
4170 J. A. KH UMHANSI. AND S. Y. WU

263 (1968).
~J. W. Stewart, J. Phys. Chem. Solids 1, 146 (1956).
J. deBoer and B. S. Blaisse, Physica 14, 149 (1948).

4K. F. Herzfeld and M. Goeppert-Mayer, Phys. Rev.
46, 995 (1934).

'J. deBoer, in Progress in Lose Temperature Physics
II (North-Holland, Amsterdam, 1957).

F. W. DeWette and B. R. A. Nijboer, Phys. Letters
18, 19 (1965).

'N. Bernades, Phys. Rev. 112, 1534 (1958).
"N. Bernades and H. Primakoff, Phys. Rev. 119, 968

(1960).
~R. P. Hurst and J. M. H. Levelt, J. Chem. Phys. 34,

54 (1961).
J. M. H. Levelt and R. P. Hurst, J. Chem. Phys. 32,

96 (1960).
~ E. M. Saunders, Phys. Rev. 126, 1724 (1962).
L. H. Nosanow, Phys. Rev. Letters 13, 270 (1964).
W. J. Mullin, Phys. Rev. 134, A1249 (1964).
J. P. Hansen and D. Levesque, Phys. Rev. 165, 293

(1968).
'K. A. Brueckner and T. Frohberg, Progr. Theoret.

Phys. (Kyoto), Extra Suppl. , 383 (1965).
W. E. Massey and C. W. Woo, Phys. Rev. 169, 241

(1968).
~'L. Pauling, Phys. Rev. 36, 430 (1930).

~8A. Brooks Harris, Phys. Rev. B 1, 1881 (1970).
D. J. Thouless, The Quantum Mechanics of Many

Body Systems (Academic, New York, 1961).
20L. H. Nosanow and W. J. Mullin, Phys. Rev. Letters

14, 133 (1965).
2~J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,

molecular Theory of Gases and Liquids (Wiley, New York,
1954), pp. 1083-1092.

G. Van Kampen, Physica 27, 783 (1961).
23J. H. Hetherington, W. J. Mullin, and L. H. Nosanow,

Phys. Rev. 154, 175 (1967).
Hard-core models have been used for high-density

quantum gas calculations [see R. K. Cole, Jr. , Phys.
Rev. 155, 114 (1967)].

F. Iwamoto and M. Yamada, Progr. Theoret. Phys.
(Kyoto) 17, 543 (1957).

A. M. Michels, W. deGraaf, and C. A. ten Seldam, ,

Physica 26, 393 (1960).
'I. B. Srivastava and A. K. Barua, Indian J. Phys.

35, 320 (1961).
K. Tomita, Proc. Phys. Soc. (London) A68, 214 (1955)
T. Nakamura, Progr. Theoret. Phys. (Kyoto) 14, 135

(1955).
R: L. Mills and A. F. Schuch, Phys. Rev. Letters

15, 722 (1965).

PHYSICAL REVIEW B VOLUME 5, NUMBER 10 15 MAY 1972

Equation of State for Solid Hydrogen

Thomas Alexander Bruce
I aboratory of atomic and Solid State Physics, Cornell University, Ithaca, Nezo York 14850

(Received 24 May 1971)

An equation of state for solid hydrogen is obtained from variational calculations for pres-
sures up to 112 kbar. The Lennard-Jones potential is assumed and a brief investigation of
the Buckingham exp-6 potential is also made. It is suggested that for high densities, quan-
tum crystals may become harmonic and that Monte Carlo variational calculations for these
high-density regions may not be necessary.

I. INTRODUCTION

During the last several years there has been
a growing interest in the properties of solid hydro-
gen lga

The properties ot' the predicted high-density
metallic phase have been discussed in detail by
Ashcroft. ~ To predict the existence of this phase
requires an accurate equation of state for both the
molecular and metallic phases. This paper will
be concerned with the first of these phases; we
attempt a first refinement of the equation of state
for the molecular phase which should ultimately
enable a more precise prediction of the transition
pressure. We must at once point out that there is
considerable uncertainty in the intermolecular
potential and thus any highly refined calculations
are not very valuable at this time. Indeed the

only useful purpose such calculations can serve
at the present time is to remove some of the un-
certainty in the potential. It is for this reason that
we have limited our Monte Carlo calculations to
fairly small numbers of particles and intermediate-
length runs.

Krumhansl and Wu have used the cluster-expan-
sion method to do a variational calculation of the
equation of state of molecular hydrogen in the 0—20-
kbar range. However, Monte Carlo calculations
are more reliable because the trial wave functions
that may be used are not as limited as those which
can be used in the cluster method, and the con-
vergence of the cluster expansion is sometimes un-
certain.

In the present study, a trial wave function is
chosen, and the integrals necessary to calculate
the ground-state energy are evaluated by a Monte
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Carlo integration scheme. The method follows
closely the earlier calculations for solid helium by
Hansen and Levesque and solid neon by Hansen. '

II. FORMALISM

A. Hamiltonian

The major part of our work has been done using
the 6-12 Lennard- Jones potential:

V(r) = 4c [(o/r)" (o—/r)'] . (2. 1)

N

H= — Q V( + Q P(r(/)
$~1 i(f

where

(2. 2)

r) ry o

The Lennard-Jones potential is particularly con-
venient because the two terms of the potential
scale with the density. We have made extensive
use of this property throughout our work.

We have also made a brief investigation of the
modified Buckingham "exp-6" potential developed
by Srivastava and Barua~ and used by Krumhansl
and Wu:

We have used a reduced system of units so that in
this paper, unless otherwise stated, all distances
will be expressed in units of o, and all energies in
degrees Kelvin. The numerical values for E and 0
are determined from the experimental second virial
coefficients, and in this work we have taken a = 36. 7
'K and o = 2. 958 A. The Hamiltonian for N molecules
of mass m is then

c, (P )
e-((/ 2&A(r(-R( l

Here the R((i= 1 to N) are the coordinates of the
lattice sites and A controls the width of the Gaus-
sian.

For the two-particle correlation function we
chose

(2 4)

f(r) e-(1/2)u(~)

where

(2. 5)

The wave function is neither symmetric nor anti-
symmetric, but is convenient since, for a solid,
the particles are localized on lattice sites and are
thus distinguishable, for all practical considera-
tions.

In Monte Carlo calculations we are limited by
machine space and computation time to a small
number of particles. (Most of our calculations
have been done with an fcc lattice and 256 parti-
cles. ) It is desired that the calculations represent
the bulk properties of the solid so it is important
that the local environment of each particle be
similar to that of a particle in a bulk sample. We
do this by making the wave function periodic on the
boundaries of the cube. Each particle in the cube
(of side S) has an image particle at a distance of
+ S in the x, y, and z directions, and the distance
r&& between particle i and particle j is taken to be
the distance between particle i and the nearest
image of particle j.

For the single-particle localization wave function
C we have chosen a spherically symmetric Gaus-
sian centered on the lattice sites:

u(r) = (B/r)" (2. 6)

rmax

(2. 3)

(y =14.0, r =3.339 A,

& = 38.02 'K, r ~ = 0. 7864 A.

B. Trial Wave Function

The trial wave function is

(}'= II f(r(/)II @(r(),

where the 4 (r, ) are one-particle wave functions
centered on the lattice sites and f(r, /) is a spher-
ically symmetric two-body correlation function.

00

where & is the depth of the potential, r is the
position of the minimum, 0. is a parameter which
gives a measure of the steepness of the repulsive
part of the potential, and r ~ is the value of r for
which V(r) has a maximum. The parameters for
hydrogen have been determined by Srivastava et
al. v and are

'I. e parameter I3 determines the radius at which
the vair function "cuts off" and n determines the
sharI ress of the cutoff. Previous results ' have
shown that for variational calculations, the re-
sults are only slightly dependent on n for n between
4 and 5. In this work, n is taken to be 5 and A and
8 are our variational parameters.

So finally, our trial wave function is

t=expt: —l» lr(-«I'-k~ (&/r(/)'I (2 &)

This is the same wave function as used by Hansen
and Levesque4 in their calculations for solid helium
and by Hansen in his calculations for solid neon.

There are two basic approximations in our cal-
culations: (i) The intermolecular potential (in our
case the Lennard-Jones or Buckingham exp-6 po-
tential) is spherical and independent of the orienta-
tion of the H(, molecules, and (ii) the correlation
function f(r) is a two-body correlation function
and is also spherically symmetric. These approx-
imations require some justification. The spherical
symmetry assumed in both of these approximations



THOMAS ALEXANDER BRUCE

&CIHI ~)/«I ~) =- &»+&v) (2. 8)

where (T) and (V) are, respectively, the mean
kinetic and potential energies;

A. + 8 3» 3»
4m 4m;&) fg d r~ ~ ~ d r(((

) g fP' (Vr„)d'r, ~ ~ d'r„
fg'd'rs

(2. 9)

(2. 10)

As noted in Ref. 4, "Our quantum-mechanical

problem for the evaluation of the exyec tation value
of the energy in the state described by P is formal-
ly equivalent to the classical calculation of the
mean value of the Hamiltonian. . . in the canonical
ensemble for a fictitious system at the arbitrary
' temperature' T. Such classical calculations by
the Monte Carlo method have been introduced by
Metropolis and co-workers, ~ and by Wood and

Parker. "~~ The technical details for the calcula-
tion are laid out in the Wood and Parker paper.

We obtain the expectation values (T) and (V) by
first calculating ((o/r)6), ((o/r) ), and ((o/r)' ).
From (2. 9) we have

5h'a'
(T) =N A+ 2-4m, m

Since we are measuring all distances in units of o,
this becomes

(2. 12)

From (2. 10) we have

may at first seem rather absurd. A first guess of
the "shape" of the Ha molecule would normally be
that it looks something like a dumbbell. However,
calculations by Kolos and Roothaan have shown
that the deviation from sphericity for the H~ mol-
ecule is only —

8%%uo. (They have calculated (ra)

,

= 2. 5430a~~and (Sz —r)=0. 515Vao, i. e. , (P~~~
= 0. 84 A and (Sz )~~2= 0. 92 A. For a spherical
molecule, (r ) = (xa+ya+ z ) = (Sz ). ) It is this re-
sult which suggests that a spherical approximation
both to the potential and correlation function may
be a good semiapproximation.

We have used a correlation function containing
only two-body correlations since very little is
known at present about three- or more body cor-
relations. However, contributions from three- or
more body correlation are thought to be quite small,
and certainly appear to be so in the liquid and
solid phases of helium four. '

C. Expressions for Expectation Values

The energy expectation value is obtained using
(2. 2) and (2. V):

f$3(4e [(o/r) ' —(o/r) 6])dar, d r„
f(f d r&' d r„

(2. 13)

(2. 14)

We can obtain the ground-state virial pressure
from these same expectation values,

I'=p[-, (T)+16e ((o/r) ) —8t((o'/r)8) ] . (2. 1,5)

The pressure can also be obtained from the thermo-
dynamic expression

(2. 18)

The equality of the virial and thermodynamic pres-
sure only holds when the exact ground-state wave
function is used. We can therefore expect a dif-
ference between the pressures calculated using
(2. 15) and (2. 16). This difference will give us a
hint of how good an approximation our trial wave
function is.

Our calculations are carried out using N particles
located inside of a cube of side S. However in cal-
culating the expectation values ((o/r)6), ((o/r)~),
and ((o/r)"), we take into account only those par-
ticles which are separated by a distance r&~ —,'S.
This in effect changes our correlation function

y(r„) to

~-(1/3)u(r ) 'lg-2
f(rs) =

0 «)&a~

In order to correct for those particles which lie at
a distance greater than —,

' S from a particle which
is being used in calculating an average, but still
within the cube (i.e. , outside the "Monte Carlo
sphere") we add on contributions to (T) and (V)
from the lattice sites in this "corner point" region.
To perform this correction we used the same
method as Hansen and Levesque. These "corner"
corrections amount to about 3% of the total energy.

Now that we have an expression for (H) as a
function of A. and 8 we proceed as follows. Using
the Monte Carlo integration scheme we calculate
the ground-state energy (H) for a fixed density po

for several values of A. and B. We then find the
minimum of (H) as a function of A and H for this
density. This gives us a value of the ground-state
energy E which is an upper bound on the exact
ground-state energy. Then using the scaling for-
mula discussed in Sec. IIIA we can find the ground-
state energy for other densities pW po. We will then
have a curve for F- vs p from which we can obtain
the equation-of-state curves, E vs pressure I'.
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TABLE I. Results of the Monte Carlo runs which were used for the scaling.

4173

( (0/~)') ((0/r)'& |l (0/~)" &

0. 694 15
20
20
25

1.15
1.15
1.20
1.25

2. 142 78
2. 106 83
2. 05940
2. 02724

]..74070
l. 698 20
1.641 30
1.603 59

1.03143
0. 960393
0. 849 958
0. 788 619

77.7937
87. 0873
96. 1604

105.067

-163.146
—168.297
-177.547
—181.830

85. 3525
81.2102
81.3865
76. 7623 '

0. 90 30
30
30

1.15
1, 20
1.25

3.356 82
3.299 91
3.256 07

2. 873 71
2. 801 79
2. 746 74

2. 056 83
1.886 12
1.76149

139.543
155.719
174.869

—190.839
-207. 544
—219.404

51.2963
54. 8246
44. 5345

1.12 33
33
35
33
35
33
35
35
35
35
35

1.10
1.15
1.15
1.20
1, 20
1.25
1.25
1.30
l. 35
1.40
1.45

5. 15090
5. 07491
5. 059 58
4. 495 61
4. 98833
4. 943 27
4. 934 77
4. 88637
3.84741
4. 795 29
4. 76537

4. 72197
4, 619 13
4. 599 52
4. 513 13
4, 502 69
4. 443 57
4.431 68
4. 36747
4.31728
4.247 99
4.208 74

4. 702 33
4. 361 02
4. 31546
4. 03643
3, 99769
3.829 09
3.79129
3.140 19
3.489 91
3.289 11
3.186 56

170.420
193.305
196.842
219,631
223.351
251.267
254. 864
291.384
334. 043
381.389
437.452

65. 8510
—104.799
—109.236
—140. 808
—145, 427
—163.562
—167.863
—187.853
—199.281
-221.108
—231, 768

104.569
88, 5065
87. 6060
78. 8233
77. 9240
87. 7047
86. 9828

103.531
134.763
160.281
205. 684

III. CONFIGURATION SPACE INTEGRAL

Details of Calculation

Using the standard Monte Carlo integration
scheme, 4' it is possible to find a minimum in
(H) at any density we choose. The information
gained from such a search can be used to calculate
the energy for other densities by using a scaling
formula first developed by McMillan, and later
employed by Hansen and I evesque in their calcu-
lations for solid He. If p' 0 p and we define

S= ( p'/p)'~', a' =aS', B' = B/S,
then the scaling formula for the ground-state energy
1S

E(&', B', p') = &~)~,a„S'
+«(&(o/~)")~,s„S"-&(o/&)')~, s, pS'1 .

The virial pressure can be similarly scaled:

I'(&', B', p') = p'(3 (T)~,B,.S'

minimum, after scaling, up to a density of about
1.23 (equivalent to a pressure of about 10.9 kbar).
To go to higher densities there were two alterna-
tives; we could either do a new parameter search
at a density of about 1.35 and scale back down to
cover the region between 1.23 and 1.35 and up to
about 1.5, or we could make a few more runs at
p=1. 12 and use these to extend the range in den-
sity for which we could find a minimum in the en-
ergy. The first of these would not have been
satisfactory since by increasing the density we de-
crease the size of the "Monte Carlo sphere" in
which the averaging process is being done. To
compensate for this, we must increase the size of
the system —in this case we would have had to go
to 500 particles. To sample the configuration

TABLE II. After scaling; values of the parameters
A and 8 which give the minimum in (H }and their as-
sociated expectation values |',(0/r)6}, &'(o /y)7}, and
&(~/~)" &.

+4e[4((o/~)")„, ,S" 2((o/r)-')„, , S'j) . (3.3)

We started by doing a parameter search in A. and
B for p= 0. 694 molecules/o, the equilibrium den-
sity obtained by Krumhansl and Wu in their cluster-
expansion calculations. 3 A search was done for A
values ranging from 5 to 30 and 8 varying from 1.0
to 1.3. A new search was then made at p=0. 9,
and another at p= 1.12. Scaling was used to cover
the entire region between p=0. 694 and p=1. 12.

Our initial search at p=1. 12 provided enough
information so that we could still find an energy

0. 676
0. 77
0. 87
0. 97
1.07
1.17
1.27
1.37
1.47
1.57
l. 67
1.77
1.87

14.74
21.43
29.33
29. 98
33.95
36. 03
38. 06
40. 03
41.96
43. 84
45. 68
47, 49
49.26

1.160
1.159
1.163
1.154
1.218
1.183
1.199
1,216
1.279
l.251
1,225
1.245
1.222

&(fr/~~'&

2. 033 07
2, 535 15
3.136 76
3.863 59
4, 552 89
5.443 66
6.345 10
7.31125
8.260 64
9.422 76

10.661 3
11,902 5
13.284 5

1.637 17
2. 091 66
2, 655 15
3.376 10
4. 047 54
4.985 75
5, 942 03
6.988 80
8.012 14
9.342 02

10.789 8
12, 243 8
13, 919 0

0. 928514
1.288 02
1.796 00
2. 645 62
3.33021
4. 760 81
6.268 01
7. 030 17
9.76058

12.700 0
16.2582
19.876 6
24. 763 8

« / i'& &( /)"&
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space adequately for a 500-particle system would

have required a run of about 150000 configurations—
which would be both expensive and unwise con-
sidering the uncertainties in the intermolecular po-
tential.

The additional runs at p= 1.12 were done for A.

and B values which, when scaled to the higher den-
sities of p=1. 23 to 1.5, would be near the minimum
in (H). Once this was done it was possible to see
~n which direction these parameters were moving,
i

FIG. 3. Energy per particle (in 'K) vs volume
(in cms/mole).

and do a few more runs in order to follow the
minimum in (H) up to a density of p= 1.87 (and a
pressure of 112 kbar).

In order to calculate the thermodynamic pressure,
I'= p BE/sp, the energy-vs-density curve was fitted

2400 100
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dv
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FIG. 2. Kinetic, potential, and total energy per
molecule {in 'K) vs density (in molecules/0. 3). FIG. 4. Pressure vs volume (the equation of state).
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TABLE III. A short summary of results. P& is the virial pressure calculated by (2. 15) and P2 is the thermodynamic
pressure p dE/dp.

0.676
0. 77
0. 87
0, 97
l. 07
1.17
l.27
l. 37
l.47
l. 57
1.67
1.77
1.87

76. 4427
103,058
152.239
154. 842
226. 353
229. 950
277. 140
333.273
457, 195
477. 701
497. 776
593.518
615.667

—161.919
—183.078
-212.639
—178.792
—189.183
—100.240

11,340
112.067
220. 195
481. 109
821.614

1170.73
1685.163

—85. 4714
—80. 02
-60.40
-23.95

37. 17
129.71
265. 80
445. 34
677. 39
958. 81

1319.39
1764.25
2300. 83

Pg

-2. 0
331'.4

1 042
2 702
4 354
8 425

13 559
20 578
28302
41 934
60 091
80 907

110190

1.4
315.7

1 061
2 449
4 751
8 265

13319
20 300
29 708
42 252
58 991
81 516
11221

Volume (cm3/mole)

23, 08
20. 26
17.93
16.08
14.58
13.33
12.28
11.39
10.61
9.94
9, 34
8. 81
8.34

with a sixth-degree polynomial using a least-squares
fitting process. The agreements between the en-
ergies were determined by the Monte Carlo inte-
gration combined with scaling and those calculated
by the least-squares fitwere good to within a few
degrees kelvin (and especially good for the high-
density region where the deviation was less than
0. 5%). The agreement between the virial and
thermodynamic pressures was also good.

IV. NUMERICAL RESULTS

The results of our calculations are summarized
in the figures and tables below. In all, 130 points
were obtained for the energy-vs-density curve, and
thirteen of these are listed in the tables. As noted
in Sec. III, the data (all ISO points) were fitted with

a sixth-degree polynomial in order to obtain the
thermodynamic pressure p~dE/dp. This fit yielded
the coefficients

a0=4. 005053x10', a, = —2. 843095x10',

a2= 7. 397826x10, a3= —1.058733x10,
a4= 8. 200409x 10, as= —3.042918x10,
a8= 4. 651 104x 10~.

Table I gives a summary of the 256-particle cal-
culations at p=0. 694, 0.9, and 1.12. These
were used in scaling to obtain the results listed in
Tables II and III for densities other than 0. 694,
0.9, and 1.12, and from them, energies and virial
pressures can be obtained for any density from
p=0. 67 to p=1. 87. Table IV is a summary of the

400—

300—

0 200—

V'

100—

FIG. 5. Comparison of the
energy-vs-density curves for
the Lennard- Jones potential
with the Krumhansl and Wu

cluster results.

0 Krumhonsl 8 Wu
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-I 00
0.6

~O—:Q
1

0.7 0.8
I

0.9
I I

I.O

p (molecules/cr3)

I

l.2
I

I.3
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TABLE IV. Results of the Krumhansl and Wu cluster-
expansion calculation for the Lennard-Jones potential.

p (molecu les/0 3) V(cm /mole)

TABLE V. Experimental data of Stewart.

P(bar)
p(molecules ja ) V(cm5/mole) E('K) E ('K; by Monte Car1o)

0. 694
0. 778
0. 864
1.015
1, 137
1.292

22, 47
20, 0

18.0
15.31
13.7
12. 09

—77.6
—71.6
—53. 8

12.25
107.1
298

—77. 54
—68. 43

results of the Krumhansl and Wu cluster calcula-
tions with the Lennard-Jones potential. Using
their wave function, we used the Monte Carlo in-
tegration program to check their calculations for
p= 0. 694 and p= 0. 778 and found good agreement
with their energies. Table V gives the results of
compressibility experiments on solid hydrogen by
Stewart. Table VI lists the Krumhansl and Wu
cluster results for two other potentials, the Buck-
ingham exp-6 potential and the nonspherical Wang
Chang potential, and Table VII gives a summary
of our investigation of the Buckingham exp-6 po-
tential. The results listed in the tables are dis-
played graphically in»gs. 1-7.

V. DISCUSSION OF RESULTS

A. Comparison of Theory and Experiment

We have obtained an equation of state for solid
hydrogen which is in general agreement with the
experimental data of Stewart' in the low-pressure
range. Our curve agrees well with that obtained
by Stewart for V& 16 cm~/mole, but our results
begin to diverge from the experimental data as the
volume is decreased below 16 cm'/mole. We have
however been able to calculate a ground-state
equilibrium energy which is in better agreement
with experiment than that obtained by Krumhansl
and Wu. 3 We obtained a ground-state energy of
—85. 47 'K at a volume of 23. 08 cm /mole as com-
pared with the Stewart value of —93.47 'K at V
=-22. 65 cnP/mole. The Krumhansl and Wu cluster

0.689
0. 74
0. 78
0. 81
0. 87
0. 97
l. 03
1.09
1.18
1.26
1.32
1.38
1,47
1.54

22. 65
21.0
20. 0
19.2
18.0
16.1
15, 1
14.3
13.2
12.4
11.8
11.3
10.6
10.1

0
196.1
392.2
588.4
980. 7

2 003
2 942
3 923
5 884
7 845
9 806

11768
15 691
19613

B. Summary and Conclusions

Our equation of state for solid hydrogen covers
the pressure range 0—112 kbar. An estimate of the
degree of uncertainty in the energy can be made
by noting that if we do two Monte Carlo runs at the
same values of the parameters A and B but starting
from two different initial particle configurations,
we will. obtain energies which may vary by as much
as 2-3 . We can safely say, however, that the
over-all uncertainty in our equation of state for
the Lennard-Jones potential is less than Qq This.

calculations yielded energies of —77. 6 K for the
Lennard-Jones potential and —79. 5 K for the Buck-
ingham exp-6 potential at a volume of 22. 47 cms/
mole. Our calculations using the Lennard-Jones
potential have led to an equation of state for solid
hydrogen which is in better agreement with experi-
ment than the results of the Krumhansl and Wu
cluster calculations for the Lennard-Jones poten-
tial, but considerably worse than their results for
the Buckingham exp-6 and Wang Chang potentials
(see Figs. 5 and 6). We have however been able
to extend the equation of state to very highpressures.

TABLE VI. The ground-state energy per molecule and the pressure for the Buckingham exp-6 and Wang Chang
potential from the Krumhansl and Wu cluster calculations.

p{molecules/0 )
3

0. 694
0. 778
0. 864
0. 970
l. 032
1.083
1.172
1.247
1, 380
1.443

V(cms/mole)

22. 47
20. 0
18.0
16.10
15.10
14.40
13.30
12.50
ll. 30
10.80

exp-6
Z(.K)

—79. 5
—73. 9
—57. 2
—18.9

17.6
53. 6

137
228

S (bar)

0
397.1

1 010
2 393
3 854
5 168
8 061

11376

—76, 8
—73. 9
—61.2
—32. 13

2. 8
26. 4
95. 0

172
357
470

0
289, 3
847. 3

1 961
3 099
4119
6 619
9 522

16 570

Wang Chang
E('K) Z(bar)
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TABLE VII. The ratio of kinetic-to-total energy for
p=1.37 to p=3.27.

22—

20—

l6—

~ Present Calculation
o Stewarts Data
&& Krurnhansl 8 Wu

Wang Chang Potential
n Krumhonsi 8 Wu

exp-6 Potential

o I I

Io
I ~~~o—' oa

14 l6 I 8 20 22 24
Volume (cc/mole)

FIG. 6. Comparison of the equation of state with
earlier theoretical and experimental work.

1.37
1.47
l. 57
1.67
1.'77
1.87
1.97
2. 07
2, 17
2. 27
2, 37
2. 47
2. 57
2. 67
2. 77
2. 87
2. 97
3. 07
3.17
3.27

&T&/«&

0. 75
0.68
0.50
0.38
0.34
0.27
0, 22
0.18
0. 15
0. 122
0. 119
0. 101
0. 088
0. 076
0.066
0, 058
0, 051
0. 045
0.040
0.036

21
28
42
60
81

110
147
193
249
318
396
493
608
744
903

1087
1300
1545
1824
2143

accuracy is adequate considering the uncertainty
in the potential.

At high pressures, the deviation from the ex-
perimental data is very large for the Lennard-Jones
potential (see Fig. 6). It is apparent that the re-
pulsive part of the potential for high densities is
much too strong and that we can only hope for a
qualitative understanding of the equation of state in
this area. One very striking feature of the energy
at high densities ( p & 1.5) should, however, be
noted. By looking at Fig. 2 we can see that the
kinetic-energy expectation value (T ) is growing in
a more or less linear way while the total energy
(H) is growing much more rapidly By.doing one
more run at p=1. 12 and scaling, we were able to
obtain approximate values of (T) and (H) for the

Lennard-Jones potential for densities up to 2. 17
(and pressures -2000 kbar). Figure 8 and Table
VIII show the ratio (T )/(H) forthe high-density re-
gion, and itis striking that for pressures greater
than 600 kbar this ratio is down to - 0. 05-0. 10;
i.e. , the kinetic energy iscontributingonly 5-10% of

the total energy. This suggests that in the 1-2-Mbar
range where the suspected transition from the
molecular to metallic phase is thought to occur,
classical calculations of the equation of state may
become possible. In these calculations, the kinetic-
energy contribution to the total energy is calculated
from zero-point motion in the lattice and is usually
quite small (- 5-15'%%u&).

1.0

or

0.

0,6
X

I-v' 04
110 kbar

FIG. 7, Ratio of (T)/
(H) for the Lennard-Jones
potential for p=1.4-3.2.

0.2—
250 kbar 2143 kbar

1.37
I

I.57
I
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I

1.97

e
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2.17

600 kbar—e e 1087kbar~e ~ ~ ~
I T

2.37 2 57 2 77 2 97 3.17
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FIG. 8. Comparison of the
energy-vs-density curves for
the Lennard-Jones and exp-6
potentials for p = 0. 7-1.6.
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The possibility of doing accurate "classical" cal-
culations for solid hydrogen at high densities is
very important since it would both reduce the cost
of determining the equation of state in this region
by an order of magnitude, and also open the pos-
sibility of investigating many other intermolecular
potentials. Therefore, we have examined this
question in detail in an accompanying paper. It
must however be noted that the data used in Fig.
7 were obtainedby using the Lennard-Jones poten-
tial, which we have already noted is not accurate
in this region, giving energies which are too large.
The contribution of the kinetic energy in this re-
gion could thus be as high as 15-20/p, and further
investigations using Monte Carlo and other poten-
tials will be necessary to verify this conjecture.

C. Brief Investigation of Buckingham exp-6 Potential

108-particle searches

p=0. 9 25

30

1.10
1.15
1.05
1.10
1.15
1, 20
1, 15

-59.4
—60. 4
—51.7
—63.6
—62. 9
—56, i
—59.5

p=1, 2 33
35

1.15
1.10
1.15
1.20
1.15

154.3
160.2
141.8

146.9
142. 1

TABLE VIII. Results of the investigation of the
Buckingham exp-6 potential.

We have noted that the Lennard-Jones potential
is not a very good approximation for hydrogen for
high densities. The earlier cluster work by Krum-
hansl and Wu has shown that better agreement be-
tween theory and experiment can be obtained by
using the modified Buckingham exp-6 potential,
and it was decided that a brief investigation of this
potential using Monte Carlo could be useful. We
have determined the ground-state energy for the
exp-6 potential at four values of the density and
found good agreement with the Lennard-Jones re-
sults up to a density of p- 1.3. Above p- 1.3 the
energy for the exp-6 potential is considerably
lower than the energy for the Lennard-Jones poten-
tial, and in good agreement with the results of
Krumhansl and Wu for this potential. The results

p=1. 6

0.694
0. 9
1.2
l. 6

40
45

50
55

60

Final results
A

15
30
35
60

1.15
1.10
l. 15
1.15

1.15
1.10
1, 15
1.20
1.25
l. 15
1.15
1.20
l. 10
1.15
l. 15

((T)/(e) =0.43)
B

954
950
929
933
958
923
921
929
945
919
930

—88. 28
-54. 68
164. 74
896.4
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of this investigation are listed in Table VH.
For p = 0.694 we did only one 108-particle run,

assuming that the minimumin (H) forthe exp-6 po-
tential would lie very close to the minimum for the
Lennard- Jones potential. For this value of the den-
sity, the contributionof the repulsive part of the po-
tential is small so this should be a good assumption.
For p=0. 9 and 1.2, aparameter searchwasper-
formed using the 108-particle system and then one
256-particle run was done using the values for A. and

B which determined the minimum in the 108-par-
ticle search. The agreement between the energies
obtained by using the 108- and 256-particle systems
with the same A and S values was - 9' at p=. 0.9
and - 23' at p= 1.2. It was thus apparent that the
256-particle system would not be large enough to
give us a.n accurate energy at the next density
which we wanted to look at, p=1. 6. For p=1. 6
we again made a parameter search with the 108-
particle system and attempted to refine the energy
by this time using a 500-pa, rticle system. A final
run of 80 000 configurations of which the first
20000 were discarded was done; even so the en-

ergy had not yet settled down very weQ. The en-
ergy we have listed for p=1.6 is good only to about
20' whereas all of our other energies are good to
within 1-2 . We ean see however that there is a
considerable difference between the energies
yielded by the exp-6 and Lennard-Jones potentials
for densities greater than 1.3, and that the exp-6
potential yields a much better agreement with ex-
periment.

One last point of importance should be noted.
For p= I.6 the ratio of (T)/(H) is slightly less for
the exp-6 potential than for the Lennard-Jones,
thus confirming our conjecture that at high den-
sities the "classical harmonic" approximation may
be valid.
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