, 3158E 08
—0.3148K 03
—0.3098K 08
—0.3020E 03
—0.2922K 03
—0.2812E 03
—0.2693 E 03
—0.2570K 03
—0.2445K 03
—0.2321K 03
-0.2199E 03
—0.2081K 03

Total
energy ( K)

0.2080K 05
0. 1604K 05
0. 1240K 04
0, 9611K 04
0. 7462K 04
0.5799K 04
0.4508E 04
0.3502E 04
0.2716E 04
0.2101K 04
0. 1617K 04
O. 1236K 04
0.9358K 03
0.6987E 03
0.5113K 03
0.3631E 03
0.2459E 03
0.1533E 03
0.8018E 02

0, 2255K 02
—0.2276K 02
—0. 5828K 02
—0. 8602K 02
—O. 1076K 03
—O. 1244K 03
-0.1373E 03
-0.1474K 03
—0. 1554K 03
—0. 1621K 03
-O. 1681E 03
—O. 1750K 03
—0. 1871K 03

Pressure
{bar)

0. 1459E 07
0. 1066K 07
0.7837K 06
0.5791K 06
0.4300K 06
0.3208K 06
0.2403K 06
0. 1808K 06
0. 1364E 06
0. 1033K 06
0.7848K 05
0, 5976K 05
0.4560K 05
0.8485E 05
0.2667K 05
0.2043E 05
0, 1565K 05
0.1198E 05
0.9168K 05
0.7003E 04
0.5838K 04
0.4056K 04
0.3072K 04
0.2319E 04
0. 1747K 04
0.1318K 04
0. 1004K 04
O. 7876K 03
0.6621K 03
0.6424K 03
0. 8170E 03
0.2062K 04
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Ha, He, and He') are compared with results of
Monte Carlo calculations using a trial Jastrow
wave function and with available experimental data.
For Hz comparison is made with a cluster-expan-
sion treatment.

For a Jastrow wave function of the form

(6. 1)
f (r) e-&&l&&&&&lr& &t&(r ) —e &&&~&&&~&-a&&

where the B& (f = 1, . . . , N) are the lattice sites and

A and B variational parameters, configurational
averages of the type,

(6. 2)

where the expectation value is computed with (6. 1)
for particular values of A and I3 at a density p, may
be scaled to different densities. If

S=(p'/p)"',
A'=AS

B' = B/S

then (1/r") „.»... = S"(1/r")„e, S. ince the energy
computed with (6. 1) is determined by (1/r ),
(1/r ), and (1/r' ) for a Lennard-Jones potential
this result is sufficient for scaling the energy to
new A'B'p'. In this w3y the energy minimum at
a new density may be searched for among the
(A'B') values without recomputing the configura-
tional averages (6. 2).

TABLE IV. Domb-Salter approximation for H2 (Buckingham potential). p is the density and d is the nearest neighbor
distance.

P
(mole/cm3)

0.290
0, 271
0.253
0.237
0.222
0.208
0. 195
0. 184
0.173
0. 163
0. 154
0.146
0. 138
0. 130
0. 124
0. 117
0. 111
0. 106
0.101
0. 096
0. 091
0.087
0, 083
0. 079
0. 076
O. 072
0. 069
0. 066
0. 064
0. 061
O. 059
0. 056
0. 054
0. 052
0. 050
0. 048
0. 046
0. 044

0, 2007E 01
0.2054K 01
0.2101K 01
0.2148K 01
0.2196K 01
0.2243K 01
0.2290E 01
0.2337K 01
0.2384E 01
0.2432K 01
0.2479K 01
0. 2526K 01
0.2573K 01
0, 2621K 01
0.2668K 01
0.2715K 01
0, 2762K 01
0.2809K 01
0.2857K 01
0.2904K 01
0.2951E 01
0.2998K 01
0. 3045K 01
0.3093E 01
0.3140E 01
0.8187K Ol
0.8234K 01
0.3282K 01
0.3329K 01
0.8376K 01
0.3423K 01
0.3470E 01
0.3518K 01
0.3565K 01
0.3612E 01
0.3659K 01
0.8707E 01
0.3754K 01

Zero-point
energy

('K)

0.4342K 04
0.3941K 04
0.3576K 04
0.3244K 04
0.2941K 04
0.2666K 04
0.2416E 04
0, 2188K 04
0, 1981K 04
0. 1793K 04
0. 1622K 04
0. 1467K 04
0. 1326E 04
0. 1198K 04
0. 1081E 04
0, 9754E 93
0. 8794E 03
0. 7922K 03
0. 7130E 03
0.6411K 03
0.5758K 03
0.5165K 03
0.4626K 03
0.4136K 03
0.3690K 03
0.3285K 03
0.2916K 03
0.2579K 03
0.2272K 03
0. 1991E 03
0. 1733K 08
0. 1495E 03
0.1274E 03
0. 1068K 03
0. 8712E 02
0.6789K 02
0.4794K 02
0.2288E 02

Static
potential

energy ( K)

0, 3677K 05
0, 2962E 05
0.2380K 05
0. 1909K 05
0. 1526K 05
0, 1216K 05
0.9648K 04
0. 7619K 04
0, 5982 E 04
0.4663K 04
0.3603K 04
0.2753 E 04
0.2074E 04
0, 1532K 04
0, 1102K 04
0.7619E 93
0.4948K 03
0, 2864E 08
0, 1250K 03
0. 1427E 01

—0.9196K 02
—0. 1613E 03
—0.2115K 03
—0, 2467K 03
—0.2700K 03
—0.2840K 03
—0.2909K 03
—0, 2923K 03
—0.2896K 03
—0.2838K 03
-W. 2757K 03
—0.2661K 03
—0.2554K 03
—0.2441K 30
—0.2325K 03
—0.2208E 03
—0, 2091E 02
—0. 1978K 03

Total
energy K)

0.4111K 05
0. 3856K 05
0. 2788K 05
0. 2283E 05
0. 1820E 05
G. 1482K 05
0. 1206E 05
0.9807K 04
0. 7963K 04
0. 6457K 04
0. 5226E 04
0.4220E 04
0. 3399K 04
0. 2729E 04
0.2183E 04
0, 1787K 04
0. 1374E 04
0.1079K 04
0. 8381K 03
0.6426K 03
0.4839K 08
0.3552K 03
0. 2510K 08
0. 1669E 03
0. 9903K 02
0. 4444K 02
0.6292 E 00
0.3443E 02
0. 6243E 02
0. 8473K 02
O. 1025K 08
0. 1166K 03
0. 1280K 03
0. 1374K 08
0. 1454K 08
0. 1529K 03
0. 1612K 08
0. 1749K 03

Pressure
(bar)

0.2855E 07
0. 2229K 07
0„1741K 07
0. 1066K 07
0. 1066E 07
0. 8352K 06
0. 6549K 06
0. 5139K 06
0.4035K 06
0. 3170K 06
0.2492K 06
0. 1959E 06
0. 1514K 06
O. 1213K 08
0. 9544K 05
0, 7511K 05
0.5911K 05
0.4651K 05
0.3658K 05
0.2875K 05
0.2259K 05
0. 1772K 05
0. 1389K 05
0. 1087K 05
0. 8497E 04
0. 6627K 04
O. 5157K 04
0.4003K 04
0.3102E 04
0.2400E 04
0. 1858E 04
O. 1445E 04
0. 1140E 04
0. 9240K 03
0. 8004K 08
0. 7783K 08
0. 9568K 03
0. 2187E 04
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This technique was used to find minimum en-
ergies for He' and He using configurational aver-
ages computed for H2 (Ref. 2). The configurational
averages used for scaling were computed by the
Monte Carlo technique with relatively short runs
(less than 400 moves per particle for a 108-particle
system) and the mesh of A. , B values available for
scaling were not of a uniform density in the A-B
plane, thus making location of the energy minimum
sometimes slightly imprecise. The agreement
between the energy determined in the Domb-
Salter approximation and by Monte Carlo is none-
theless close for all three crystals (Figs. 1-8).
The energy differences between the Monte Carlo
and Domb-Salter energy curves for all three crys-
tals can be seen to be much smaller than the
zero-point energy, showing that the agreement is
not solely due to the dominance of the static poten-
tial-energy contribution to the total energy at
large densities.

As shown in Fig. 4, both the Monte Carlo cal-
culations and the Domb-Salter approximation show

a rapidly decreasing ratio of kinetic to total energy
as the density increases. Numerically, the two
calculations differ on this ratio. It is not possible
to regard this discrepancy as significant. The
kinetic energy is not a stationary quantity with re-
spect to the variational parameters in an approxi-
mate wave function and values of A and 8 giving
similar values for the total energy may give vary-
ing ratios of kinetic to total energy. Also a trial
wave function such as (6. 1) may give accurate
results for the total energy while the kinetic and
potential energy separately are considerably in
error. Although the exact cause of the discrepancy
at higher densities shown in Fig. 4 is not clear,
it seemed worth presenting for completeness.

The ratio of rms displacement to nearest-neigh-
bor distance (Fig. 5) was determined from (2. 21)
for six densities using the first seven even mo-
ments of the vibrational spectrum, although as
mentioned earlier a Domb-Salter-type approxima-
tion allows an explicit form for this ratio as a func-
tion of nearest-neighbor distance to be written.

TABLE V. Domb-Salter approximation for He (Lennard-Jones potential).

V Molar volume
(ml)

3.196
3.401
8.614
3.835
4. 066
4.306
4. 555
4. 813
5. 081
5.359
5.646
5.944
6, 252
6.571
6.900
7.240
7.591
V. 953
8.327
8.712
9.108
9.517
9.937

10.370
10.815
11~ 273
11.743
12.227
12.723
13.233
13.756
14.293

Nearest-
neighbor
distance (A)

0. 1958K 01
0, 1999K Ol

0.2040E 01
0.2081K 01
0.2121K 01
0.2162K 01
0.2203K 01
0, 2244K 01
0.2285K 01
0.2326K 01
O. 2367K 01
0.2408K 01
0.2449K 01
0.2490K 01
0.2530K 01
0.2571K 01
0.2612K 01
0.2653K 01
0.2694K 01
0.2735K 01
0.2776K 01
0.2817K 01
0, 2858K Ol

0.2899E 01
0.2989K 01
0.2980K 01
0.3021K 01
0, 3062K 01
0.3103K 01
0.3144E 01
0.3185K 01
0.3226K 01

Zero-point
energy

('jK)

0.2114K 04
0. 1823E 04
0. 1576K 04
0. 1366K 04
0. 1186E 04
0. 1032K 04
0, 9003E 03
0. 7865K 03
0. 6881E 03
0.6030K 03
0, 5290K 03
0.4646E 03
0.4085E 03
0.3594K 03
0.3164E 03
0, 2785K 03
0.2452E 03
0.2159K 03
0. 1899K 03
O. 1668K 03
0. 1463K 08
0. 1281K 03
0. 1117K 03
0. 9705K 02
0. 8382K 02
0. 7182K 02
0.6085K 02
0. 5071K 02
0.4118K 02

0.3194K 02

0.2242E 02
0. 1047K 02

Static
potential

energy ('K)

0.4614K 04
0.3450K 04
0.2574K 04
0. 1915K 04
0. 1416K 04
0. 1039E 04
0. 7533K 03
0. 5367K 03
0.3727K 03
0.2487K 03
0. 1552K 03
0. 8510K 02
0.3279K 02

-0.5855E 01
—0.3404K 02
—0.5422K 02
—0.6829E 02
—0. 7770E 02
—0. 8856K 02
—0. 8676K 02
—0. 8795K 02
—O. 8765K 02
—0. 8626K 02
—0. 8409E 02
—0. 8138K 02
—0. 7880K 02
—0.7499K 02
—0. 7156K 02
—0.6809K 02
—0. 6464K 02
—0. 6124K 02
—0. 5794K 02

Total
(K)

0.6728K 04
0.5273K 04
0.4151K 04
0.3281K 04
0.2603K 04
0.2071K 04
0. 1654K 04
O. 1323K 04
0. 1061K 04
0.8517K 03
0.6843K 03
0.5497K 03
0.4413K 03
0.8535K 03
0.2828K 03
0.2243K 08
0. 1770K 03
0.1382K 03
0.1063K 08
0.8007K 02
0.5839K 02
0.4042K 02
0.2546K 02
0.1296K 02
0.2444 E 01

-0, 6476E 01
—0. 1414K 02
—0.2085K 02
—0.2691K 02
—0, 3270K 02
—0.3882K 02
—0.4747E 02

Pressure
(bar)

0.6877K 06
0.5074K 06
0.3768K 06
0.2815K 06
0.2116K 06
0. 1599K 06
0. 1215K 06
0. 9280K 05
0. 7122K 05
O. 5492K 05
0, 4254K 05
0, 3309K 05
0.2584K 05
0.2026K 05
O. 1594K 05
0. 1259K 05
0. 9979E 04
0. 7984K 04
0. 6330K 04
0, 5067K 04
O. 4070K 04
0. 3288K 04
0.2660K 04
0, 2167K 04
0. 1780K 04

' 0. 1477K 04
0. 1245K 04
0. 1076K 04
0. 9677K 08
0. 9855K 03
O. 1050K 04
0. 1990K 04
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FIG. 1. Comparison of two theoretical state equations
based on the Lennard-Jones potential with Stewart's data
for H2 (T =O'K).

In the case of Ha for densities corresponding to
pressures above 10' bar, this ratio is roughly 10/q
or less, which also suggests the validity of the
usual Taylor-series expansion of the potential for
these densities.

The equation of state for H~ in the Domb-Salter
approximation for a Lennard-Jones potential and
from Ref. 2 is compared to experimental data'
in Fig. 1. A comparison based on the Buckingham
potential for H~ of the equation of state calculated
in the Domb-Baiter approximation and by cluster-
expansion methods' is shown in Fig. 6. Again the
results of the two methods agree closely for pres-
sures above 2000 bar. The calculated equations
of state for the two potentials agree closely, but
both give pressures larger than the experimental
values; at the highest measured pressure this dis-
crepancy is over 50%. The equation of state at
X=0 K calculated from Eq. (5. 1) for D, (Fig. l)
shows a similar discrepancy with the experimental
data of Ref. 12.

For He' and He the energies given by the Domb-
Salter approximation and by Monte Carlo agree
closely for pressures above 20000 bar. It is ex-
pected that for solid helium one must go to higher
pressures than for hydrogen before the classical
behavior is found, due to the weaker binding and

e
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FIG. 2. Comparison of theoretical energy-vs-volume
curves based on the Lennard-Jones potential for He
T =0'K.

FIG. 3. Comparison of theoretical energy-vs-volume
curves based on the Lennard-Jones potential for He at
T =O'K.
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thus increased anharmonicity of He. As expected
on the basis of the masses the He pressure is
higher than that of He at the same volume (Fig.

8). At a molar volume of 6. 5 ml the zero-point
energy (in the Domb-Salter approximation) and the
static potential energy are nearly equal and the He

TABLE VI. Domb-Salter approximation for He (Lennard- Jones potential).

Nearest-
neighbor
distance {A)

0. 1958K 01
0. 1999E 01
0.2040K 01
0.2081K 01
0.2121E 01
0.2162K 01
0.2203K 01
0.2244E 01
0.2285E 01
0.2326E 01
0.2367K 01
0.2408K 01
0.2449K 01
0.2490K 01
0.2530E 01
0.2571E 01
0.2612E 01
0.2653K 01
0.2694E 01
0.2735K 01
0.2776E 01
0.2817E 01
0.2858E 01
0.2899K 01
0.2939K 01
0.2980K 01
0.3021K 01
0.3062 E 01
0.3103K 01
0.3144K 01
0.3185E 01
0.3226K 01

Molar volume
(ml)

3.196
3.401
3.614
3.835
4. 066
4.306
4. 555
4. 813
5.081
5.359
5.646
5, 944
6.252
6.571
6. 900
7.240
7.591
7. 953
8.327
8. 712
9.108
9.517
9.937

10.370
10.815
11.273
11.743
12.227
12.723
11.233
13.756
14.293

Zero-point
energy
(K)

0. 1835E 04
0. 1583E 04
0. 1368E 04
0. 1186K 04
0, 1030K 04
0. 8962K 03
0. 7815K 03
0.6827E 03
0.5973K 03
0, 5234K 03
0.4592E 03
0.4033E 03
0. 3546K 03
0.3120E 03
0.2746K 03
0.2418K 02
0.2129K 03
0. 1874K 03
0. 1648K 03
0. 1448K 03
0. 1270E 03
0. 1112K 03
0. 9698K 02
0. 8425K 02
0. 7276K 02
0. 6234E 02
0. 5282K 02
0.4402K 02
0.3574K 02
0, 2773K 02
0. 1946K 02
0.9086E 01

Static
potential

energy ('K)

0. 4614K 04
0.3450E 04
0.2574E 04
0. 1915E 04
0. 1416K 04
0. 1039E 04
0. 7533E 03
0.5367E 03
0.3727E 03
0.2487E 03
0. 1552E 03
0. 8510K 02
0.3279K 02

—0.5855K 01
—0.3404K 02
—0.5422E 02
—0.6829E 02
—0. 7770K 02
—0. 8356K 03
—0. 8676K 02
—0. 8795E 02
—0.8765E 02
—0. 8626E 02
—0. 8409K 02
—0. 8138K 02
—0. 7830E 02
—0, 7499K 02
-0.7156E 02
—0. 6809E 02
—0.6464E 02
—0.6124E 02
—0, 5794E 02

Total
energy ('K)

0.6449K 04
0.5032K 04
0.3943E 04
0.3100K 04
0.2446K 04
0. 1935K 04
0, 1535K 04
0. 1219E 04
0.9700E 03
0.7721E 03
0.6145K 03
0.4884E 03
0.3874K 03
0.3061K 03
0.2406K 03
0. 1876E 03
0, 1446K 03
0. 1097K 03
0.8126K 02
0.5806K 02
0.3908K 02
0.2352 E 02
0. 1072K 02
0. 1535K 00

—0. 8616E 01
—0. 1595K 02
—0.2217E 02
—0.2754K 02
—0.3235K 02
—0.3691K 02
—0.4178E 02
—0.4885K 02

Pressure
{bar)

0.6704K 06
0.4933K 06
0.3653K 06
0. 2721K 06
0.2038K 06
0. 1535E 06
0. 1162K 06
0. 8839K 05
0. 6754E 05
0.5184K 05
0. 3995K 05
0, 3091K 05
0.2400K 05
0. 1870K 05
0. 1462K 05
0. 1147E 05
0. 9017E 04
0. 7111K 04
0. 5622K 04
0.4457K 04
0.3543K 04
0.2826K 04
0, 2262K 04
0. 1820K 04
0. 1474K 04
0. 1206E 04
0. 1003K 04
0. 8561K 03
0. 7642E 03
0. 7391K 03
0. 8419K 03
0. 1662K 04
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FIG. 5. Ratio of RMS displace-
ment to nearest-neighbor distance.
Calculated in harmonic approxima-
tion for H2 with Lennard-Jones po-
tential (T = 0'K).
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3.0

pressure is roughly 10% larger than the He' pres-
sure. As the molar volume decreases the static
potential energy dominates and the He and He

pressures converge, differing by about 3% at
2x10 bar. Experimental data of Dugdale and

Simon, ' Dugdale and Franck, ' and of Stewart are
also given for comparison in Fig. 8. Stewart's
data was taken at 4 K; however, values of the ther-
mal-expansion coefficient and compressibility for
molar volumes above 10.5 ml in Dugdale and Simon
show the correction to the pressure at T = 0 'K as
quite undetectable on the scale on Fig. 8 in this
region.

In the case of Ne~o (Fig. 9), the pressure from
Eq. (5. 1) is compared with results of a Monte Carlo
calculation" where both use a Lennard- Jones poten-
tial' with o = 2. 786 A and g = 36. 76 'K. Agreement
is essentially exact within the fluctuations of the
Monte Carlo results. The experimental results
have a similar form with a shift in the molar vol-
ume scale of roughly 0. 5 cm . Although no sys-
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FIG. 6. Comparison of the equation of state for a Buck-
ingham potential calculated in the Domb-Salter approxima-
tion and by cluster expansion for H2 (T = O'K).
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FIG. 7. Equation of state for D2 at T =O'K.
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VII. SUMMARY

In this paper several criteria for the validity of
the harmonic approximation at high density have
been given (i) decreasing ratio of rms displace-
ment to nearest-neighbor distance; (ii) decreasing
ratio of zero-point to total energy; (iii) comparison
with experiment and Monte Carlo calculations.

tematic attempt to find parameters to fit the ex-
perimental results was made, we also show pres-
sures calculated from 5. 1 for a slightly larger
value of 0.

In the Domb-Salter approximation for pressures
above 10' bar, the nearest-neighbor distance in
terms of o units (the Lennard-Jones distance pa-
rameter) is less for He than for H~. This is be-
cause of the large compressibility of He and means
that for pressures above 10' bar a potential accurate
at small distances will be as much or more impor-
tant to a correct calculation of the state equation
of He than is the case for H~. Noting this and in
view of the substantial agreement between theory
and experiment for He, the discrepancies between
theory and experiment for Ha (Fig. 1) may not be
due solely to the inadequacy of a Lennard-Jones
potential in representing the core region. The
agreement between the calculated state equations
for Ha based on the Lennard-Jones and Buckingham
potential further suggests that additional experi-
mental data for Ha at even moderately high pres-
sures would be useful.
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FIG. 9. Equation of state for Ne at &=0 K.

The density at which the harmonic approximation
should be accurate varies according to which cri-
terion is applied with (iii) giving the lowest density.
Lastly using results of Maradudin and Flinn' '
for a nearest-neighbor-model fcc crystal, it is
possible to estimate the contribution to the energy
and pressure of the lowest-order cubic and quartic
terms in the conventional perturbation expansion.
These terms give significant (10% or more) correc-
tions to the harmonic state equations of D~, H~,
He, and He below 5x10 bar and to the ground-
state energies of H~, D~, and He, He below
7x10 and 15x10 bar, respectively. The present
agreement with experiment and Monte Carlo cal-
culations below these pressures would not be
maintained if these corrections were added. In
view of this it may be conjectured that an exact
rather than lowest-order perturbation theoretic
calculation would restore this agreement and show
the harmonic approximation to be accurate, as
suggested by criterion (iii), at densities only
slightly above those where instability is indicated.
We stress that this is conjecture. The calculations
presented show that in the worst case a harmonic
model would be adequate for the solids considered
at pressures well below those of interest in astro-
physical calculations or molecular solid to metallic
phase transitions.
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Lastly we comment on the implication of these
calculations for various quantum crystal calcula-
tions. While it is perfectly clear that at low pres-
sure (see Figs. 1, 6 and 8) the classical method
breaks down, and that quantum crystal methods
are necessary, it is also apparent that at high den-

sity the atom motion is dominated by the single site
potential rather than by short-range correlation
effects. Our results, together with those of Chell, ~9

lead us to differ with Horner20; we conclude that
short-range correlations at high density may be

adequately accounted for in the harmonic approxima-
tion.
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