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Pseudopotential Calculation of Transverse Effective Charges for III-V and II-VI Compounds
of the Zinc-Blende Structure
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A method is presented for the ab initio calculation of transverse effective charges for crys-
tals possessing the zinc-blende structure. The method is implemented within the framework
of the empirical pseudopotential method, and theoretical results are presented for the trans-
verse effective charges of several III-V and II-VI compounds which yield both the magnitudes
and signs of these quantities. The agreement between the theoretical and experimental values
for the transverse effective charges is quite good for the III-V compounds, but is poor for the
II-VI compounds. Reasons for this disagreement are discussed.

In Born's theory of lattice dynamics' the dipole
moment of a crystal is expanded formally in pow-
ers of the displacements of the atoms from their
equilibrium positions and in the components of the
macroscopic electric field in the crystal as

M„= g M„„(lIc)u„(lcc)+ 0 Q p~ M„, 0(l)c; 1')c')
IKol I K 8

x u (l)c)u0(l'cc') + ~ ~ ~ + g 1p„'„'+ Q p„„(lIc)
P I KOl

xu (lac)+ ~ ~ ~ }E + ~ ~ ~ . (1)

In this expression u, (lcc) is the & Cartesian com-
ponent of the displacement of the &th ion in the lth
primitive unit cell and E„is the v component of
the macroscopic field. The coefficient M, (lcc),
which is defined formally by

M„„()a')=( '
)

has the dimensions of a charge, and is an element
of the transverse effective charge tensor. The
subscripts u, E on the derivative indicate that it
is to be evaluated in the configuration in which the
atomic displacements are all equal to zero and in
which the macroscopic field vanishes. These co-
efficients govern the strength of the infrared ab
sorption in crystals, and it is with their evaluation
for III-V and II-VI compounds possessing the zinc-
blende structure that this note is concerned.

The coefficients (M„(lcc)}possess several
properties which will be useful in what follows.
As a consequence of the invariance of the dipole
moment of a crystal against a rigid-body trans-
lation of the crystal as a whole, the following con-
dition is obtained:

QM, (l)c)= 0,

where the sum extends over all lattice sites of
the crystal. The periodicity of the crystal requires

that M„„(l)c)be independent of the cell index l.
Therefore, in what follows we will denote this
coefficient by M„()c). For atoms at sites of at
least tetrahedral symmetry M, ()c) is isotropic:

M, (cc) = 5,„e(cc) . (4)

We now specialize these results to crystals
possessing the zinc-blende structure. For such
crystals the primitive translation vectors are
given by

a1 &cc0(0 1 1) a2 &cc0(l, 0, 1),

a0= 0a0(1, 1, 0),
where ao is the lattice parameter. %'e choose the
origin of coordinates midway between two nearest
neighbors, so that the basis vectors are given by

x(+) = —,
'
a0(1, 1, 1)= —x(-) = T .

It follows from Eels. (3) and (4) that for crystals
of the zinc-blende structure

e„p.e,
where &„ is the optical-frequency dielectric con-
stant, p, is the reduced mass of the two atoms in
a primitive unit cell, and v, is the volume of a
primitive unit cell. The magnitude of e ~ can also
be obtained from measurements of the dielectric
constant of such crystals, which (in the absence
of lattice damping and spatial dispersion) is given
by

40(e r) 1
a.„( )= 5. , (e ~

(dT, —CO

The coefficient e & is called the transverse effective
charge. Its magnitude can be obtained experimen-
tally from the difference between the squares of
the long-wavelength I Q- and TQ-mode frequencies,
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M, =Q M, (e)u (lz} . (10)

Let us assume for simplicity a displacement pat-
tern such that u (lx) is independent of the cell
index l,

u (I~)=d, (~) .
Such a displacement pattern is of the type found

in a q = 0 optical mode. It does not alter the trans-
lational periodicity of the crystal, but merely al-
ters the structure of a primitive unit cell. Then
for crystals of the zinc-blende structure we find
that

M =Ner* [d (+) —d„(-)], (12)

where N is the number of unit cells in the crystal.
If we assume further that the displacements ct(+)
and d(-) are directed along the [ill] direction,
and are given by

(13)

we find that the x component of the crystal dipole
moment is given by

1M„= gNao e2 5 . (14)

Consequently, if we can calculate the x component
of the dipole moment of the crystal when the two

sublattices are displaced according to Eqs. (11)
and (13), we can obtain er* from the relation

Unfortunately, determinations of e ~ based on either
Eq. (8) or Eq. (9) cannot yield its sign but give
only its magnitude.

From Eq. (1) we see that in the absence of a
macroscopic electric field the crystal dipole mo-
ment is given to first order in the atomic dis-
placements by

effective char ge is determined, we must ensure
that the macroscopic field in the crystal is zero.
This can be done by imposing periodic boundary
conditions on the crystal. These, together with
the fact that the displacements of the atoms are
those in a q = 0 optical mode, ensure that the
macroscopic field in the crystal indeed vanishes.

The atomic displacements described by Eqs.
(11) and (13) do not alter the translational periodi-
city of the crystal. Consequently, the electron
number density n(r) in the crystal in which the
sublattices have been displaced according to Eqs.
(11) and (13) still has the periodicity of the unde-
formed crystal. Instead of exploiting this fact it
is more convenient to use the fact that n(r) is also
periodic with the periodicity of the unit cube for
the zinc-blende lattice, which contains four prim-
itive unit cells. The unit cube is shown in Fig.
1. It has the attractive feature that in the undis-
torted crystal it has zero net charge and a vanish-
ing dipole moment.

We shall label the translation vectors of the
superlattice whose unit cell is the unit cube by
{x(L)}and the positions of the atoms in the unit
cube by {x(K)}. The vector x(I ) can be expressed
as

x(L) = I g Xq+ Lq An+ L3 As,

where I, , I.„and L, are any three integers, and,
from Fig. 1, the primitive translation vectors
{A,}are seen to be

X, =ao(1, 0, 0), X2=ao(0, 1, 0), A, =ao(0, 0, 1) .

(18)
The basis vectors {x(K)}are given by

x(l)= —,'ao(1, 0, 0), x(V)= —,'ao(1, 1, 1),

4 M„
e~ = lcm

Nao
(15)

ZINC- BLENDE STRUCTURE

If we denote by Z„(v =+, -) the charge on the
vth kind of ion core, the p component of the crys-
tal dipole moment with the sublattices displaced
according to Eqs. (11) and (13) is given by

M„=P Z„[x„(lx)+d,(a)]

—e J x, n ( r) d3x . (16}

In this equation x(l/c) is the vector from the origin
to the equilibrium position of the &th atom in the
1th primitive unit cell, e is the magnitude of the
electronic charge, and n(r ) is the electron num-
ber density calculated with the sublattices dis-
placed. The integration in Eq. (16) is carried out
over the volume of the crystal Q.

In order that the expression given by Eq. (16)
give the correct crystal dipole moment to be sub-
stituted into Eq. (15), from which the transverse

Oo

FIG. 1.Unit cube for crystals of the zinc-blende structure.
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x(13)= —.'a, (-1, —1, i),
x(2)= &a~(0, 1, 0), x(8)= —,'ao(l, 1, —1),

Q'"= —e J n(p-ro)d'p= —e f n(p)d'p
Ao Qo

(26)

x(14)= &ao(-1, —1, —1),

x(3) = pao(0 0 1) x(9) = pao(1 1 1)

is the total electronic charge in the unit cube.
The ionic contribution to the crystal dipole mo-

ment,

«(16)=-,'a, (i, —i, i),
(19)

M„"' = Z Z„[x,(l»)+d, (K) ], (26)

x(4)= —,'ao(-1, 0, 0),

x(6)= —.'a, (O, —1, O),

x(6)= ~ao(0, 0, —1),

x(10)= &ao(l, —1, —1),

x(16)= —,'ao(-l, 1, 1),

x(ll)= 2ao(-1, 1, 1),

x(17)= —,'ao(- 1, —1;1),
x(12)= —,'ao(-1, 1, —1),

x(18)= 4a, (l, 1, —1).

can also be rewritten as a sum of contributions
from each unit cube:

M~
' = Q Z» [x~(IK) —ro +d„(K) ]

LK

= Z,.x„(L,)Z, Z, +Z, Z, x„(K)Z,
—r„ZZ„Z+ZQ Z d„(K)

=-Q [Z x (L) —N*ro ]+N*g»x (K)Z

The charges on the ion cores are
1

Z1 —ZP —' ' ~ —Z6 —g Z
1

Zv —Z8 = ~ ~ —Z14 8 Z+ (2o)

where

~K Z»

+N*Z, Z, d, (K), (27)

(28)

Z15 Z16 '' ' 18

and the displacements of the sublattices in the new
notation are

d(1) = d(2) =. . .= B(14)=Sao(5, 5, 5),
B(15) =- d(16) =. . . = B(18)=- —,'ao(6, 5, 6) .

(21)

The assignment of fractional charges to atoms on
the faces and corners of the unit cube is consistent
with our assumption of periodic boundary conditions
on the crystal.

The electronic contribution to the dipole moment
of the crystal can now be rewritten

M~ = —e f ~ x( n)dry'

= -eZ, f x.n(r)d'r, (22)

where the integration in the second expression is
carried out over the volume of the I.th unit cube.
We now make the change of integration variable

r = p+ x(L) —ro,

ro = —Bao(1, 1, 1),
(23)

where ro is the vector from the point midway be-
tween the two atoms in a primitive unit cell to the
center of the unit cube. The vector p is now re-
stricted to range over the volume of the unit cube.
With this change of variable, and the periodicity of
n(r), the expression (22) for M„"' becomes

M„' = Q [Z x„(L) N*ro„]—eN*-

xf„p,n(p r, )d p, -
where N* is the number of unit cubes in the crystal,
and

is the total ionic charge in the unit cube.
If, now, we write the electron number density

n(r) as the sum of the electron number density of
the undistorted crystal, no(r), and the change due
to the relative displacement of the two sublattices,
6n(r), then on combining the ionic and electronic
contributions, the total dipole moment of the crys-
tal is obtained in the form

M„= (q"'+ q"')[Z,x„(1.) N*r„]-
+ N[Z Kz»x„( K)

—e f p„no(p —ro)dsp]

+N*[+»Z»d, (K)-e J p, 6n(p —ro)d'p].

M, = N*[Q»z»d„(K) —e f„p~n(p —ro)d p] .

(30)
four primitive unit
With the aid of Eqs.

the transverse effective

Since the unit cube contains
cells, we find that X*=4¹
(15) and (30), we obtain for
charge

eg =-, (Z, —Z ) —lim
e

s-o ao
w Qo

(31)
We have remarked above that n(r) is periodic

with a period given by the primitive unit cell of the

(29)
The first line of this equation vanishes because

the unit cube is electrically neutral, so that Q"'
+ Q "=0. The second line vanishes because the
unit cube has a vanishing dipole moment. In fact,
each of the two terms on the second line of this
question vanishes separately, due to the cubic
symmetry of the unit cube about its center. This
fact allows us to combine the second term on the
second line of this equation with the second term of
the third line to obtain for the dipole moment
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undeformed crystal. We can therefore expand it
in a three-dimensional Fourier series:

n(r) = Zn(G)e'o',

where 6 is a translation vector of the reciprocal
lattice. It follows that Eq. (31) can be rewritten

(32)

e f = (Z, —Z ) —lim Q n ( Q) e 'o'"&)

~ P a05

&&
' xe' 'd'r . (33)

v Ap

The integral in this expression is given by

v Ap

~ ap/2 ~ap/2
xe' 'd r =

I
dye' v' dze' "

-ap/2 " -ap/2

"0
d~~el&~z 'g xh I

Z 0 G„
v «ap /2

(34)

where

~.(&) = ~G, 06G„O I(-1)'""'"—~G„,O] (3~)

We obtain finally for the transverse effective charge

eg= —,'(Z, —Z ) + lim Z n(5) "
~

6 0 +0 G x

(36)
The result for er* given by Eq. (36) is quite gener-

al. The only approximation made in its derivation
is the assumption that the ion cores can be treated
as point charges rather than as extended charge
distribution. However, to the extent that the elec-
tronic core states centered on neighboring atoms
do not overlap this is a good approximation, and one
that is usually made in calculations of phonon dis-
persion curves in solids.

The only place in which significant approximations
can be made in applying Eq. (36) to the evaluation
of e f is in the determination of the electron num-

ber density n(r) or of its Fourier coefficients
(n(5)}. In this paper we use the empirical pseudo-
potential method to obtain the electron number
density. In this method the one-electron wave func-
tions and energies of a crystal are given by the
solutions of the Schrodinger equation

(
S2 v' ~ V(r)) („;(r)= Z„;(„-„(r). (S))

In writing this equation we have made use of the
fact that, because the relative displacement of the
sublattices described by Eq. (13) alters the struc-
ture of a primitive unit cell but does not change
the translational periodicity of the crystal, the po-
tential energy V(r) has the periodicity of the un-
deformed crystal. The one-electron wave functions
must therefore have the Bloch form, and we have
used the index n to label the bands and k the wave
vector in the first Brillouin zone which specify

these functions. The potential energy V(r) can be
expanded in a three-dimensional Fourier series
possessing the periodicity of the undeformed crys-
tal,

V(r) = Z V(G)e'o'.
G

(38)

It is convenient to decompose the Fourier coeffi-
cients of the potential into symmetric and antisym-
metric parts, each consisting of the product of a
pseudopotential form factor and a structure factor:

V(G) = Vz(G)cos5 (1+5)7—iV„(5)sinG (I+5)7,
(39}

where the vector 7 and parameter 5 have been de-
fined in Eq. (6) and (13), respectively. In all the
cases considered in this paper the form factors
Vq(G) and V„(G) are functions only of the magnitude
of the reciprocal-lattice vector appearing in their
arguments.

The one-electron wave function is now expanded
in plane waves,

4..-(r) = „isa 5 C.((C)e*""'.
G

(4o)

The coefficients (C„)-,(5)}are then determined from
the eigenvalue equation

~ 0) (&, &') C.r(&) = &.) C.) (C) (41a)

where the Hamiltonian matrix is given by

H),(5, 5') = (h /2m) (k+ 5) 5s d. + V(5' —5)
= &l(C', O) (41b)

In addition, they satisfy the orthonormality and
closure conditions

Zc „"„-(P.) c„.„-(5)= 6„„, , (42a)

Q„c„i(6)C))((i(Q') = 5o, c' (42b)

which follow from the orthonormality of the Bloch
functions.

The electron number density n(r) is given by

n(r) = ~ e„„"lg„)(r) I'
nk

(43)

where H„k= 2 if n is one of the valence bands, and

~„k= 0 if n is one of the conduction bands. When
we substitute the expansion (40) into Eq. (43) we
find that n(r) can be expanded in the form given by
Eq. (32), where the Fourier coefficient n(V) is
given by

n(C) =
~ ~~ e.r«.*)l(&')C.) (C'+ &) (44)

G~' nk

Equation (44), together with Eqs. (36), (39), (41),
and (42), formally solves the problem of calculating
the transverse effective charge.

As the two sublattices are displaced according
to Eq. (13), the point group of a crystal of the zinc-
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blende structure is reduced from T~ to C3„. The

point group C3„has six operations under which the
Hamiltonian matrix is invariant. It follows, there-
fore, that in carrying out the sum over k in Eq.
(44) we need to consider k vectors within only one-
sixth of the first Brillouin zone. In this irreduci-
ble one-sixth of the zone we chose wave vectors
of the form

tl = [(P„,P„P,), (-J „, -P„P,)-,
nao

( P„,P„P,), (P„, -P„-P,)]
(P„,P„P,= integers), (45a)

where

n&P„~P, ~P, ~ 0, 0 &P„+P,+P, ~ &n . (45b)

From the above set of vectors, we used only those
for which I'„, &„and P, were odd integers. All
of the computations were done for n=4, giving 10
vectors in the reduced zone and hence an equivalent
32 points in the entire zone.

In calculating the coefficients (C„f(G)}, and from
them the Fourier coefficients of the electron num-
ber density (n(5)), the pseudopotential form factors
obtained by Cohen and Bergstresser were used for
the III-V and II-VI compounds, and those of van
Haeringen and Junginger were used for the IV-IV
compound SiC. Two comments have to be made
about these form factors in the context of the pres-
ent calculations.

Not all of the form factors required in the pres-
ent calculations are to be found in Refs. 2 and 3
This is due to the fact that in the undistorted zinc-
blende structure (5= 0) the structure factor cos5 7

vanishes for G2= 4, while the structure factor
sinG. 7. vanishes for G = 8 (G is measured in units
of 2m/ao). Consequently, the pseudopotential form

Vs(G) = os+ Ps G'+ rs G',

V„(G)= o'.„+P„G + y„G
(46)

The complete set of pseudopotential form factors
for the crystals considered in this paper is pre-
sented in Table I.

The second comment which must be made con-
cerning the pseudopotential form factors used in
these calculations is that the sign of the antisym-
metric form factors jV„(G)} is determined by
specifying which of the two kinds of atoms compris-
ing the crystal occupies the "+" sublattice, and
which occupies the "-"sublattice; interchanging
the atoms on the two sublattices changes the signs
of the (V„(G)), but leaves the fVg(G)) unaltered.
Thus when the pseudopotential form factors are
obtained semiempirically, by fitting theoretical ex-
pressions for one-electron energies at symmetry
points in the first Brillouin zone to experimental
values for these energies, and particular signs
are assigned the antisymmetric form factors ob-
tained in this way, this is equivalent to making a
definite choice of which atom is situated on which
sublattice. However, this choice cannot be deter-
mined without making an independent calculation of
the individual-atom pseudopotential form factors
and combining them into the antisymmetric form
factors for both possible assignments of the two
kinds of atoms to the two sublattices. For only one
of the two assignments will the signs of the calcu-
lated antisymmetric form factors agree with those
of the empirically determined form factors, thus
fixing the atomic configuration.

factors Vs(4) and V„(8) are not tabulated in Refs.
2 and 3. For nonzero values of 6, however, these
form factors are required. In the present calcula-
tions they were determined by making a three-param-
eter fit to the tabulated form factors according to

TABLE I. Pseudopotential form factors. ~

Vs(3) Vs (4) Vs(8) V, O.1) V~(3) V„(4) V„(8)

-0.23
—0.22
—0.22
—0.23
—0.22
—0.20
—0.21
—0. 22
—0.23
—0.22
—0.20
—0.31

-0.17
—0.15
—0.16
—0.17
—0.16
—0.15
—0.15
—0.15
—0.17
—0.16
—0.15
-0.22

0.01
0.03
0.00
0.01
0.00
0.00
0.02
0.03
0.01
0.00
0.00
0.01

GaAs
GaP
GaSb
InP
InAs
InSb
A lSb
ZnS
ZnSe
Zn Te
CdTe
SiC"

'These data have units of Rydbergs.
"These data were obtained from W. van Haeringen and

H. G. Junginger, Solid State Commun. 7, 1135 (1969).

0.06
0.07
0.05
0.06
0.05
0.04
0.06
0.07
0.06
0.05
0.04
0.06

0.07
0.12
0.06
0.07
0.08
0.06
0.06
0.24
0. 18
0. 13
0.15
0.14

0.05
0.07
0.05
0.05
0.05
0.05
0.04
0.14
0.12
0.10
0.09
0.20

0.01
—0.02

0.02
0.01
0.00
0.02
0.00

—0.05
0.00
0.02

—0.02
0.12

0.01
0.02
0.01
0.01
0.03
0.01
0.02
0.04
0.03
0.01
0.04

—0.06

The remainder were obtained from M. L. Cohen and T.
K. Bergstresser, Phys. Rev. 141, 789 (1966).



PSEUDOPOTENTIAL CALCULATION OF. . . 4151

If the pseudopotential form factors are to be used
only for band-structure calculations, only the relative
signs of the antisymmetric form factors among
themselves are relevant, and not their true signs.
This is because a change in the sign of each anti-
symmetric form factor, according to Eqs. (39) and

(41), corresponds merely to taking the transpose of
the Hamiltonian matrix, which does not alter its
eigenvalues, the one-electron energies. Thus the
band structure of a crystal containing two atoms in
a primitive unit cell is independent of the assign-
ment of the two atoms to the two sublattices. For
this reason, most authors in presenting empirical
pseudopotential form factors for diatomic crystals
do not attempt to specify to which atomic configura-
tion their results apply. While this information is
not essential to have in studying the band structure
of a crystal, it is essential for determining the
ionic contribution to the transverse effective charge,
as given by Eq. (36).

In the present calculations, the assignment of an
atom in a III-V or II-VI compound to a particular
sublattice was based on a comparison of the signs
of the antisymmetric form factors given by Cohen
and Bergstresser with those computed on the basis
of the bare ion model potentials of Animula and
Heine for the crystals considered. The results
were that for the III-V and II-VI compounds it is
the "+" sublattice that is occupied by the atoms from
columns III and II of the periodic table, respectively.
In the case of the IV-IV compound SiC, van Haerin-
gen and Junginger constructed the pseudopotential
form factors on the assumption that the Si atoms
occupy the sites of the "+"sublattice, and the C
atoms the sites of the "-"sublattice.

Thus, in calculating e f we are in each case cal-
culating the transverse effective charge of the atom
A in the compound AB.

For the III-V compounds of the zinc-blende struc-
ture the ion core charges were taken to be Z, = 3e
and Z = 5e in the present calculations. In the case
of the II-VI compounds the values assumed for
these charges were Z, = 2e and Z = 6e. For SiC
the values Z, =Z =4e were used. By making these
choices we have neglected the renormalization of
the ion core charges due to the "orthogonalization
hole" at the ion sites, familiar from pseudopoten-
tial theory. ' For those cases where this renormal-
ization has been calculated, it is found to represent
less than a 10/g correction to the bare ion charge.
However, the neglect of the orthogonalization hole
in the present calculations is an approximation which
could well be removed in more accurate calculations
of effective charges.

The Hamiltonian matrix was constructed by
truncating the expansion of the eigenfunctions (40)
through the restriction that (k+ 6)' ~ 9(2m jao)~.
This restriction was dictated by the limitations of

the computer on which the present calculations were
carried out. It produced Hermitian matrices of
order 2V on the average for the values of k used.

The Hermitian matrix can be made into a real
symmetric matrix by separating it into its real and

imaginary parts,
~~H= Hg+iHI ) (4V)

where 8& is a real symmetric matrix, while HI is
a real antisymmetric matrix. Then, if we write
the column vector of the coefficients (C„f(G)j in a
similar fashion as

C = VR+ iV~, (48)

the eigenvalue equation (41a) can be written in the
partitioned form

(49)

This procedure produces a real symmetric matrix
which is twice as large as the original. If we be-
gin with a general Hermitian matrix of order N, we
obtain N eigenvalues and eigenvectors. However,
since the real symmetric matrix obtained from it
by the above procedure is twice as large, we ob-
tain from it 2N eigenvalues and eigenvectors. Not
all of these eigenvectors are linearly independent,
however. In fact, by enlarging an N &N Hermitian
matrix into a 2N &2N real symmetric matrix, we
have induced an apparent twofold degeneracy into
the system. For it is readily seen that if E is an
eigenvalue of Eq. (49) whose 2N-dimensional, real
eigenvector is (V~V~), corresponding to a complex,
N-dimensional eigenvector of H given by Eq. (48),
then E is also an eigenvalue of Eq. (49) with a 2N-
dimensional real eigenvector given by (- Vl C~),
corresponding to a complex N-dimensional eigen-
vector of H given by —V, +iC~. These two N-di-
mensional complex eigenvectors of H differ only by
a factor of i, and therefore are linearly dependent.
If the Hamiltonian has an eigenvalue with true de-
generacy g, we will obtain 2g degenerate eigen-
vectors from the solution of Eq. (49), which will
be linear combinations of g pairs of eigenvectors,
in which the members of each pair differ by a fac-
tor of i. To obtain a set of N orthonormal and com-
plete eigenvectors of the original Hermitian matrix,
a Gram-Schmidt orthogonalization procedure was
applied to the 2N eigenvectors of the real symmetric
matrix. The N complex eigenvectors obtained in
this way, and the corresponding eigenvalues, were
used in the calculation of the effective charges.

The effective charges were calculated for several
zinc-blende-type crystals. These results are
presented in Table II, along with experimental data
for comparison.

Several calculations were performed as checks
on various approximations and assumptions made in
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this work. As one such check we also calculated
the electronic contributions to the dielectric con-
stant of each crystal, in the limit as the frequency
of the incident electromagnetic field tends to zero,
from the expression

XZZ—
k nn' Enk En'k

x &nic~p ln t) „(n''alp, Ink))

87ie283 + + (nk Ij„ln'k) (n'k lP„Ink)
f .. "' (E.r —E"«)'

with

E"" (k) = Q C„g (G) C„.j(G) G

(50a)

= [E„""(k) ]* . (50b)

Here N is the number of valence electrons in the
crystal, m is the electronic mass, and (nk lP„ In' &)
is the matrix element of the p, th component of the
electron momentum operator between the Bloch
states („f(r) and g„.p(r). The coefficients [C„f(G)]
and the corresponding energies (E„f] entering Eel.
(50) were obtained from Eqs. (38)—(42) with 5= 0.
The results are presented in Table II, together with
the corresponding experimental values. (The nota-
tion &„ serves to emphasize that the dielectric con-
stant being calculated is the dielectric constant at
frequencies large compared with the transverse
optical-mode frequency of the crystal, so that the
ionic motion is frozen out, but small compared

with the frequency of the lowest electronic transi-
tion. )

In order to examine the sensitivity of our results
to the number of k values in the first Brillouin
zone used in our calculations, we computed the
quantities of interest for GaAs using the even in-
tegers for the P's omitted from the definition of
k given by Eqs. (45). The results showed less than
a 2% change in the values of the effective charges
and optical-f requency dielectric constants.

The crystal distortion was chosen as a relative
displacement of the sublattices in the [111]direc-
tion. The distortion used for all calculations cor-
responds to a value of 5=+ 0. 0015 in Eq. (18). In

order to examine the sensitivity of the results to
the magnitude of 5, several different trials were
made for GaAs. Values of 6 equal to +0. 015,
+ 0. 005, and + 0. 0015 were tried. The effective
charges and optical-f requency dielectric constants
were virtually insensitive to the variation of the
distortion parameter.

The first results of our calculations that we
wish to stress is that for the II-VI, III-V, and IV-
IV compounds of the zinc-blende structure con-
sidered here, the transverse effective charge of
the atom A in the chemical formula AB for the
compound is found to be positive in each case, so
that the charge on the atom B is negative.

From the results of Table II we see that the
closest agreement between the theoretical and ex-
perimental results for the transverse effective
charges occurs for the III-V compounds. With the
exception of GaSb, for which the discrepancy is
25%, the differences between the theoretical and

experimental values of er are all less than 20% of
the experimental values. With the exception of
GaAs, where the discrepancy is large, the same
is true of the calculated and experimental results
for the electronic contribution to the dielectric
constant. The comparatively lar ge discrepancy

TABLE II. Effective charges and optical-frequency dielectric constants.

Crystal

SiC
Alsb
GaP
GaAs
GaSb
InP
InAs
InSb
ZnS
ZnSe
ZnTe
CdTe

Theory

11.19
12.45
11.42
17.77
16.74
13.30
17.84
17.61
4. 69
5.40
5. 84
5.88

Experimental

10.0
12.0
10.2
12.9
15.7
12.6
15.1
17.9
5. 14
5.90
7.28
7.3

Theory

1.42
2. 28
2.37
2.39
2.51
2.44
2.52
2.58
3.68
3.75
3.84
3.92

e y/e
Experimental

2.7
2. 2
2.0
2. 2
2. 0
2. 7
2. 7
2. 5
2. 0
1.8
2. 0
2.35

Ref.

10
11
12
13
13
13
13
13
14
15
15
16
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between the theoretical and experimental results
for e ~ for GaSb may be due in part to the fact that
the band structure of GaSb computed by Cohen and
Bergstresser shows some disagreement with ex-
periment, leading Cohen and Bergstresser to sug-
gest that the pseudopotential form factors used in
their work, and in ours, may need to be adjusted.

The discrepancies between the theoretical and
experimental results for the transverse effective
charges, and dielectric constants, of the II-VI
compounds are disappointingly large, and suggest
that in its present form the method for calculating
effective charges developed in this paper is not
well suited for application to these compounds.
Some reasons for these discrepancies will be dis-
cussed below.

The theoretical results for e ~ show certain
trends. If in a compound A.B we fix the atom A.

we find that e ~ is larger in magnitude the lower
atom 8 is in its column in the periodic table.
Similarly, if we fix atom 8, the magnitude of e ~
is larger the lower atom A is in its column of the
periodic table. These trends are only partially
reflected in the experimental results. However,
the experimental values for the effective charges
are not known with great accuracy, and it may be
that more accurate experimental determinations
of e~& would confirm the predicted trends.

Several approximations have been made in the
present calculations which it would be well to re-
move in a more refined calculation. First, it was
assumed that the self-consistent pseudopotential
moves rigidly with the ion cores as they are dis-
placed according to Eq. (13). This is probably
not a bad approximation considering the small
displacements used in the present calculations. In
a more refined calculation only the bare-ion pseudo-
potential would be assumed to move rigidly with
the nuclei, and the self-consistent pseudopotential,
obtained from the bare-ion pseudopotential by
screening it with an appropriate dielectric function,
would be recalculated at the displaced lattice sites.
This appears to be a feasible calculation in the
Hartree approximation, for example.

The electron number density was calculated using
the pseudopotential wave functions. This corre-
sponds to using the smooth part of the orthogonal-
ized plane-wave function. As we have remarked
earlier, if one corrects for this approximation by
including the contribution to the number density
arising from the orthogonalization of the plane-
wave part of the wave function to the atomic core
states, the result is to renormalize the charges on
the bare ions. Estimates of the magnitude of this
renormalization have not been made for semicon-
ductors to our knowledge, but it seems to be less
than a 10/p effect in metals. The error in the
ionic contribution to the transverse effective charge

could be larger than this, however, if the fractional
changes in Z, and Z are rather different, due to
the fact that it is their difference that enters the
expression for e T*.

We have not included a spin-orbit interaction
term in our pseudo-Hamiltonian (37). Procedures
for doing so within the framework of pseudopoten-
tial theory now exist. However, it was felt that
the effects of the spin-orbit interaction on an in-
tegral property of the wave functions, such as the
electron number density, are small, and could be
neglected in an exploratory calculation such as
presented here. This assumption warrants further
investigation, particularly in the case of compounds
containing heavy elements.

The final approximation made was the restriction
of the number of plane waves retained in the ex-
pansion of the wave function g„f(r) to approximately
27. This restriction may well be the most serious
approximation made in this work. In their calcu-
lations of electron charge densities in III-V com-
pounds on the basis of the empirical pseudopoten-
tial method, Walter and Cohen used up to 90 plane
waves to obtain physically reasonable results for
the charge density associated with each of the four
valence bands. If such a large number of plane
waves is indeed required for the accurate calcula-
tion of electron charge densities, then the rea-
sonably good agreement between the transverse
effective charges of the III-V compounds calculated
in this work and their experimental values may be
largely fortuitous. . The use of a comparatively
few plane waves in the calculation of the electron
number density and the transverse effective charge
is likely to be a more drastic approximation for
the II-VI compounds than it is for the III-V com-
pounds, and may be responsible for the disagree-
ment between the theoretical and experimental
results for these compounds presented in Table II.
The II-VI compounds are more ionic than the ID-
V compounds, and it is not unreasonable that a
larger number of plane waves is required in the
expansion of their wave functions to reproduce the
greater localization of the electrons about their
nuclei. It may well be that calculations of effective
charges for the II-VI compounds based on the use
of the tight binding approximation for the deter-
mination of the wave functions of the valence elec-
trons will prove to be simpler and more accurate
than calculations based on the pseudopotential
method as described here. It is our opinion that
in subsequent calculations of transverse effective
charges by the method used in the present work
the first improvement that should be incorporated
into these calculations is the use of a larger num-
ber of plane waves in the expansion of the pseudo-
wave-functions.

In conclusion, we feel that the results of this



4154 B. I. BENNE TT AND A. A. MARADUDIN

paper show that, despite its simplicity, the pres-
ent approach to the calculation of transverse effec-
tive charges is a practical one from the compu-
tational standpoint, and one which is capable of
yielding quantitatively accurate results.
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