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The purpose of this paper is to present a quantum-mechanical theory of the inelastic scatter-
ing of slow electrons by long-wavelength surface optical phonons for simple models of an

ionic crystal and for a nonionic crystal such as silicon. It is argued that a quantum-mechan-
ical approach is necessary for this problem. However, the expression we obtain for the
one-phonon cross section is found to be identical to the one that follows from the earlier classi-
cal theory of Lucas and co-workers, provided one replaces their parameter Po by the quantum-
mechanical reflection coefficient for specular reflection. The angular distribution of the
scattered electrons and the energy dependence of the one-phonon cross section are discussed
for the case of ZnO and silicon, where the surface optical modes have a very different charac-
ter. For the surface mode in silicon, we define a dipole-moment effective charge, which is
nonzero by virtue of the absence of inversion symmetry in the surface region. A quantitative
estimate of the magnitude of this parameter is extracted from the data of Ibach.

I. INTRODUCTION

The effect of a surface on the phonon spectrum
of crystals and on the magnetic properties of
crystals has been the subject of a considerable
theoretical effort. In many instances, the theory
has reached a high level of sophistication, as one
can see from the recent theoretical work of Chen
et al. ' on the lattice dynamics of ionic-crystal
films.

However, while theoretical studies of the phonon
and magnon spectrum of finite crystals indicate
the presence of a complex'variety of surface modes,
and also important effects on the eigenvectors and
frequency distribution of the bulk modes, until re-
cently direct contact bebveen detailed predictions
of the theories and experimental data has been
confined to the effect of the surface on quantities
that depend on complicated averages over the
phonon spectrum. Two examples are the effect of
a, surface on the phonon specific heat and the de-
termination of the mean-square displacement in
the suxface from the temperature dependence of
the low-energy-electron-diffraction (LEED) in-
tensity.

The study of the energy-loss spectrum of slow
electrons scattered, from the surface should be,
in principle, a powerful probe of the vibrational
and magnetic properties of the surface region.

Howevex, such experiments are extremely difficult
to carry out. If, for example, one wishes to study
inelastic scattering of low-energy electrons by
phonons uti1. izing low-energy electrons with en-
ergies in the range of 1 to 100 eV, then the incident
beam must be extremely monoenergetic. It is very
difficult in practice to obtain an electron beam

.sufficiently monochromatic to enable the study of
the extremely small energy transfers involved in
electron-phonon or electron-magnon scatterings.

However, Propst and Piper have reported an
experimental study of the vibrational modes of
hydrogen and other species absorbed on the sur-
face of tungsten by means of low-energy-electron
spectroscopy. More recently, Ibachs'4 has pub-
lished two very complete experimental investigations
of the inelastic scattering of low-energy electrons
from the surfaces of ZnD and the (ill) surface of
silicon. In each case, a discrete-ioss (and energy-
gain) peak is observed in the energy spectrum of
the emerging electrons. These loss and gain peaks
are associated with emission and absorption of
surface optical phonons by the electron.

In both ZnQ and silicon, the scattering is appar-
ently px'oduced by a long-range electr ic fiel.d set up
outside the crystal by the surface optical mode.
That this is so is evident from the angula, r distribu-
tion of the inelastically scattered electrons. ' In
both cases it is obsex'ved that the inelastically
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scattered electrons emerge in a narrow angular
cone about the specular direction. This strongly
peaked angular distribution indicates that the elec-
tron is scattered strongly by surface phonons with
small wave vector Q„;these surface phonons give
rise to a long-range electric field that extends
well out into the vacuum outside the crystal. Since
ZnO is an ionic crystal, it is quite clear that such
a long-range electric field should be set up when a
long-wavelength surface optical mode is excited.
However, silicon presents quite a different state
of affairs. The dipole-moment effective charge
is zero in the bulk of the silicon crystal, and the
k = 0 bulk optical phonon is not infrared (ir) active as
a consequence. As Ibach has pointed out, the elec-
tric field must then arise by virtue of the low site
symmetry of atoms in the surface region. Atoms
near the surface may have a nonzero dipole-moment
effective charge, since they feel the absence of an
inversion center. The motion of these atoms when
the surface mode is excited is responsible for the
macroscopic electric field near the surface. The
fact that atoms in the surface of a nonionic crystal
may have a nonzero effective charge played the
central role in an earlier theoretical treatment6 of
surface-induced ir absorption in crystals with ir-
inactive optical modes at k= 0.

A theory of the inelastic scattering of low-energy
electrons from the surface of ionic crystals has
been described by Lucas and Sunjic. ' This theory
treats the incident electron as a classical point
particle. The electron is allowed to move on a
fixed trajectory at constant speed, and the electric
field of the electron drives the lattice of the polar
crystal. Lucas and Sunjic then obtain an expres-
sion for the probability that the incident particle
will excite n surface optical phonons. For purposes
of analyzing the data of Ibach, the electron is
allowed to move along the specular trajectory. The
theory is in remarkable quantitative agreement
with experiment. '

Roundy and Mills' have discussed the theory
of the inelastic scattering of low-energy electrons
by phonons of short wavelength. These phonons,
by virtue of the conservation of the component of
the wave vector parallel to the surface, deflect
the electron far from the specular direction. It
was assumed that the electrons interact with the
ions in the crystal by means of a short-range po-
tential in this study. This work shows by means
of a series of model calculations that detailed
quantitative information about the lattice dynamics
of the crystal surface is contained in the loss spec-
trum associated with both surface and bulk phonons.
The theory of Roundy and Mills is a fully quantum-
mechanical one. At this time, no data on the energy
spectrum of electrons scattered inelastically through
large angles by phonons have been reported, and the

theory of Roundy and Mills has no direct bearing
on the studies of ZnO and silicon surfaces described
above.

The purpose of this paper is to present a quan-
tum-mechanical theory of the inelastic scattering
of low-energy electrons from crystal surfaces by
long-wavelength surface optical phonons, where
the scattering is produced by the long-range elec-
tric field described above. There are two purposes
in this study. One is to discuss the angular dis-
tribution and energy dependence of the cross sec-
tion for the case where the electrons scatter from
a surface of a nonionic crystal such as silicon. As
we shall see from the discussion below, the char-
acter of the long-wavelength surface optical mode
in silicon differs in a qualitative manner from that
in ZnO. The difference in character of the two
modes is reflected in the angular distribution of
the scattered electrons and in the dependence of
the total one-phonon cross section on incident
electron energy. Finally, we wish to use the mag-
nitude of the scattering cross section reported by
Ibach to provide a quantitative measure of the mag-
nitude of the dipole-moment effective charge of the
atoms near the surface. The second purpose of
the paper is to reexamine from a quantum-me-
chanical point of view the theory of the one-phonon
scattering cross section when the electron scatters
from an ionic crystal, such as ZnO. We feel that
there are some questions in principle with the ap-
proach used by Lucas and Sunjic, and there are
also some technical difficulties with their results.

Before we proceed with our treatment, we com-
ment on the approach of Lucas and Sunjic. First of
all, there are some technical aspects of their ex-
pressions that we find unclear. Their expression
for the inelastic-scattering cross section is pro-
portional to a parameter Po, which is the probability
the electron will traverse the classical trajectory
with no energy transfer to the lattice. In our view,
this parameter is the expression for the specular
reflection coefficient provided by their theory,
which ignores the quantum- mechanical character
of the interaction of the electron with the crystal
surface. In their model, Po is less than unity
only by virtue of the coupling between the electron
and the surface optical mode. The actual reflection
coefficient differs from unity for very different
reasons, of course. For example, when the elec-
tron wave enters the crystal, it is damped by elec-
tron-electron interactions. In this circumstance
the reflection coefficient can be reduced to a value
far below unity even in the absence of electron-
phonon coupling, At least in metals, it appears
that electron-electron interactions play a primary
role in determining the value of the reflection co-
efficient. Lucas and SuD3ic argue that P0 is simply
a normalization factor which measures the amount
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by which the scattered beam is attenuated by the
presence of inelastic scattering, and their theory
shows the cross section for inelastic scattering
to be proportional to the intensity of the elastically
scattered beam. For their model, where the re-
flection coefficient is unity in the absence of elec-
tron-phonon coupling, this interpretation of Po is
equivalent to ours, but it is not obvious to us that
one can extend this interpretation to the realistic
situation where the reflection coefficient differs
from unity for different reasons.

Secondly, the component of the wave vector
parallel to the surface of the excitations involved
in the interaction process should be conserved,
to within a reciprocal-lattice vector. This kine-
matical feature of the scattering process does
not enter a classical point-particle description.
If we consider excitation of a surface phonon of
wave vector Q, parallel to the surface by the elec-
tron within the framework of the Lucas-Sunjic
approach and allow the incident electron to follow
the appropriate incoming trajectory until it strikes
the crystal surface, but take the outgoing trajectory
to be arbitrary, then the electron has a finite
probability of exciting the surface phonon for any
outgoing trajectory, not only the (unique) one deter-
mined by considerations of energy and wave-vector
conservation. ' Furthermore, the excitation prob-
ability does not peak, if the outgoing trajectory is
moved in close to the specular direction.

These difficulties have their origin in the classi-
cal description of the electron motion. If one ex-
amines the criterion for the validity of such an
approach, one can see that a quantum-mechanical
description of the scattering process is required.
The de Broglie wavelength of the electron is quite
small compared to that of the surface optical
modes that make the dominant contribution to the
cross section. The wavelength of the electron is
typically 5 A, and the phonons involved in the
scattering have wavelengths of a few hundred ang-
stroms. 3'4' Thus, at first glance, it appears as
if there would be little difference between a quan-
tum-mechanical theory and a classical theory,
since one may use a wave-packet description of
the incident electron and localize the electron
well within one phonon wavelength, while still re-
taining a fairly well-defined energy. This cannot
be done, however, since the incident beam is pre-
pared to be a nearly monoenergetic one. If the
beam is not very monoenergetic, the small energy
transfers involved in the phonon-scattering pro-
cesses cannot be studied, as we remarked above.
Typically, &E/Eo-10 3 in these experiments,
where Eo is the incident energy and ~E is the un-
certainty in the electron's energy. The Heisenberg
uncertainty principle then requires that a wave
packet with spatial extent 4x no smaller than = 103k

can be constructed, where Ao is the de Broglie
wavelength of the incident electron. Thus, the
uncertainty principle forces a quantum-mechanical
treatment of the scattering process on us, since
the smallest wave packet we can construct within
the energy restrictions imposed by preparation
of the beam is the order of ten surface-optical-
phonon wavelengths. The incident electron must
really be a de Broglie wave, and not a classical
point particle in a proper theoretical treatment of
the scattering process. These are the consider-
ations that lead us to reexamine the Lucas-Sunjic
theory for the scattering of an electron from ZnQ.

The discussion of the preceding paragraph ap-
pears to.gast doubts on the results of Lucas and
8unjid. ', To put the reader at ease, we should re-
mark that for the model examined in this paper,
our quantum-mechanical theory reproduces the
result of Lucas and Sunjic exactly, provided their
parameter P~ is replaced by the quantum-mechan-
ical reflection coefficient for specular reflection
from the crystal surface and the outgoing trajectory
is taken to be the specular one. Since these two
procedures have been used whenever the theory
and experiment have been compared, the excellent
quantitative agreement between theory and experi-
ment for the case of ZnQ is not altered by this work.
In this paper, we consider only the theory of one-
phonon scattering, and a study of higher-order
processes is currently under way.

The organization of this paper is as follows. In
Sec. II we discuss the character of the surface
mode in ZnQ and silicon, and for each case we de-
rive the form of the contribution of the macroscopic
electric field outside the crystal to the electron-
phonon interaction. The first part of this discussion
(on ZnO) contains no new information, but serves
to establish notation. In Sec. III we derive the
form of the one-phonon cross section, and discuss
its form for the case of ZnQ and silicon, with em-
phasis on the difference between the two cases. We
also discuss the kind of information one can obtain
from the existing data.

II. INTERACTION BETWEEN ELECTRONS AND LONG-
WAVELENGTH SURFACE OPTICAL PHONONS

A. Ionic Crystals

The theory of long-wavelength surface optical
phonons in ionic crystals was first discussed by
Fuchs and Kliewer, "who presented a macro-
scopic theory of these modes. Subsequently Tong
and Maradudin'~ have performed a numerical study
of short-wavelength surface modes in such crystals
by diagonalizing the dynamical matrix appropriate
to a finite slab. The transition region between the
long-wavelength regime where the theory of Fuchs
and Kliewer is valid and the region of short wave-
lengths considered by Tong and Maradudin is dis-
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g(z) P e-QP lsl (4)

where Pp is a constant we shall shortly relate to
the lattice displacement. Note that the potential
must be continuous at the free surface of the di-
electric.

We take the crystal to fill the half-space z & 0.
The electric field inside and outside the crystal is
given by

E(x ) = —Vy(x ) = —Q„ype' ' '*"
~~
' [iq„-z sgn(z)] .

(6)
The tangential component of K(x) is seen to be

continuous at the surface, as required by electro-
statics. The normal component is not. In fact,

E,(x)~,= -Z,(x) ~, , (6

Since the normal component of the displacement
field must be continuous across the boundary, Eq.
(6) requires

e((u, ) = —1 .
Thus, the potential distribution given by Eq. (3)

and Eq. (4) can exist only for one discrete fre-
quency, namely the value of ~, for which c(&u,)
=- —1. Equation (7) is in fact the eigenvalue condi-
tion satisfied by the Fuchs-Kliewer surface mode

cussed in the recent work of Chen and his co1.—

leagues. '
In this work we shall only be concerned with

the long-wavelength region, where the ionic solid
may be treated as a dielectric medium, with a
frequency-dependent dielectric constant

e ((0) = zp+ Ap /((dp —QP)

where &0 is the bulk-transverse-optical-phonon
frequency, and Q~=(d, —0, with , the LQ-phonon
frequency in the bulk.

The interaction energy between an incoming
electron and the electric field set up outside the
crystal by a lattice vibration of frequency +, is
given by

&(x, t)=eP(x)e ' s'

where P (x) is the electrostatic potential at point
x, assumed to vary in time like e '"s'. The present
discussion neglects retardation. We suppose a
phonon has been excited in the medium with a wave
vector Q„parallel to the surface. The potential
g(x) may then be written

y(x)=e' "'* y(z),
where in this equation and in the remainder of the
paper the z direction is normal to the surface
and the subscript Il denotes either a vector which
lies in the plane of the surface or the projection
of a general vector onto this plane.

Outside and inside the crystal, P(x) must satisfy
. Laplace's equation. This means that

4
(9)

We conclude this section by pointing out that no
new results are contained here. The form of the
interaction energy between an electron and a sur-
face optical phonon (or surface plasmon) has been
derived in the earlier work of Lucas, Kartheuser,
and Badro. 'P The result in Eq. (9) is equivalent to
theirs, provided one associates the amplitude uo
with the appropriate quantum-mechanical operator.

B. Nonionic Crystals

We now consider the form of the interaction en-
ergy between an electron and a surface optical pho-
non in a nonionic crystal, where the macroscopic
field outside of the crystal arises because the atoms
in or near the surface feel the absence of an in-
version center, as discussed in the Introduction.

Before we proceed to the discussion of the form
of the interaction. , we present a qualitative discus-
sion of the nature of the surface mode in a crystal
such as silicon, where the k= 0 bulk optical pho-
nons are ir inactive.

We shall see in Sec. III of the present paper that
the electric dipole moment set up by excitation of
the Q„=0 surface optical phonon is quite small for
silicon. Thus, the electrostatic contribution to the
energy of the wave can be expected to be quite
small. On the other hand, an atom in the surface
layer is "bonded" to far fewer neighbors than an
atom in the bulk. An atom in the (111)surface lay-
er of silicon is missing one first neighbor and
three next-nearest neighbors. In the presence of

for the special case where the medium is taken to
be semi-infinite.

We next relate the parameter Pp to the amplitude
u of the relative motions of the two sublattices of
the ionic crystal. When e(u&, ) = —1, then the total
dipole-moment density P(x) in the medium is

P(x) = —(1/2z) @(x)
But the lattice contribution to P(x) is ne*u(x),
where e* is the dipole-moment effective charge of
the k = 0 bulk optical phonon and pg is the number
of unit cells/unit volume. Thus, we have

R(x) = —[4zne*/(1+ &p)]u(x ) .
We write

u(x ) = up (i@,+ z) e' "

inside the crystal. Then the parameter gp is given
by

Pp = [4wne*/Qp(1+ fp)] up .
The interaction energy between an electron placed

at position x at time t, and the surface mode is
thus, for z &0,
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the missing bonds, a surface mode may be split
from the bottom of the optical bands and pushed
into the gap between the optical and acoustical
branches. For a model of a nonionic crystal, sur-
face modes of this type have been studied by Wallis,
Mills, and Maradudin. The surface mode is lo-
calized to within a small number of atomic layers
of the surface for all values of Q„,including Q„=O.
This behavior is in strong contrast to the behavior
exhibited by the Fuchs-Kliewer modes, where as
Q„-0, the mode penetrates very deeply into the
crystal. [See Eq. (8) above. ] Of course, the model
considered by Wallis et a/. is a crystal very dif-
ferent from silicon. Nonetheless, one can expect
the general characteristics of the surface optical
mode associated with the (111) surface of silicon
to be similar to the mode described in Ref. 6. The
main qualitative feature of interest here is that for
Q„=0, the displacement field associated with the
mode is confined to a small number of layers near
the surface and is insensitive to the value of Q„,
so long as Q„is close to the center of the Brillouin
zone appropriate to the surface layer.

In order to stress the similarity of the surface
mode studied by Wallis et al. to that observed in
silicon, note that there is indeed a gap between the
acoustical and optical branches of silicon for
propagation in the (111)direction normal to the
surface. ' This gap is very similar to the one
present in Fig. 2 of Ref. 6, at g, =0. In silicon
the gap extends from (0. VI +0. 02)~0 to (0. 82
+0.02)~0, where +0 is the Raman frequency of sili-
con. The surface-optical-mode frequency ob-
served by Ibach appears to fall close to the gap,
since its frequency is ~, =0. 86(do.

We now calculate the interaction energy between
an electron and the electric field set up by a sur-
face mode of the type described in the preceding
paragraphs. When the mode is excited, there will
be a two-dimensional wavelike dipole layer in-
duced in the surface region of the crystal. The
thickness of this layer is microscopic, the order
of a few lattice constants at most. The thickness
of the dipole layer can be regarded as independent
of the wavelength of the surface optical phonon, in
contrast to the situation in ionic crystals. The in-
teraction energy of an electron with the wave is
still given by Eq. (2), and we next determine the
form of p(x).

First consider the potential generated by a single
electric dipole with dipole moment P placed on the
surface of a dielectric substrate with dielectric
constant &. The form of the potential is easily
constructed by using the image-charge method of
electrostatics. We find the potential C (x) produced
by the dipole is

P. (x —rii) l Ri ' ( o)

1+& lx —r, l3 ' 1+& Ix —r I'

y(x) = o e'~~~'*~~ e o~~' P —q . P (12)1+&
~ ~ ~where Q, )

is a unit vector in the direction of Q„.
Notice that the interaction energy obtained from

Eq. (12) and that in Eq. (9) exhibit the same spatial
dependence. This, of course, is a consequence of
the fact tha. t outside the crystal V p = 0, while at
the same time p is proportional to e'o"'"". We may
summarize the results of this section by noting that
we may write

V(x, t) = ha (z) e o" ""e ' 8 + c.c. ,
II

where for the ionic crystal

&o (z) = [4wnee*uo/Q„(1+ eo)] e o"*

and for the nonionic or covalent crystal

(14a)

(14b)

Equations (14) are valid only for z outside the crys-
tal.

It should be noted that the contribution to no„(z)
in Eq. (14b) from the component of the dipole mo-
ment parallel to the surface is smaller than that
normal to the surface by the factor & '. Since &=-12
for silicon, this will lead us to suggest that atomic
motions normal to the surface are the source of the
scattering observed in silicon by Ibach.

,
III. THEORY OF INELASTIC SCATTERING OF LOP(-

ENERGY ELECTRONS BY SURFACE OPTICAL MODES

In this section we derive the form of the cross

where r, specifies the location of the dipole on the
surface and P~, P„arethe components of the di-
pole moment perpendicular and parallel, respec-
tively, to the surface.

Now divide the surface layer of the crystal up
into (two-dimensional) unit cells, and let there be

no unit cells/cm . I.et P, be the electric dipole
moment induced in unit cell 1, as a result of exci-
tation of the surface optical phonon. Then

P =e' " '~P
1

where Q(, is the wave vector of the surface phonon.
Then the potential outside the crystal is

2e P, (x —r, ) e'o"'"&

1

'Q2 P„~(x —r, ) e' '
( )1+ 6

1
)x —r, )

The sums in Eq. (11) may be carried out in closed
form. ' However, we are interested only in the
long-range part of the potential present for small
Q)). This portion may be computed by replacing
the sum over the sites in the surface by an integra-
tion. The integrations are easily carried out, and
one finds
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V,(x) = V, 9(-z), (16)

i. e., the crystal is presumed to present a simple
step potential to the electron. The parameter Vp

will be assumed to be complex, with the imaginary
part assumed to have its origin in the damping pro-
vided by electron-electron interactions. The re-
flection coefficient from the static potential barrier
will thus be less than unity for the model. While
the choice for Vo(x) represents a severe simplifi-
cation of the actual state of affairs, it does have
the virtue of allowing very simple closed expres-
sions to be obtained in the discussion below.

We shall now derive the amplitude of the scat-
tered wave, using a technique very similar to that
employed in the theory of Raman scattering of light
from opaque materials. '

section for inelastic scattering of low-energy elec-
trons by surface optical phonons. The interaction
potential we employ for the two cases of interest
will be those derived in Sec. II.

We make two remarks about the approach we will
use. In Eq. (13) and Eqs. (14) we give the form
of the interaction potential and a surface optical
phonon with wave vector Q)) parallel to the surface.
The parameters zzo and P that appear in Eqs. (14)
should be taken to be the appropriate quantum-
mechanical operators, each involving the boson an-
nihilation and creation operators appropriate to the
surface phonon. In order to keep the equations of
the present as simple as possible, we treat these
two quantities as t.- numbers for the moment, and

the correspondence principle will be involved at
a later point in the discussion in order to obtain the
fully quantum-mechanical expressions for the cross
section. For the case considered here, where
only the one-phonon cross section is examined,
this procedure is quite straightforward and sim-
plifies the intermediate equations. We also con-
sider the scattering produced by one single pho-

non, and then construct the form of the differential
cross section per unit solid angle from this result.

If P(v, i) denotes the wave function of the elec-
tron, then we are led to examine the Schrodinger
equation (with k = 1):

~ ~

Va
~ v, (x)+zz(z)e'~"'»e'"'+c. c) z(z, ))

. ~())( i) (15)
Bt

In Eq. (15) Vo(x) is the potential associated with

the static crystal, which fills the half-plane z &0.
Since the scattering processes we consider are
produced by the long-range electric field outside
the crystal, we expect the general form of the eros&
section to be independent of the detailed structure
for Vo(x). For this function, we thus take the very
simple functional form

The wave function will first be Fourier trans-
formed in a manner convenient for the discussion
of surface problem:

dkd
g(& i)= 3 (1)(k„~;z)e " )'e . (IV)

, + " + V(z) -~ G(k„~;zz')=5(z-z') .
2m Bz 2m

(19)
As z-+ ~ for fixed z', we require G(k„(d;zz') to
satisfy an outgoing-wave boundary condition, and

G(k„(();zz')-0 as z- —~ With the aidof the Green's
function, Eq. (18) becomes

g(k„&u;z) = gp(k, ((); z) —f dz' G(k„(z);zz') n& (z')

x P(k(( —Q()
'

(z) —(z) z ) f dz G(k)) (z) ~ zz )

x n* (z') ())(k„+Q„;(d+(u„z'), (20)

where go(k„((),z) is a solution of Eq. (16) with

Ao„(z)=0. The solution (I)0(k))Q) z) describes spec-
ular reflection of the electron from the surface.

In order to solve Eq. (20), we need a form for
the Green's function that appears in the kernel of the
integrals. For our model, an explicit form for this
function is easily obtained. Define a quantity

y= (k'„+2m(V() —(u))'i '
and

k, =+(2m(d —k„)~

(2ia)

(21b)

Since Vp is complex, y is complex also. We al-
ways choose that square root which gives y a posi-
tive real part. For the values of k, )

and & of in-
terest, k, will be real. We choose the positive
root in Eq. (21b). Then we introduce two solu-
tions of the homogeneous part of Eq. (18):

e '""+Re"", z&O
0 (k))(d) z) =

T +)z 0Te, z&0 (22a)

e+(kzz z ) 0+

cosh(yz) + i(k, /y) sinh(yz), z & 0 .
(22b)

In Eq. (22a) we have

It = (k, —iy)/(k, + iy)

and T =1+R. The Green's function may be simply
expressed in terms of P' and g:

The Schrodinger equation then assumes the form

c
k)) 1 B

2 2
—(o —z, + )', e( — ))z(z„a;z)

2m 2m Bz

no„(z)f(k ) )Q)) (z) (d ) nod„(z) P(k))+Qz ' (()+ (d ) ~

(is)
We now introduce a Green's function, defined by

the equation
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G(k„~;zz') = f(m/u, ) [y'(k„~,z)y-(k„~,z') 8(z —z')

+ P (k„oo,z)g'(k„(o,z') 8(z' —z) .
We now return to the solution of Eq. (20). The

right-hand side consists of a sum of the specularly
reflected wave [represented by Po(k„~,z)] and the
scattered wave g, (kp oo z) An explicit expression
for $g (ko (0 ~ z) is

g,(k„(o;z) = —f dz' G(k„(u,zz') &o„(z')

x ( (ko —Qo ~ (d —(oq, z ) f dz G(kg coq zz )

x &g„(z')P(k„+Q„,(u+(u„z') . (23)

We shall calculate the amplitude of the scattered
wave to first order in ho„{z)in this paper. This
may be done simply by replacing the functions

P(k„+Q„,~a ~„z')on the right-hand side of Eq.
(23) by the amplitude Po of the incident wave in

Eq. (20). Then the first term in Eq. (23) de-
scribes the contribution to the amplitude of the
scattered wave from processes in which the elec-
trons absorb a surface phonon, and the second de-
scribes the contribution from processes in which

a phonon is emitted. We shall keep only the first
term, and note that the cross section for emission
and absorption may be related by considerations
of detailed balance. Upon inserting the explicit
form of the Green's function into the first term of
Eq. (23), one finds

g, (k„~,z) = f(m/-I, ) y'(k„~;z) f' dz'g (k„~,-z')

x &o,i(z') qo(%„-q„,o —o„z')—i (m/u, ) y-(k„~;«)

x f dz g (kg& z ) AQ )(z ) Po(k[~ Qo (0 (0~ z )

To calculate the cross section, only the form of
the wave function far from the crystal is of interest.
Thus we let z - ~, and note the second term drops
out, because h@„(z) -0 exponentially fast. Thus,
far from the crystal,

$~(k„M,z) = —f(m/k )e+'o z f dz p (kt(& z )

x ao„(z')go(k„—g„,&o —&u„z'). (24)

We have appended the superscript (s) to k„to de-
note that this quantity is the z component of the
wave vector of the outgoing scattered wave.

The integral in Eq. (24) extends over all values
of z . However, it is easily seen that the only ap-
preciable contribution occurs from the region z & 0.
This is because go ( ~ ~ ~, z ) and g ( ~ ~ z ) fall to
zero rapidly as z is moved into the crystal. The
region z & 9 contains a contribution only from a
thin layer with thickness the order of the electron
mean-free path, given as the inverse of He(y) in
our model. On the other hand tj ( ~ ~ z ) and

go( ~ ~, z ) have a wavelike character for z &0, and

the integral converges by virtue of the cutoff pro-
vided by 66„(z), which is proportional to e o'" .
Since the surface phonons of interest have wave-
lengths long compared to the depth of penetration of
the electron in the crystal, it follows that the lower
limit of the in«gral may be replaced by zero to a
good approximation.

Furthermore, we take g~(k„,co, z ) to represent
an electron of well-defined wave vector and energy.
For the region z & 0,

Equation (24) then becomes

q, (k„~;z)=—f(m/k, "')e'".'" (2z)'6(%„-%„,—Q„)

x 5((u-s) -d ')b{Q„)f dz'(e ' '+It e""I ")
-on~'

(
- +og~' ft p +'ooz' )

The integral in this result is trivially performed,
to yield

( (i'o (0'z)= —&(2z) (m/0 )8 ~ &(Qo)

x«6(kii-koine —Qi) ~(~-~s-&"')

Q„+fkg" + ikO, Q„+ikO, —ikg' Q, + ikg" —ikOg

+ . {g),
@

e 26A+I
Og

Consider the relative order of magnitude of the
terms in Eq. (26). The de Broglie wavelength of

the lncldent electron ls very sholt~ so both k~ and

i'oo, will be large compared to Q„, if we confine at-
tention to the scattering produced by long-wave-
length surface modes. It is then clear that the sec-
ond and third terms of Eq. (26) will give contribu-
tions to the cross section which peak sharply about
the specular direction, where k',"=ko, . The first
'and fourth terms give rise to a broad background,
which varies smoothly with scattering angle. The
broad background is weak compared to the small-
angle scattering. Since we are interested only in
the strong scattering that occurs near the specular
direction, we retain only the second and third
terms in Eq. (26). Indeed, the present theory is
not expected to give a meaningful result for large
scattering angles, since one requires the form of
the perturbing potential close to the crystal surface
to calculate this part. Furthermore, since the en-
ergy and outgoing direction of the incident and scat-
tered electron are nearly identical for the small-
angle scattering R and gi will be taken equal.
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Note that with these approximations the ampli-
tude of the inelastic wave is proportional to that of
the el.astically scattered specular beam. As one
can see from the preceding paragraph, this pro-
portionality holds only when scattering near the
specular direction dominates the cross section.

Before we proceed, we note that the four terms
of Eq. (26) have a simple physical significance, as
illustrated in Fig. 1. The second term describes
a process in which the electron is kicked onto the
outgoing trajectory before it strikes the crystal
surface [Fig. 1(a)]; the third [Fig. 1(b)] describes
a process in which the electron enters on the incident
trajectory, reflects off the surface, and is knocked
onto the outgoing trajectory after reflection. The
first term corresponds to Fig. 1(c), where the
electron is scattered onto the outgoing trajectory be-
fore it strikes the crystal surface. Finally, the final
term describes an interaction that knocks the elec-
tron onto the incoming portion of the scatteredtrajee-
tory, after its first reflection off the surface. The
total trajectory is the "two-bounce" trajectory shown
in Fig. 1(d). Note that for the processes shown in

Figs. 1(a) and 1(d), even though the scattered
trajectory may lie close to the incident one, a de-
flection through a large angle is required in the
scattering process.

If the approximate form of g, (k„&a&;z)obtained
from Eq. (26), after the first and fourth terms

(a)

are neglected, is substituted back into Eq. (17),
for the outgoing wave we obtain

2f~R +(%II) Qll t k ~8~'i -4E~& ~f

where R= R,=RI is the reflection coefficient,

M, = k, -k', k, = k',"+ Q„,
and

(27a)

(27b)

E(0) E (s) (27c)

Let j, denote the magnitude of the probability
current associated with the outgoing wave and j,
that associated with the incident wave. Since ko
= k'", a short calculation shows

j, 8IRI Ih(Q„)l Q„'
(28)

where we have replaced k", by mV,'" =mVo, =mV, .
Equation (28) gives the scattering efficiency

associated with one particular surface optical pho-
non. The scattering efficiency per unit solid angle
can be determined as follows. Consider the scat-
tering produced by the modes that lie in the area

Q Ij of the Q „plane. The total number of such
modes is Ad'Q„/4m~, where A is surface area.
The total outgoing current produced by the modes
that lie within the area d'QI, may be found by mul-
tiplying Eq. (28) by Ad~Q„/4m~. Suppose these
modes scatter the electrons in to the solid angle
dA. The scattering efficiency per unit solid angle
is then

dS 2 IR I I 6(Qi)l QI d Qp (29)

The ratio d Q„/dfl is readily calculated by means
of an argument presented elsewhere. ' One finds

d'QI,
~s cosmos &

(29a)

(c)

where 8, is the angle between the scattered beam
and the normal to the surface. Then, finally, for
scattering near the specular direction,

(80)

FIG. 1. Schematic representation of the four terms
in Eq. (26): (a) the second term; {b) the third term; (c)
the first term; (d) the fourth term.

where we write V, = Vocos8, and 8 measures the
angle made by the incident beam and the normal
of the crystal surface.

We now turn to the kinematics of the scattering
process to first express the right-hand side of Eq.
(30) entirely in terms of Q„, then finally in terms
of a set of angles which define the direction of the
outgoing beam relative to the specular beam.

Consider energy conservation, and suppose IQI
„

« Iko„l. Then we have
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dQ
—= —omE' 'f~(QQ) fofR

f
cos8

V' Qrr

I&'Q'+ (Id —& 0 )')' )
From the form of the quantity in large parentheses

in Eq. (31), one. can begin to see the result of
Lucas and Sunjic emerging from the present work.

We define the direction of the scattered beam
by introducing the two angles P and y indicated in
Fig. 2. The g and y axes are oriented so the
specular trajectory lies in the x-z plane. The
angle between ko and k, is g, and only the limit
((«1 is of interest. The angle between the plane
which contains k0 and k, and the g-z plane is
denoted by p.

From the geometry of Fig. 2, combined with
conservation of energy and the component of
wave vector parallel to the surface, we find (for
((I«1)

Qii = ko ()t siny

Q,", = ((d, /Vo)sin8 —ko((cos8cosy

(32a)

(32b)

2 2
(8) ( 0(i+ 'Q(0) (kos+ nkg) =E— V q V+ II '4L II + I s2m 4PPl

=E +(d, ,

where V„is the component of the electron's veloc-
ity in the plane of the surface. Thus we have

&k.= (1/Vi) ((d, —Vii
' Qii),

and Eq. (30) may be written

b k, = ((d, /Vo)cos8+ ko(C) sin8 cosy (32c)

where k0 and V0 are the wave vector and velocity
of the incident electron, respectively; it then fol-
lows that

Q2+ (gk )2 k2 [(F)2+ (& /2E(0))2 ]

and
2

Q„=k0 cosy cosa — '&0&' sine +00 sin y

Thus, dS/dA may be written in the form

dS A mfa(@, y)/
dg g E' 'cosa

[cosy cos8 (F) —((o, /2E' ')sin8] +sin y g
[q2 ( /2E(0))2 ]2

Equation (33) is the final result of the present
section. One can see that the scattering cross
section does indeed contain a strong peak about
the specular direction. The cross section falls off
rapidly when g»(d, /2E' '. Before we can dis-
cuss the detailed behavior of the cross section,
we need information about ~4(g, y) ~2. We thus
must consider the ionic and covalent crystal
separately, as we have seen in Sec. II. We now
turn to these two cases.

Before we proceed, note that dS/dA is propor-
tional to the intensity of the scattered beam. This
proportionality is well supported by the data on
ZnO. The validity of this relation depends on the
small contribution provided by the terms illustrat-
ed in Figs. 1(a) and 1(d), as remarked earlier.

Application of Theory to Ionic Crystals

The central question in this case is the relation-
ship of the present results to the earlier work of
Lucas and co-workers. We shall examine only
the expression for the total cross section. Thus,
we want to compute the integral of dS/dQ over all
solid angle to compare with their results. This
may be done conveniently by utilizing Eq. (31).

This gives for the total scattering efficiency

4~ E(0)S=, fR f' cos8 de
f
n(Q„)f'

V2 Q
2

[ V,'Q,', + (0), —V„g„)']'
This may be converted to an integral over Q„

by the use of Eq. (29a):

S= '
~ IR I'

f~
d'Q In(Q )

FIG. 2. Angles'f and p used to define the direction
of the scattered beam.

V2 Q2

[V', Q'+ (0), —V„g) 1
(34)
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From Sec. II, we have

~2~28 2e +2

I~(Qt~)l =
Qo 1, , o Iuo(Q~~)l

where uo(Q„) is the amplitude appropriate to the
surface phonon of wave vector Q„.

The coordinate u is the normal coordinate as-
sociated with optical motion of the lattice. If we
consider a lattice consisting of two ionic species,
one of mass M, and one of mass M2, the optical
displacement of atoms in the unit cell is

u(l)= u, (1)—uo(l)

1 e (Tl) e(»)
(2o/ )1/2 (M )1/2 (M )1/2 ( n+ n ) '

In this expression, n is a normal-mode index.
When optical motion of the lattice is excited, the
center of mass of the unit cell remains at rest, so

(M~) / e„(T1)+(Mo) / e„(f2)=0 (35)

for such a mode. The eigenvector of the model
must be normalized, so

~ [ I
"(&1)I'+ I e.(») I']=1

1

For the Fuchs-Kliewer surface mode, we have

e (11)= C (x —f z) e'o" "~~e o"'

as we have seen, with e(Tz) determined by Eq. (35).
The constant C is uniquely determined from the
normalization condition:

C = [Mz Q„ao/N, (My+ Mo)]

where ao is the separation between successive
layers. Then, if the sum over s is restricted to
the Fuchs-Kliewer modes only, and p. is the re-
duced mass of the unit cell,

a/2
u(I') = Q (z fz ) e ~ o 11' / ll e "oo ~

2X, &,p,

x (Qo„+0oo) .

The correspondence principle states that the clas-
sical amplitude luo(Qp) I 'that appears ln Eq, (34)
is to be replaced by the coefficient of (x —iz) in
the matrix element of u(0) between states with

n, and (n, —1) phonons of wave vector Q„.

Iu (@i) I

- (Qiiao/~8"o&)n, ,

where in thermal equilibrium, n, = (z"s/'zr- 1) in-
dependent of Q„. Then Eq. (34) becomes

2 2 42 2 2

S =16
p, (1+co)o . [V Q +(o/ —V '4») ]

where A, is the area of the unit cell in the surface
of the crystal. The quantity A, ao may be identified
with the volume of the unit all in the bulk. Thus

~.V(1+~o) '. [V.'Q'+(~ -& 0 )']z '

Now introduce the ion plasma frequency +~, de-
fined by

o/p = 4''ne /l/,

Then inserting a missing factor of I, we have

2 2 2 2
~~), 4 o//, e d Q~, V, Q~)

o h'o/, (1+co)' "' [V,'Q,', +((u, -g ' V )']'
(36)

The result displayed in Eq. (36) may now be
conveniently compared with that of Lucas and Sun-
jic. If, in their classical treatment, the electron
is allowed to follow the specular trajectory after
reflection from the crystal surface, and if their
parameter I'0 is replaced by the quantum-me-
chanical reflection coefficientlR I, then our result
is identical to their expression for the one-phonon
cross section.

We conclude this section by quoting the expres-
sion for the total scattering cross section obtained
from Eq. (36)':

S=oIBI [e o//, /ko/, V,(i+co) ].
A complete and careful review of the remarkable

agreement between the Lucas-Sunjic theory and the
experimental data on ZnO has been given by Ibach. '

B. Application of the Theory to Nonionic Crystals

We start with Eq. (33) and obtain the form of
[ 6 I

o from the earlier discussion. From Eq. (14b),

16 2 2 2 2

i~(oIi'=;," .' ~*~ —'(o p)') ws)

Prom Eq. (38), one sees that the contribution to
the cross section from atomic motions normal to
the surface is larger by a factor of E than the con-
tribution from that parallel to the surface. Since
& = 12 for silicon, the second term is much smaller
than the first for this crystal. In the discussion
below, we shall drop the term proportional to P~, ,
upon the assumption that the surface phonon in-
volves motions normal to the surface. At Q„=0,
symmetry arguments require the surface optical
mode either to be nondegenerate and polarized
normal to the surface, or doubly degenerate and
polarized in the plane of the surface. '~ The fact
that the surface-optical-phonon frequency lies very
close to the bottom of the ID branch in the (111)
direction and close to the top of the LA branch
strongly suggests the former to us, but the issue
cannot be settled at this time. A detailed study of
the surface optical vibrations of a silicon crystal
with a (111)surface is under way and will be re-
ported later. At this time, our assumption that the
motion is normal to the surface is plausible from
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the physical point of view, but is still open to ques-
tion.

Then Eq, (38) becomes

(Q„)~ = [16m noe t /(I+a) ]~~ . ' (39)

We must now obtain an expression for P&, from a
correspondence-principle argument similar to the
one used above.

The silicon crysta, l with a (111)consists of series
of layers, each with hexagonal symmetry, for the
case where the surface is unreconstructed. Let
(1„,l,) be the coordinates of an atom at site 1, in
the layer /, units from the surface. Then, as
above, we write the displacement operator u(l „l,)
in the form

u(1„/,) = 2 2" 'q~a [a„+a„],
l~)~s, n n

where, as before, the subscript n denotes the quantum
numbers of the mode.

We now construct an expression for the dipole
moment associated with the mode. For simplicity,
we suppose the surface is unreconstructed. The
argument here is easily generalized for any spe-
cific model of the reconstructed surface. Upon
ignoring surface reconstruction, we can introduce
a dipole-moment effective-charge tensor e*~(/,),
which depends only on l,. This effective-charge
tensor is nonzero only by virtue of the effect of the
absence of an inversion center for sites near the
surface. Thus, e*,z(/, )- 0 as one penetrates into
the bulk. The change in the electric dipole moment
associated with any atom P( 1) produced by a dis-
placement u(l) is given by

& (1)=Z, e*,(/, )u, (I) .
Since a rigid displacement of the crystal cannot
produce a change in the dipole moment of the crys-
tal, one requires

Z e*g(/, ) = 0 .
l'

g

The form e*~(/, ) can assume is limited by the
symmetry of each site. In the crystal with an un-
reconstructed surface; each site has a threefold
axis normal to the surface. The existence of this
axis requires e„„(l,) = e»(/, ) = e*„(l,) and e„(l,)
= e,*(l,), with e q(/, ) = 0 for o & p. The effective-
charge tensor is thus diagonal, with a different ef-
fective charge for motion parallel to or normal to
the surface.

Then we have

If we consider the case where the electron is
scattered, with the absorption of a surface phonon,
the correspondence principle dictates replacing
P,' with

iZ e (l )( (Q l )i
2MN~ R~ (Q ~ )

If the remarks in Sec. II about the character of
the surface mode in silicon are recalled, then so
long as we consider scattering near the specular
direction, where Q~~ is small, we may replace
Q„by zero in this last result. If we denote the
Q„=0 surface-optical-mode frequency by (u„then
we write

i I

where

q, = E e„(l,) $, (.o, l,)
E~

is the effective charge of the Q„=0 surface optical
pho non.

Equation (39) then becomes, for the case where
the phonon is absorbed in the scattering processes,

2 8 nvOqe, e2 2 2 2 2

~4(Q„)
~

=
MN 1, n, independent of Q„.MN, ~, I+a

From Eq. (33), the scattering efficiency per
unit solid angle is then (for absorption)

dS 8m~, ~'q', ~'i R i'
dQ M&,E+' cos8 (1+ e)

(cosy cos8$ sin8ga) +-sin yt/

(0'+ 4e)'

where we have defined pe= h~, /2E
We first examine some features of Eq. (40) and

then we estimate the numerical value of q, from
Ibach's data For sm. all values of g, we have the
solid angle

(4o)

dQ = gdgdy .

We integrate Eq. (40) over q and thus derive an
expression for the total efficiency for scattering
into a ring of thickness dt/I;

Then, if we consider a single-surface optical
phonon of wave vector Q„,the operator that cor-
responds to our parameter P, is

~ e.(l.) &. (@, l.)

&„(I)=e,(/, ) Z " ";,a [a„+a„].
For the surface optical phonon e„(l~~l ) will

have the form

e„(T„/,) = (N, )
e'o"'"~ $ (Q„,l,) .

(41)
where y = [2sin 8/(1+ cos 8) ].

One important difference between the angular
distribution for scattering from silicon and from
ZnO may be seen from Eq. (41). In both cases,
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the differential cross section peaks strongly for
g the order of gs. and then falls off to zero for

However, for ZnO, when g»g~, (dS/dg)
varies as g ~. The total cross section, obtained
by integrating dS/dg over all g, is perfectly finite,
as one can see from Eq. (37). However, for
scattering from silicon, for g» (s, dS/dg falls
off much more slowly with g, like g

' and not g
There is for g» gs a long slowly decaying tail to
the angular distribution present 1n EQ. (41) that ls
not present in ZnQ. When we compute the total
observed one-phonon intensity from Eq. (41), we
must cut off the result at a cutoff angle P, that is
a parameter characteristic of the spectrometer.
For g, » g~, the total intensity S will vary like
in(g, /gs), while in the case of ZnO, if a cutoff is
used, the cross section becomes independent of
an angular cutoff, when g, »gs. We shall also
see that for fixed g„the energy dependence of the
one-phonon cross section in silicon is expected
to be different for silicon, when compared to the
E ' ' dependence characteristic of ZnQ.

The difference in the angular distribution and

energy dependence of the one-phonon cross section
in those two cases is a direct reflection of the dis-
tinct character of the surface waves. In ZnQ,
as @II-O, the thickness of the oscillating electric
dipole layer excited by the wave increases as
Q„,. In silicon, the amplitude and thickness of the
dipole layer remain fixed. Thus, the study of the
energy dependence of the one-phonon cross section
should provide a means of distinguishing between
the two kinds of surface waves descxibed here.

Upon integrating Eg. (41) from 0, the cutoff
value g„the total efficiency becomes (with h in-
serted)

~so& q, & IR I n, (1+cos 8)
RM&, E'0' cos8 (1+ e)3

z
' +ln ie —' . 42

Equation (42) is the scattering efficiency associ-
ated with a process in which a phonon is absorbed.
The emission cross section may be obtained by
replacing n, by 1+x, .

We now apply this result to silicon. In silicon,
&=12, and no=0. 8&&10 ' unit cells/cm. The mea-
surements show A, = 55 meV, and Ibaeh reports
the value of V&10 for the ratio of S/IA I for
electrons of incident energy 5 eV for the emission
process. For this incident energy, gz= 0. 32', and
evidently (,= 0. 5' for lbach's spectrometer. For
an angle of incidence of 45', Eq. (42) gives

q~ = 0.5e (43)
for the dipole-moment effective charge of the sur-
face mode.

We make some comments about the number dis-
played in Eg. (43). While there are no microscopic
theories of the surface-induced effective charge at
this time, we feel this result is a reasonable one.
Since q~ is nonzero by virtue of the low-site sym-
metry near the surface and the highly covalent
bonds present in silicon can be regarded as rather
rigid, we would not expect q, to be large compared
to e. If we had ascribed the scattering to modes

FIG. 3. Dependence of the integrated
cross section S on the cutoff angle gc for
a circular aperture, for 5-eV electrons
incident on the 0.11) surface of silicon at
an angle of 45 ~

0

Pz (Degrees)
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FIG. 4. Energy de-
pendence of the one-
phonon cross section.
We plot S vs g, /Pz for
electrons incident on the
(111) surface of silicon
at an angle of 45'. The
dashed line is the result
appropriate to the E ~

law characteristic of the
total integrated cross
section from ionic crys-
tal, such as ZnO. For
5-eV electrons incident
on Si, P~/gz=l. 56, as
indicated.
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polarized parallel to the surface, the effective
charge q, for motion parallel to the surface would'

be larger than the value displayed in Eq. (43) by
a factor of &, so q, ~

would have to be the order of
4e to explain the observed intensity. If the preced-
ing remark is correct, such a large value of q„
would be hard to justify from a physical point of
view. We feel this offers further support for our
supposition that the scattering is produced by a
mode polarized normal to the surface.

In his paper on electron scattering from silicon,
Ibach estimated that the effective charge in the
surface was the order of 0. 1e, much smaller
than our estimate. Since Ibach has not presented

'
the argument he employed to obtain this result,
nor defined the effective charge introduced by him,

it is difficult to compare our estimate with his.
We conclude by calling attention to Figs. 3 and

4. In Fig. 3, we plot the dependence of the inte-
grated cross section for incident electrons with
an energy of 5 eV, as a function of the cutoff angle

P, ." In Fig. 4, we plot the energy dependence
of the one-phonon intensity on a semilog plot. The
result is compared to the E law characteristic
of Zno.
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The results of an earlier paper on the relation between elastic constants and second- and
third-order force constants in face-centered-cubic and body-centered-cubic lattices appeared to
conflict with the Cauchy relations C12 =C44, Cf f2 C166, C123 =C456 =C144 obtained by Cousins.
We show here that no conflict exists when we ensure that the lattice is in stress-free equilibri-
um, a necessary condition for Cauchy relations to hold. However, for the case of nearest- and
next-nearest-neighbor central-force interactions previously considered, we obtain only special
cases of these Cauchy relations. We extend our earlier work to include further neighbors and
find that the Cauchy relations are obtained when third neighbors contribute to the elastic con-
stants.

I. INTRODUCTION

C12 = C44 C112 ——C

In an earlier paper, hereafter referred to as I,
on the relation between elastic constants and gen-
eral second- and third-order force constants in
cubic crystals, we also considered the special
case of central-force interactions between atoms.
The relation between the elastic constants thus
obtained, appear to contradict the Cauchy relations
for nth-order elastic constants given in a recent
paper by Cousins. Cousins shows that the con-
tribution to the elastic constants, C, &, from
each pair of neighbors is such that all the indices
i, j, . . . may be permuted, not just the Voigt in-
dex pairs ij . Thus he obtains the second- and
third-order Cauchy relations for cubic crystals,

include a pressure term. Therefore the relations
between the elastic constants which we obtained
are not the Cauchy relations.

In Sec. II we shall show that when we apply the
condition for stress-free equilibrium of a lattice
to the relations given in I, our results satisfy a
special case of Eg. (I). The general case is ob-
tained when we extend our earlier work to include
second- and third-neighbor interactions in the fcc
lattice (Sec. III) and bcc lattice (Sec. IV).

In the Appendix, for convenient reference, we
quote equations from I that we use in this paper.

II. STRESS-FREE EQUILIBRIUM

The condition for stress-free equilibrium of a
lattice with central-force interaction between
atoms is given by

C123 = C456 = C144 ~

(n, ti= 1, 2, 2), (2)
Now the conditions which must be satisfied if the
Cauchy relations are to hold are as follows: (i)
the atoms must interact with central forces, (ii)
every atom must be at a center of inversion, and

(iii) the crystal must be free from external stress.
Clearly in I, condition (iii) is not satisfied since
our expressions for the elastic constants explicitly

where g(r ) is the interatomic potential regarded
as a function of the square of the interatomic dis-
tance, and x, is the equilibrium position of the lth
atom.

For the fcc lattice with nearest-neighbor inter-
actions, Eq. (2) becomes


