⁸R. E. Allen, G. P. Alldredge, and F. W. de Wette, Phys. Rev. B $\underline{4}$, 1648 (1971).

⁹M. Hass, Phys. Rev. Letters <u>13</u>, 429 (1964).

¹⁰R. Englman and R. Ruppin, Light Scattering Spectra

PHYSICAL REVIEW B

VOLUME 5, NUMBER 10

1969).

(1967).

15 MAY 1972

Structure of Orthorhombic $V_{0.95}Cr_{0.05}O_2^{\dagger}$

J. W. Pierce and J. B. Goodenough

Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173

(Received 15 July 1971)

A structure determination of the orthorhombic phase of $V_{0.95}Cr_{0.05}O_2$ based on powder data indicates that the probable space group is F222 and the room-temperature lattice parameters are $a_o = 13.015$ Å, $b_o = 12.597$ Å, and $c_o = 5.795$ Å. The structure represents a distortion of the tetragonal rutile structure of high-temperature $(T > 68 °C) V_2O_4$ having cell parameters $a_r \approx a_0/2\sqrt{2}$ $\approx b_o/2\sqrt{2}$ and $c_r \approx \frac{1}{2}c_o$. The orthorhombic cell contains $16(V_{0.95}Cr_{0.05})_2O_4$. There are four distinguishable *c*-axis chains of edge-shared octahedra: Cations V_1 in 4*a* and V_2 in 4*b* occupy alternate positions of one chain, the V_1 -O separations being nearly uniform (≈ 1.895 Å), whereas the V_2 -O distances along b_o are shorter (1.85 Å) and the four others are longer (2.04 Å). Cations V_3 in 8*j* and V_4 in 8*i* exhibit antiferroelectric displacements along half the *c*-axis chains, and cations V_5 form V_5 - V_5 pairs along the fourth *c*-axis chain. The relationship of this structure to the semiconductor-to-metal transition in VO_2 is discussed.

I. INTRODUCTION

In a previous paper¹ it has been argued that the monoclinic-to-tetragonal transition in VO₂ at 340 K consists of two distinguishable components: an antiferroelectric-to-paraelectric transition and a simultaneous change from homopolar bonding of V-V pairs to metallic bonding within a V^{4+} ion chain along the monoclinic axis $a_m \approx 2c_r$, which is parallel to the tetragonal c_r axis. The two transitions, monoclinic-to-orthorhombic at T'_t and orthorhombicto-tetragonal at T_t , that have been reported² for the system $V_{1-x}Cr_xO_2$ were therefore interpreted to signal the separation of these two components. According to this interpretation, the orthorhombic phase appearing in the intermediate temperature range $T'_t < T < T_t$ should manifest primarily—if not purely-antiferroelectric-type displacements of the V^{4+} ions from the centers of symmetry of their octahedral sites. In order to check this hypothesis, the orthorhombic room-temperature structure of $V_{0.95}Cr_{0.05}O_2$ has been determined from intensity measurements of an x-ray powder diffraction pattern.

II. EXPERIMENTAL

The powder material used in this study was prepared by firing V_2O_3 , V_2O_5 , and CrO_2 for five days at 700 °C in an open platinum bullet that had been sealed in an evacuated quartz tube. The V_2O_3 was prepared by hydrogen reduction of Johnson Mathey $V_2O_5,$ and the CrO_2 was obtained by decomposition of CrO_3 at 20 kbar and 400 $^\circ C\,{}^3$

of Solids, edited by G. B. Wright (Springer, New York,

¹¹M. Hass and H. B. Rosenstock, Appl. Opt. <u>6</u>, 2079

Positions of the diffraction peaks were obtained from a $\frac{1}{4}^{\circ}/\text{min}$ diffractometer scan using a Norelco goniometer and monochromated (graphite crystal) Cu K α radiation. These were corrected by calibration against a silicon external standard. Lattice parameters were obtained by refinement of 2θ values using the simplex method. Observed *d* spacings and those calculated from the refined lattice parameters are listed for comparison in Table I.

Intensity data were collected on a Norelco diffractometer by accumulating counts while scanning over the peak, or group of peaks, at $\frac{1}{4}^{\circ}/\text{min}$ and subtracting background. The value of background at a particular 2θ value was taken from a curve constructed from background regions containing no peaks.

Refinement of variable atomic-position parameters and the cell temperature factor was made using a simplex program that minimized the discrepancy factor

$$R = 100 \sum_{i} \left| I_{i}^{\text{calc}} - I_{i}^{\text{obs}} \right| / \sum_{i} l_{i}^{\text{obs}}$$

The atomic scattering factors for V^{3+} and O^{2-} ions were those of Cromer and Waber, ⁴ while the real and imaginary parts of the anomalous dispersion terms were taken from Cromer.⁵ The intensity data were corrected for polarization due to the curved, graphite diffracted-beam monochromator.

TABLE I	Observed	and	calculated	intensities	for	Vo or Cro or Oo.
1111111111	Obberveu	ana	carcurated	meenoreroo	101	* 0.95° - 0.05° 2•

Iobs	Icalc	hkl	$d_{\rm calc}$	dobs	Iobs	Icalc	hkl	$d_{\rm calc}$	$d_{\rm obs}$
2.0	0.62	200 020	6.507 6.298	•••	20.0	23.64	513 280	1.540 1.530	1.541 •••
2.0	2.70	$\frac{111}{220}$	$4.881 \\ 4.526$	•••	9.7	11.46	$\begin{array}{c} 153 \\ 642 \end{array}$	1.522 1.521	1.522
49.3	55.41	311	3,348	3.350	2.0	1, 19	660	1.509	• • •
2.0	2.50	131	3.290	•••	2.0	1, 10	462	1.507	• • •
886.3	890.65	400	3.254	3.252			533	1.455	1.455
893.0	869.00	040	3.142	3.147	220.1	221.12	751	1.449	1, 119
		002	2.898	• • •			353	1.445	1.446
2.0	2.03	420	2.891	•••	6.6	1 75	640	1 494	1 495
	50 50	240	2.830	0.050	0.0	1.70	000	1,404	1,400
88.8	70.73	331	2.676	2.676			$\frac{802}{480}$	1.419	1.417
2.0	1.71	$\begin{array}{c} 202\\ 022 \end{array}$	2.647 2.632	•••	67.9	82.28	$\begin{array}{c} 204 \\ 024 \end{array}$	1.414 1.412	• • •
868.0	872.09	222	2.440	2.439	7 5	7 03	911	1 394	1 304
17.9	17.98	511	2,333	2,333	1.9	1.00	011	1.001	1,001
04 6	101 94	151	2,275	•••	9 1	6 47	822	1.384	1.384
94.0	101.04	440	2.263	2.262	3.1	0.41	224	1.380	1.380
2.0	1.47	600	2.169	•••		0.01	282	1,353	
195.6	196.78	402	2.164	2.164	2.0	0.31	191		
209.8	182.13	042	2.132	2,132			662	1.338	1,338
2.0	0.03	060	2.099	• • •	276.2	272.58	713 931	1.332 1.331	
		531	2.067	•••			404	1.324	1.324
45.4	45.60	$\frac{620}{422}$	2.051 2.047	2.048	151.4	152.12	553	1.321	•••
		351	2,039	• • •			044	1.316	1.316
		242	2.026	•••	2.0	4.75	$\frac{173}{1000}$	1.310	•••
37.1	48.25	260	1.998	1.998			201	1 900	
30.1	18.94	113	1.889	1.890			391 424	1.298	
			1 500		13.3	9.13	842	1,293	1.293
2 0	1 95	640 442	1.786				244	1.290	
4.0	1,00	460	1.764	• • •			860	1,286	
		711	1 759	1 759			733	1,276	
36.1	34.39	313	1.755	1.100	28.5	21.68	1020	1.275	1 050
			-, . 10		ł .		680	1 979	1.273
00.0	0.0.00	133	1.739	•••			+04	1,210	
26.2	28.03	602 551	1.737	1.736	10 0		771	1.262	1.262
		001	1.120		13.0	7.87	373	1,260	• • • •
2.0	0.27	171	1.704	• • •			0100		
2.0	0.21	062	1.700	• • •	4.1	6.98	2 <u>10</u> 0 951	1.237 1.226	1.230
429.4	431.58	622	1.674	1.674	19.6	28 49	444	1 220	1.220
499.6	468.24	262	1.645	1.645	10.0	20.10	591	1 206	
		731	1.631	1.631			604	1.200	• • •
134.2	168.14	333 800	1.627	1,627	2.0	6.79	1040	1.203	• • •
		000		·			064	1.192	•••
6.6	14.45	371	1.598	1,599			<u>10</u> 02	1,187	. 1 104
152.9	150.52	820 080	1.575	1.575	5.4	6.26	624 753	1, 183	1.184

Iobs	Icalc	hkl	d_{calc}	$d_{\rm obs}$	Iobs	Icalc	hkl	d_{calc}	d _{obs}
10.6 11.21		862	1,175	• • •		0 71	791	1.098	• • •
	573		1 175	2.0	6.71	393	1.097	• • •	
	11,21	4 <u>10</u> 0		1,170		7.64	6100	1 089	• • •
		264	1.173	• • •	3.1		4102	2.000	1,088
	22.12	1022	1.167	1,167	-		3111	1.088	• • •
12.5	22.40	682					1200	1 095	
		0109	1 155		64 7	67 49	335	1.082	1 082
	1111	1,100		04.1	01.10	804	1.002	1.002	
41.3	21.48	$\frac{11}{913}$	1.153	1.153					
		115	1,150		2.0	2.71	773	1.075	•••
90.6 84.71		0100	1 100	1 105	45.4	50,42	1220	1,069	• • •
	94 771	2102	1,137	1,137			824	1.066	1.065
	04.71	00U 193	1,131	1,102			084		
		100	1.123	1,120			2120	1.036	
2.0	0.00	644	1.125	• • •	22.3	33.51	1062	1.033	1.034
21.0 15.1	te io	971	1.107	1.109			5111	1.031	
	15.13	1060				19.60	4120	0 000	0 0002
					18.7		4 <u>12</u> 0 8100	0.906	0.9994
							0100	0.000	

TABLE I. (Continued)

III. RESULTS

Chamberland⁶ has shown that the powder patterns of a number of cation-substituted VO₂ phases can be indexed on the basis of an orthorhombic cell of either *Fmmm*, *Fmm*₂, or *F*222 symmetry. Our sample of composition $V_{0.95}Cr_{0.05}O_2$ had the orthorhombic lattice parameters $a_o = 13.015$ Å, $b_o = 12.597$ Å, and $c_o = 5.795$ Å at room temperature (see Appendix). The systematic extinctions were consistent with a face-centered cell, and subsequent refinement indicated that the probable space group is *F*222.

Three observations suggested that the orthorhombic structure, like the monoclinic structure of VO_2 , is closely related to the tetragonal rutile structure of high-temperature VO_2 : (i) the existence of the rutile structure at $T > T_t$ (space group $P4_2/mnm$; $a_r = 4.5534$ Å, $c_r = 2.8502$ Å for VO₂), ⁷ (ii) the derivation of the low-temperature $(T < T'_t)$ forms from the rutile structure, and (iii) similarities in the three powder patterns. In addition, the orthorhombic and tetragonal axes are related as $a_o \approx b_o \approx 2\sqrt{2} a_r$ and $c_o \approx 2c_r$. Therefore the observed orthorhombic cell was superimposed on the rutile lattice so that its long axes lay along the diagonals of the rutile cell, as illustrated in Fig. 1. Models were then derived by assigning the thirty-two vanadium and sixty-four oxygen atoms in the cell to positions consistent with each of the three possible space groups (Fmmm, Fmm2, F222) and small displacements from the tetragonal lattice positions.

Refinement in space group F222 using the sixty intensities listed in Table I gave the cell temperature factor and thirteen variable position parameters of Table II with a reliability factor R = 6.0%.

Sixteen peaks, or composite peaks, having zero observed intensity were assigned an intensity equal to half that of the minimum peak in the pattern and were included in the refinement. There were no outstanding discrepancies among these peaks. However, removing their contribution to the refined reliability factor gave a value R = 5.6%. It should be noted that the data used in the refinement include all of the peaks allowed by the space group *F*222 over the range $12^{\circ} < 2\theta < 102^{\circ}$, with the exception of two low-intensity envelopes containing contributions from seven or more allowed peaks.

The model consistent with space group *Fmmm* allowed seven variable position parameters and

FIG. 1. Relationship of tetragonal and monoclinic phases to the orthorhombic phase in interval $T'_t \leq T \leq T_t$ of $V_{0.95}Cr_{0.05}O_2$.

was refined on the same data to a reliability factor R = 15.7%. The high R factor obtained was the basis for the rejection of this model. A similar refinement of the twenty-one variable position parameters allowed by space group Fmm2 converged to a reliability factor R = 6.3%. The fact that the R factor increased in spite of the increase in the number of parameters indicates that this model is unsatisfactory in comparison to that of F222.

The above observations are regarded as a clear indication that the most probable space group is F222.

IV. DISCUSSION

Figure 2 illustrates the atomic displacements responsible for the change from tetragonal to orthorhombic symmetry. The orthorhombic structure contains four distinguishable chains of edge-shared octahedral sites parallel to the c_o axis. One chain contains the two distinguishable cations V_1 and V_2 , which remain in the center of symmetry of their respective octahedral sites. The O_1 ions in an a_o - c_o plane are displaced toward the V₁ ions and away from the V_2 ions; they are also rotated about their nearest V_1 - V_2 axis. The second chain consists of alternating V_3 and V_3 , ions, which are oppositely displaced along the orthorhombic a_{o} axis to make very short V3-O5 bonds: The V3-O5 separation is 1.68 Å, whereas the V_3 - O_6 separation is 2.20 Å. The third chain also consists of oppositely displaced V_4 and V_4 ions, but along the orthorhombic b_o axis to make two shortest V_4 - O_2 bonds of 1.87 Å. Only the fourth chain consists of V-V pairs along the c_0 axis. The bridging O_6 ions between the $V_5 - V_{5'}$ pairs have a $V_5 - O_6$ separation of only 1.84 Å.

Analysis of the principal driving force responsible for this structure must begin with a definition of cooperative ferroelectric-type displacements, which create preferential metal-anion bonds. The phenomenological definition in terms of vibrationmode softening, although descriptively useful, pro-

TABLE II. Crystal structure of V_{0.95}Cr_{0.05}O₂.

hanness	, 					
Space group Unit-cell di Cell content	$\begin{array}{l} \text{mensions: } a=13.015 \text{ Å, } b=12.597 \text{ Å, } c=\\ \therefore 16\text{V}_2\text{O}_4 \end{array}$	=5.795 Å				
V_1 in (4 <i>a</i>) V_2 in (4 <i>b</i>) V_3 in (8 <i>j</i>) V_4 in (8 <i>i</i>) V_5 in (8 <i>h</i>)	$\begin{array}{l} (0, \ 0, \ 0) \\ (0, \ 0, \ \frac{1}{2}) \\ (x, \ \frac{1}{4}, \ \frac{1}{4}; \ \frac{1}{2}-x, \ \frac{1}{4}, \ \frac{1}{4}) \\ (\frac{1}{4}, \ y, \ \frac{1}{4}; \ \frac{1}{4}, \ \frac{1}{2}-y, \ \frac{1}{4}) \\ (\frac{1}{4}, \ z; \ \frac{1}{4}, \ \frac{1}{4}, \ \frac{1}{2}-z) \end{array}$	x = 0.0218(2) y = 0.0024(2) z = 0.0316(8)				
O ₁ in (16k)	$(x, y, z; x, \overline{y}, \overline{z}; \overline{x}, \overline{y}, z; \overline{x}, y, \overline{z})$ x = 0.1020(5); y = 0.0074(5);	z = 0.2325(10)				
O_2 in (16k)	x = 0.2515(5); y = 0.1004(5);	z = 0.0089(10)				
$O_3 \text{ in } (8f)$ $O_4 \text{ in } (8f)$ $O_5 \text{ in } (8j)$	$(0, y, 0; 0, \overline{y}, 0)$ $(x, \frac{1}{4}, \frac{1}{4}; \frac{1}{2}-x, \frac{1}{4}, \frac{1}{4})$	y = 0.1506(5) y = 0.3533(5) x = 0.1506(5)				
O_6 in $(8i)$., ., ., ., ., ., .	x = -0.1473(5)				
Cell temperature factor: 1.3						

vides no insight as to why a particular mode, or set of modes, becomes soft. For this latter purpose, we must consider the electronic energies, since the internal energy is the sum of all the oneelectron energies. As there are no localized 3delectrons in VO₂,¹ we need consider only itinerant electrons in band or molecular-orbital states.

The compound $SrVO_3$ has the cubic perovskite structure and is reported to be metallic and Pauli paramagnetic.⁸ This demonstrates that the V⁴⁺-O²⁻: p_{π} -V⁴⁺ interactions are strong enough to delocalize the single 3*d* electron per V⁴⁺ ion in this compound.⁹ (The formal valence V⁴⁺ indicates the number of "3*d*" electrons per cation, since the Fermi energy lies between a filled O²⁻: 2*p* valence band and an empty V: 4*s* conduction band.) Qualitatively, the band structure for this compound would be similar to that for ReO₃, the Sr²⁺ ions donating two electrons per cation to the $(VO_3)^{2-}$ array. This band structure, in the absence of spin-orbit coupling, would be like that shown schematically in Fig. 3.

Let us assume that at low temperatures SrVO₃ undergoes an antiferroelectric distortion to tetragonal symmetry, the V⁴⁺ ions along any tetragonal c_{+} axis being displaced away from one near-neighbor anion on this axis toward another. Such a displacement would be similar to the displacement of the V_3 ions in $V_{0.95}Cr_{0.05}O_2$ to form one short V_3-O_5 bond and one long V_3 - O_6 bond. Ferroelectric displacements along the tetragonal [001] axis, but antiferroelectric displacements within the (001) planes, would lead to a tetragonal, antiferroelectric phase. Such a distortion would remove the threefold degeneracy (spin-orbit coupling neglected) of the π^* band, raising the bands formed from $d_{ys}d_{sx}$ orbitals relative to those formed from d_{xy} orbitals, where the z axis is taken parallel to c_t . The energies of the $d_{yz}d_{zx}$ orbitals would be raised because the atomic displacement would increase the covalent mixing between these orbitals and the nearestneighbor anion $p_{y}p_{x}$ orbitals, thereby destabilizing the antibonding $d_{vz}d_{zx}$ orbitals and stabilizing the anion $p_{y}p_{x}$ orbitals. The increase ΔE_{x} in the splitting between $d_{yz}d_{zx}$ and p_xp_y orbitals would be proportional to the magnitude δ of the atomic displacements. In general, the number of states stabilized in the bonding π band is proportional to $(E_{\mu} + \Delta E_{\mu})/$ $(W_b + \frac{1}{2}E_g) = A + B\delta + \cdots$, where W_b is the width of the π band. Since the elastic restoring forces vary as δ^2 , a finite displacement of the cations can be anticipated at low temperatures if the destabilized, antibonding π^* band states are empty, the elastic restoring forces are relatively small (i. e., the V^{4+} ion is small for its octahedral interstice), and $W_b/E_s \lesssim 1$. Ferroelectric-type displacements are common where the d orbitals are empty. Although a V^{4*} ion has one 3d electron, a finite displacement that is large enough to raise the $d_{ye}d_{ex}$ bands

(a) ORTHORHOMBIC F222 VO2: Cr

(b) ORTHORHOMBIC F222 VO2: Cr

FIG. 2. Structure of orthorhombic room-temperature $V_{0.95}Cr_{0.05}O_2$: anion coordination about (a) $(V_1 + V_2)$ and V_3 chains and (b) V_4 and V_5 chains of alternate b_o-c_o planes.

FIG. 3. Schematic one-electron band structure of $SrVO_3$ without spin-orbit coupling, after J. B. Goodenough [J. Appl. Phys. <u>37</u>, 1415 (1966)] and L. F. Mattheiss [Phys. Rev. <u>181</u>, 987 (1969)].

above the Fermi energy of $SrVO_3$ is theoretically possible, especially if the antiferroelectric displacements, which increase the size of the unit cell in the basal planes, simultaneously split the d_{xy} band to stabilize occupied d_{xy} states relative to unoccupied d_{xy} states. In this latter case, the antiferroelectric phase change would be accompanied by a metal-to-semiconductor transition with decreasing temperature. The apparent lack of a spontaneous distortion in SrVO₃ is probably due to the breadth of the π^* band and the fact that such a distortion would tend to quench any stabilization due to spinorbit coupling.

In the rutile structure of tetragonal VO_2 , each anion has three near-neighbor cations in the same plane, and the anion p orbital perpendicular to this plane is a p_{π} orbital available for π bonding with cation d orbitals. In the metallic, tetragonal phase of VO_2 , the occupied 3d bands consist of pseudodegenerate π^* bands and a d_{\parallel} band having a_{1s} symmetry at Γ , the center of the Brillouin zone, as shown in Fig. 4(a). In the monoclinic, low-temperature phase an antiferroelectric displacement of the cations lifts the π^* bands above the Fermi energy, and a V-V pairing along the tetragonal [001] axis splits the d_{\parallel} band in two, as shown in Fig. 4(b).¹ Therefore a semiconductor-to-metal transition accompanies the phase transformation with increasing temperature. That such a transition has been found in VO_2 , but not in $SrVO_3$, is probably due to not only the narrowness and relative stability of the d_{\parallel} band in VO₂, but also a quenching of the orbital angular momentum in VO_2 .

In the composition $V_{0.95}Cr_{0.05}O_2$, the chromium ion apparently holds three localized 3d electrons in a ${}^{4}A_{2g}$ ground-state manifold. Therefore the formal valences for the compound are $V_{0.9}^{4*}V_{0.05}^{5*}Cr_{0.05}^{3*}O_2$ where the V⁵⁺ions are trapped at sites neighboring the Cr³⁺ ions. Since Cr-V bonding is not anticipated, stabilization by the cooperative

V-V pairing along the tetragonal [001] axis must be reduced. On the other hand, the small V^{5+} ion, which has empty 3d orbitals, generally undergoes a ferroelectric-type displacement from the center of symmetry of an octahedral interstice, so that stabilization of a cooperative antiferroelectric distortion might even be increased despite lack of participation in this distortion by the Cr³⁺ ion. Therefore the appearance in $V_{0.95}Cr_{0.05}O_2$ of an orthorhombic phase in the temperature interval $T'_t < T < T_t$ was presumed¹ to signal the presence of primarily antiferroelectric displacements in this phase. The existence of V-V pairs along only one-fourth of the c_o -axis chains clearly demonstrates the anticipated suppression of V-V homopolar bonding in the orthorhombic-vs-monoclinic phases.

The existence of antiferroelectric displacements is also clearly evident for the V_3 and V_4 ions. The V_3 ions form one strong $p_y - d_{xy} \pi$ bond and a weaker $p_z - d_{zx} \pi$ bond with the nearest-neighbor O₅ anion. Competition with (sp_xp_z) hybridization for σ bonding weakens the second of these, so that the V_3-O_5 separation is intermediate to that found for V-O double π and single π bonds in other compounds: 1.57 and 1.76 Å, respectively.¹⁰ This places the one 3d electron per V⁴⁺ ion at V₃ sites in $d_{z^2-v^2}$ orbitals that are probably localized, the $V_3 - V_3$ separations being R = 2.963 > 2.94 Å $\approx R_c$ (the estimated critical separation for localized vs itinerant 3d electrons at V⁴⁺ ions in oxides¹¹). Electron localization would split the $d_{z^2-y^2}$ bands by the electrostatic energy U responsible for correlating one 3d electron per V^{4+} ion at a V_3 site.

Each O₂ ion shares its p_{π} orbital with a $(d_{xy} \pm id_{gx})$ orbital at a nearest-neighbor V₄ ion and a d_{xy} orbital at a V₅ ion, so that the V₄-O₂ and V₅-O₂ distances are intermediate between single π -bond and no π -bond values: 1.76 and 1.91 Å, respectively.¹⁰ A $d_{g^{2}-y^{2}}$ band associated with a V₄ chain (R = 2.9 Å $< R_{o}$) would be split in two by the antiferroelectric configuration along the chain.

Although the formation of V_5-V_5 , homopolar-bonded pairs splits the half-filled $d_{p_{2-r^2}}$ band in two,

FIG. 4. Schematic modification of d-band structure of VO₂ on passing from metallic to semiconducting phase, after Ref. 1.

FIG. 5. Schematic *d*-band structure of orthorhombic $8V_{0.95}Cr_{0.05}O_2$, where x = 0.05 and levels associated with a formal valence state represent a localized orbital or *d*-state manifold.

the d_{yz} and d_{xy} orbitals π bond with two O₆ ions and two O₂ ions, thereby destabilizing these π^* orbitals to energies above the Fermi energy. The V₅-O₆ and V₅-O₂ distances of 1.84 and 1.90 Å, respectively, are intermediate between single π -bond and zero π -bond values, like the V₄-O₂ distances, because each cation orbital shares its π bonding with two anions and each anion p_{π} orbital shares its π bonding with two cations. Similarly, the V₂ cation shares its d_{xy} orbital with two O_3 ions, and the V_1 cation shares its d_{yz} and d_{xy} orbitals with two O_4 ions and four O_1 ions to form a nearly octahedral interstice. This leaves the single *d* electron per V^{4+} ion of the $V_1 + V_2$ chains in $V_1 : d_{z^2-x^2}$ and $V_2 : (d_{z^2-x^2}, d_{yz})$ orbitals. The difference in potential at V_1 and V_2 would split the $d_{z^2-x^2}$ band in two, thereby localizing the single electron per V^{4+} ion at V_1 in a $d_{z^2-x^2}$ orbital and the single electron per V^{4+} ion at V_2 in a d_{yz} orbital.

In summary, all of the V-O separations can be consistently correlated with enhanced π bonding that would raise the π^* bands above the Fermi energy: only the $V_2: d_{yz}$ orbitals are an exception, and these appear to be occupied by one localized electron. Furthermore, doubling of the c axis $(c_0 \approx 2c_r)$ splits the d_{\parallel} bands in two, the reby making the orthorhombic phase a semiconductor. Finally, half of the 3d electrons appear to be localized: those in the $(V_1 + V_2)$ chains and the d_{\parallel} electrons at the V_3 ions. This leads to the schematic band scheme of Fig. 5, which is to be compared to those of Fig. 4. It also means that the magnetic susceptibility should be intermediate between the low value found in monoclinic VO₂, where all d_{\parallel} electrons are spin-paired in homopolar bonds, and the exchange-enhanced value of metallic, tetragonal VO₂. Kosuge¹² first reported just such an intermediate susceptibility in the orthorhombic phase of $V_{1-x}Fe_xO_2$ samples, and Mitsuishi¹³ first noted that

FIG. 6. Trace of x-ray diffraction pattern near $2\theta = 70^{\circ}$ for powdered $V_{0.95}Cr_{0.05}O_2$.

a semiconductor-to-metal transition is associated with the orthohombic-to-tetragonal phase change at T_{t°

In conclusion, the structure of orthorhombic $V_{0.95}M_{0.05}^{3+}O_2$, although somewhat more complex than anticipated in Ref. 1, is quite consistent with the argument presented there. However, this structure is not the only intermediate phase encountered in the system $V_{1-x}M_x^{3+}O_2$. The Bordeaux group² has observed, in a sample with x = 0.1, an orthorhombic structure without a doubling of the rutile c axis. Clearly there can be no V-V pairing along the caxis in this phase. There can be only ferroelectric displacements within any one chain. Marezio et al.¹⁴ have reported a monoclinic phase for x = 0.024 in which half the chains had V-V pairing and half had antiferroelectric displacements of the vanadium ions. It would be interesting to know whether, at smaller x, there is lesser suppression of V-V pairing. It is also important to establish the role of oxygen content in the stabilization of these intermediate phases.

ACKNOWLEDGMENTS

The authors would like to thank H. Y-P. Hong for the Weissenberg study on our sample and R. J.

[†]Work sponsored by the Department of the Air Force. ¹J. B. Goodenough, J. Solid State Chem. <u>3</u>, 490 (1971).

²G. Villeneuve, A. Bordet, A. Casalot, and P. Hagenmuller, Mater, Res. Bull. 6, 119 (1971).

³D. S. Chapin, J. A. Kafalas, and J. M. Honig, J. Phys. Chem. 69, 1402 (1965).

⁴D. I. Cromer and J. I. Waber, Acta Cryst. <u>18</u>, 104 (1965).

⁵D. I. Cromer, Acta Cryst. <u>18</u>, 17 (1965).

⁶B. L. Chamberland (private communication).

⁷K. V. Krishna Rao, S. V. Nagender Naidu, and L.

Iyengar, J. Phys. Soc. Japan 23, 1380 (1967).

⁸M. Wollnik, thesis (Technische Universität Berlin, 1965) (unpublished); B. Reuter, Bull. Soc. Chim. France Arnott for a helpful discussion concerning the structure refinement.

APPENDIX

After this paper was submitted, our attention was called to a recent single-crystal study¹⁴ of "nominal" $V_{0.976}Cr_{0.024}O_2$. This crystal was monoclinic, space group C2/m. Its powder pattern was remarkably similar to that of the orthorhombic phase reported here. It was distinguished from our orthorhombic phase with the aid of Guinier photographs, which showed a clearly resolved doublet in the vicinity of d = 1.338 Å. In view of this report, it became incumbent upon us to establish that our phase was indeed orthorhombic and not monoclinic.

Figure 6 is a trace of the single peak that we observe with the α_1 and α_2 contributions (separation ~ 0.2°) clearly resolved. It shows no sign of splitting. In addition Guinier photographs were taken, and no definite sign of splitting was observed. As a final precaution, Weissenberg photographs were taken using a single crystal selected from the powder. These photographs indicated *mmm* symmetry, and the measured angle between the principal axes of the monoclinic cell was 90.0° ± 0.1°.

¹¹J. B. Goodenough, Czech. J. Phys. <u>B17</u>, 304 (1967).

- ¹²K. Kosuge, J. Phys. Soc. Japan <u>22</u>, 551 (1967).
- ¹³T. Mitsuishi, Japan. J. Appl. Phys. <u>6</u>, 1060 (1967).
- ¹⁴M. Marezio, D. B. McWhan, J. P. Remeika, and P.

D. Dernier, Phys. Rev. B (to be published).

No. 4, 1053 (1965).

⁹J. B. Goodenough and J. M. Longo, *Landolt-Bornstein Tabellen Neue Serie III/4a* (Springer-Verlag, Berlin, 1970), p. 126.

¹⁰J. Galy, J. Darriet, A. Casalot, and J. B. Goodenough, J. Solid State Chem. <u>1</u>, 339 (1970); J. B. Goodenough, *ibid.* <u>1</u>, 349 (1970); in *Conduction in Low-Mobility Materials*, edited by N. Klein, D. S. Tannhauser, and M. Pollak (Taylor and Francis, London, 1971), p. 87.