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.The magnetic resonance line-shape analysis based on the second and fourth moments of the
frequency distribution, as originally formulated by Van Vleck, is shown to give incorrect re-
sults in the presence of the combined conditions (a) rapidly modulated (i. e. , narrowed) inter-
actions with unlike-spin species and (b) like-spin broadening comparable to (or greater than)
that from mechanism (a). A new line-shape analysis is given based on density-matrix perturba-
tion theory which specifically treats the case of rapidly modulated unlike-spin coupling. The
results are compared with the moment analysis and applied to several examples from the litera-
ture. The case of the ~F NMR linewidth in antiferromagnetic MnF2 is discussed in considerable
detail, including a detailed evaluation of the 9F- 9F Suhl-Nakamura coupling. Experimental re-
sults are reported for the inhomogeneous '~F line broadening in a MnF2 crystal of excellent
quality, allowing a comparison of measured and calculated free-induction decay times. Con-
trary to the earlier "method-of-moments" analysis, in which the F line was thought to be
narrowed by the combined effect of ~SF-55Mn dipolar coupling and 55Mn-~ Mn Suhl-Nakamura in-
teraction, we find the linewidth to be accounted for by OF-~OF spin-spin interactions alone.
This conclusion is in agreement with the new line-shape theory.

I. INTRODUCTION

In nuclear-magnetic-resonance (NMR) studies
there frequently arises the question of the effect
of nonresonant or "unlike" nuclear species on the
width and shape of an observed resonance line.
Such effects have traditionally been discussed in
terms of moments of the line-shape function as ex-
pounded in the classic treatment by Van Vleck. '
There it is pointed out that strong interactions
among unlike spins can lead to line-narrowing ef-
fects if they make a large contribution to the fourth
moment M4 such that the ratio &= M4/M~» 3. In
such a case the line shape is predicted to be a
Lorentzian of width

(g~ ) ~-1/2 ~1/2 (& ~1/2

Clear-cut examples of this phenomenon have been
reported by Abragam and Winter~ for the compounds
AgF and KF, where the relatively larger dipole in-
teractions among the ' F nuclei lead to consider-
able narrowing of the silver and potassium NMR
lines.

There is, however, a range of cases where ap-
plication of the above moment criterion leads to
incorrect results. This occurs when the Lorentz-
ian width [Eq. (1)] is of the order of or less than
the expected width from like spin inter-actions
alone. This may be seen by arguing that rapid
motion of unlike spins can in no way average out
(i.e. , narrow) the couplings between the reso-
nant nuclei. As unlike-spin motion increases, then,
the line will necessarily approach the width and
shape determined by the like-spin interactions re-
gardless of the total moment values involved. In
this limit (1) will underestimate the true width, and

the line will not, in general, have the predicted
Lor entzian shape.

This difficulty occurs only in the case of rapidly
modulated unlike-spin couplings. It is closely re-
lated to line broadening by spin-lattice interac-
tions, where one would not usually attempt to ap-
ply the moment analysis. As is well known, 3 line
shapes are unaffected by weak spin-lattice interac-
tions, independent of what "moment" contributions
they might make.

The purpose of this paper is to examine the un-
like-spin line-broadening problem in some detail
and to present a correct theory. In Sec. II, we
summarize the basic results from the moment
method in the case of two spin species and illus-
trate further the limit in which this scheme breaks
down. In Sec. IG, density-matrix perturbation
theory is employed to give a line-shape analysis
which is valid specifically for rapidly modulated
unlike-spin couplings. The results of Ref. 2 are
reexamined in terms of the new results.

In Sec. IV, the new line-shape theory is applied
to the case of the ' F linewidth in antiferromagnetic
MnF, . This resonance is an excellent example of
the difficulty with Eq. (1), in that the very strong
Suhl-Nakamura ' coupling between the "Mn nuclei
makes a major contribution to the fourth moment
via the F- Mn dipolar coupling. In the tradition-
al moment picture, then, the ~ F resonance aPpea~s
to be strongly narrowed. The new line-shape the-
ory shows, in contrast, that the F width is de-
termined almost exclusively by ~ F- F coupling.

One of the principal difficulties in the experimen-
tal study of the ' F line shape and width is the sensi-
tivity of the -40 kG transferred hyperfine field at
the F nuclei to strains and crystalline imperfec-

41



R. E. WALSTE DT

II. MOMENT METHOD FOR UNLIKE-SPIN BROADENING

Here we discuss the moment analysis of line
shapes and its limitations, in a context of two in-
teracting unlike-spin systems. These we denote
I, and S; with the I, resonant. The spin-spin inter-
action Hamiltonian is assumed to have the usual
form

+5114 +II ++IS++SSy (2)

where the subscripts denote the nuclei concerned
in an obvious notation. In Eq. (2), we keep only

tions. Thus virtually no crystals of MnF2 are
available which are totally free from inhomogene-
ous "F line broadening. In previous work, then,
results of the standard moment analysis have been
compared with the measured spin-echo lifetime, ~'
giving a result more than three times the measured
values 29+1 psec. Quite apart from the question
of this disparity it must be remarked that there is
no established quantitative connection between spin-
echo and (homogeneous) free-induction decay times
in solids except for special cases such as —,'m-m

echoes or a strongly narrowed line. For the case
of a single species with dipolar and/or Suhl-Naka-
mura coupling, a preliminary calculation shows
the "second moment" of a —,'n-8 spin-echo decay
function' to be proportional to —cos8. Thus for
—,'m-w echoes M2 is unchanged, but for —,'p- —,'7t echoes
it vanishes. This means that the decay of such
echoes is governed by higher moments which are
generally unfeasible to calculate. We shall see in
Sec. IV that the homogeneous free-induction de-
cay time for MnF2: ' F is considerably shorter than
the measured spin-echo lifetime.

To avoid the uncertainties of spin-echo decay, it
is desirable to study the homogeneous free-induc-
tion decay function. This is made possible by mea-
suring the distribution of inhomogeneous fields in
the best available crystal using a strong rf-field
technique to be described below. The results of
this measurement are then folded into the expected
line shape from the analysis of Sec. III, and then
Fourier transformed for comparison with the ex-
perimental free-induction decay.

Although the F-' F spin coupling is predominant-
ly dipolar in character, the Suhl-Nakamura" (SN)
interaction makes a small but non-negligible con-
tribution to the linewidth. This effect has been
discussed at length in the literature. ' Nonethe-
less, because of errors in earlier treatments, we
present a detailed account of the 'QF SN coupling
in Sec. IV and in the Appendix and make a number
of observations that have hitherto been passed over.

Finally, in Sec. V, we touch upon the difficult
question of spin-echo decay and report some qual-
itative experimental observations on MnF, : ' F.

MI MII, II + MII, IS+ MIS, IS + MIS, SS (4)

The superscripts of M2 and M2 refer to the terms
in (2) which generate these contributions. In M'„
the superscripts denote the pair of terms in (2)
which give rise to each contribution. In terms of
the ratio & defined above, the general criterion for
Gaussian-like or I orentzian-like line shapes be-
comes &-3 (Gaussian) and e» 3 (Lorentzian). In
the latter case the linewidth is given approximately
by (1) in the original formulation of this technique.
The circumstances under which this procedure
breaks down, as described above, may be expressed
as

MIs, ss)) MII, II MIs, Is
4 & 4

q)& 3

(Ml S)3/2 (MIS, S S)-1/2 (MZ)1/2

(5a)

(5b)

(5c)

where (5a) signifies a case of rapidly modulated
interaction with unlike spins, (5b) has traditionally
indicated that the line is narrowed to a width

&Z~) -(M"+M")s"(M's") (5)

and (5c) characterizes the linewidth given in (6) as
being relatively small so that (b,&u) & (M/s/)1/ . The
essential difficulty here may be seen by arguing
that since [R//, Ass]=0, the rapid motion repre-
sented by Kss cannot "average out" the I-I coupling.
In no case, then, can the linewidth be less than the
"I-spin-only" value (Ms ), in contradiction with
the method-of-moments result (6). In other words,
the XIs broadening can be narrowed by Xss, but

sI broadening cannot.
Although in NMR studies the moments analysis

is usually applied to nuclear-nuclear coupling
phenomena, a familiar example of conditions (5)
is provided by line broadening due to spin-lattice
interactions. Consider specifically the cases of
relaxation to conduction-electron spins in a metal
or to a system of atomic moments in an exchange-
coupled paramagnet. These spins then become the
S system in the above formulation. The hyperfine
coupling operators in such systems would make
enormous contributions in a second-moment calcu-

the high-field secular terms, so that K»has the
simple form

X/s =~ C&/I Sf
$,j

The normalized absorption line-shape function
g/(&o) is characterized by the momentss M/
= J d&o ~"g(&u). For practical reasons one is usual-
ly limited to working with the first two nonzero
moments which may be expressed here as

M =MI +M2 2 2 y
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lation, so that the nuclear spin-spin term M2'
would be completely overshadowed in Eq. (6). On
the other hand, such interactions are strongly
narrowed by the kinetic and exchange fluctuations,
respectively, as expressed by conditions (5a) and
(5b).' In the frequently encountered case that
lifetime (T,) broadening is weak [i.e. , condition
(5c)], the line shape is well known to be determined
by the spin-spin couplings $C» alone.

It is clear, then, that Eq. (6) must be abandoned
for an approach in which the effects of X» and X»
are treated independently. In the limit &- , the
line shape must reduce to that obtained from K»
alone, and in the limit of strong "lifetime" broad-
ening the line must become Lorentzian with a width
given approximately by (M', )'r'(M4 )

' '. In
Sec. III, we present a density-matrix perturbation
calculation which meets these requirements.

III. DENSITY-MATRIX PERTURBATION TREATMENT

We now apply the highly developed" density-ma-
trix perturbation methods to the calculation of the
I-spin free-induction decay function fr (t), given the
Hamiltonian (2) and the assumption that 3Cr~ is
rapidly modulated by K~~. We begin with the den-
sity-matrix equation of motion ip = [3C, p]. This is
transformed to an interaction representation using

where'3

7.' takes the system into a rotating frame for the
I spins, i.e. , it removes the oscillatory part of
the free-induction process; it also introduces ex-
plicitly the time modulation of Rrz.' Rz~(t)

The equation of motion then be-
comes

tp =[ICrr p ]+['%s(t) pl.

We substitute this equation for p'(t) into the second
term of (7), and take the trace over the S manifold
(Tr~), finding

P (t) = —i[Krr Pr(t))

—Tr f dt [3C (t), [3C (t'), p (t')]] . (9)

Two terms have vanished with Tr ~, a consequence
of our neglect of correlations between Rr~(t) and
p'(t) as embodied in (8).

We specialize (9) to the study of transverse mag-
netization (I")by multiplying both sides by I" and
taking Tr, Us.ing (8) and (3) the S', operators can
be extracted from the double commutator in (9) to
give

where we have introduced the autocorrelation func-
tion of X».

The central assumption of the calculation, that of
rapid modulation of Xz~(t), is now employed in
(10) to remove Tr[I"pr(t —v)]=Tr[I"pr(t)] from the
7. integral. Thus we assume the correlation time
7, =

Jo dv a(7) to be short enough so that the change
of Tr[I pr (t)) can be neglected over this interval.
Put another way, ~,«T~, where T~ is the composite
transverse relaxation time. By the same argu-
ment we extend the integration limit in (10) to in-
finity. .The equation governing transverse relaxa-
tion becomes finally

Our procedure is to develop the second term in
(7) to second order in 3C» as in the standard treat-
ment of stationary random perturbations. " The
first term is left in exact form. It is convenient
in the high-temperature limit to approximate the
state of the S nuclei by one of infinite spin tem-
perature since the corrections to this zero-order
picture are generally very small. Thus we take

P'(t) =- Pr (t)XI'/»(I g),
where 1~ is the unit matrix of the S manifold and
pr(t) is defined in the I manifold. Next we integrate
(7) from 0 to t giving

1/T2 = —,'S(S+1)r,Zr C)r . (13)

Equation (12) is seen to be satisfied by taking
pr(t) = ~- r. z e 'rr' pr(0)e«rr~ -whereupon
Tr[I"p, (t)] becomes simply the product of free-
induction functions for like-spin and unlike-spin
relaxation processes taken separately.

In the high-temperature limit, the free-induc-
tion function becomes

(12)
1/T f, the transverse relaxation rate due to unlike
spins alone, is defined as

fr(t) =frr(t) ~ '

where

(14)
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is the rigorous free-induction function for I spins
alone. In the approximations employed here,
then, the two contributions to free-induction decay
act essentially independently. "

Using the fundamental Fourier-transform rela-
tion between free-induction and line-shape func-
tions, the latter is easily showntobe the convolu-
tion

( )
d(u'g„((u')T', /v

RI 1+ (& &i)2 (TIs)2 (16)

where g»(&u) corresponds to f,z(t). As written, the
moments M~ and M4 of (16) diverge. This is only
a minor defect, however, and will be corrected
by allowing the Lorentzian in (16) to be terminated
in suitable fashion at frequencies of the order of
co —co' = + 7, . The short-correlation-time approxi-

mation, which says that v, ' is much greater than the
linewidth, allows these corrections to be neglected
in (16).

In the light of Eq. (16), we discuss now various
cases of relative like- and unlike-spin broadening
with reference to the moment analysis as discussed
earlier:

(a) Assigning a suitable relaxation time T", to
f»(t) [Eq. (15)], we see that for T", «T", [the op-
posite of (5c)] the Lorentzian width dominates (16),
and the unmodified moment analysis gives an ap-
proximately correct linewidth [Eq. (6)].

(b) In the opposite limit TI2I «TI2 the Lorentzian
in (16) becomes essentially a 6 function, and we
find gz(&u):-g»(&u). For this case the moment pic-
ture is applicable but must be altered to the extent
of excluding all but the initial terms in Eqs. (4).
In other words, the unlike-spin couplings may
simply be ignored. This was the conclusion in
the spin-lattice relaxation examples of Sec. II.
By making the correspondence T ~

- T, we obtain
in this case the condition T2«T, encountered in
the earlier discussion. In this connection we note
that the procedure for obtaining the basic equa-
tion (12) goes through essentially unchanged in the
case that X» is a spin-lattice coupling operator.

(c) In the intermediate case T~z - T'2' we find no

applicable counterpart in the moment method.
When g»(~) is a Gaussian, we obtain the compli-
cated transition region between Gaussian and
Lorentzian line shape. In the opposite case of
Lorentzian shape for gal(&u), one has f»(f)

-~jr ~I= e '~r 3, and from (14) and (16) it follows that
the combined effect produces a Lorentzian line of
width 1/T", + I/TI2~. This behavior has been ob-
served in the case of the exchange-narrowed ' Pt
NMR line in Pt metal. ' '"

Let us now apply the above results to the ex-

Our main example, that of the zero-temperature
' F linewidth in MnF2, is one of considerably greater
complexity (a) because the 3C~z ('~Mn-"Mn) and

3C» (~ F-~ F) interaction terms both include the com-
bined effects of dipolar and Suhl-Nakamura ener-
gies and (b) because the ' F NMR line (in zero
field) actually consists of two resonances with fre-

TABLE I. Moment and linewidth parameters for the
resonances indicated. All but the quantity M2 are taken
from Ref. 2.

m"/q

M /yr

Ag in AgF

0.00416 G

4 19G

K inKF

0. 0163 G2

2. 54 G

1/q Z"(TL)

(III)1/2/~

Experimental
half-width

0.235 G

0. 064 G

0.3+ 0. 15 G

0. 192 G

0. 13 G

0. 5+0. 05 G

amples from the literature quoted in the Introduc-
tion. In the NMR studies of AgF and KF~ the

Ag and K linewidths were estimated including
only the unlike-spin contribution I/T~z . We shall
see that these resonances are examples of the inter-
mediate case (c) above, though not dramatic ones.
The relevant moment parameters for these cases
taken from Ref. 2 are summarized in Table I. In
addition, the small second-moment contributions
%12' have been calculated and are also given in the
table. All entries are in the notation of Sec. II.
In each case M~&I is seen to be well less than 1%
of M~, yet the like-spin-only linewidth contribution
(M~&~)'~2/yz is found to be of the same order as the
strongly narrowed unlike-spin part. The latter was
estimated2 with a truncated-Lorentzian (TL) model
line shape.

On the basis of Eq. (16) it is suggested that the
linewidth contributions I/yITz and (Ma )'~~/y& in
Table I should be combined in some fashion for
comparison with the experimental linewidth shown

on the bottom line. In the case of AgF simple ad-
dition of these contributions gives improved agree-
ment with experiment, but the change is well within

the error limits. For KF, however, the like-spin
contribution results in considerably better agree-
ment with experiment, though not enough to account
for the total discrepancy. In this connection we note
that the truncated-Lorentzian model has been found

in some cases to underestimate NMR linewidths. '
Nonetheless, these cases illustrate how effective
a very small second-moment contribution from like
spins can be in broadening a line where & is large.

IV. LINEWIDTH OF '-'F IN ANTIFERROMAGNETIC MnF2
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TABLE II. Calculated moments of the low-temper-
ature ~~F NMR in MnF2,

Terms
in

2

(Sum)

Moment

M"'
2

b
M2 (dipole)

(dipole-SN)

M" (SN)
'

M2 (zS)

M (++)

2

Calculated value

1.8x 10 sec

2. 7x109 sec 2

2. 9x 10 sec
—5x 10 sec

1.9x 109 sec

0.74x 108 sec

] .47x 109 sec

5. Sx 109 sec

Reference 7.
References 5 and 17.

~This work.
~Reference 17.

quencies equal in magnitude but opposite in sign.
The latter circumstance leads us to consider the
~ F resonance to consist of two quasi-"unlike"
species I and I, differing from ordinary unlike
species in that coupling terms of the form I'I '
conserve Zeeman energy and must be included'~
in moment calculations.

A. Moments of ' F Line Shape

Calculated values of M ~ and M 4 are given in
Table II as well as M 2 and its various contribu-
tions. We discuss briefly the origin of each entry
in the table, with a detailed discussion of the Suhl-
Nakamura coupling contributions given in the Ap-
pendix.

M/a is obtained from a purely dipolar term [Eq.
(3)], with the value quoted taken from Refs. 5 and
17.

M 4 represents the cross term between dipolar
coupling [Eq. (3)] and the very large Suhl-Naka-
mura coupling among "Mn nuclei, and is by far the
largest contribution to M', in Eq. (4). This term
has been calculated in detail by Hone et al. ; their
value is adopted here.

Of the various contributions to M2, the terms
M/a' (dipole) and M~&1 (zz) come from purely dipolar
interactions, where the superscripts II and II de-
note coupling between like and unlike F's, respec-
tively. The values of these terms given in Refs. 5
and 17 are again adopted here.

The Suhl-Nakamura term M~s' (SN) and the SN-
dipolar interference term Ma (dipole-SN) are cal-
culated in the Appendix. M/z/ (SN) for MnFs. ' E
has been discussed at some length in the litera-
ture. ' Hone et al. corrected an error in sign in
Ref. 5, reducing the original estimate of Ms (SN)
by more than an order of magnitude. Here we cor-
rect another minor point in this calculation which
was overlooked in previous work. Because of the

low symmetry of the F sites in MnF~ there are
F-' F SN coupling coefficients of two essentially

different forms, only one of which was treated in
Refs. 5 and 7. The second one is derived in the
Appendix, and the second-moment contributions
of both are evaluated using the tabulated Green's
function for the bcc lattice given by Walker et al.
Where comparable, the numerical results agree
with those of Hone et al. within -10%. It is also
interesting to note that the ' F-' F SN coupling co-
efficients vary in quite a disorderly fashion over
nearby sites, giving rise to a preponderant contri-
bution to Mls' (SN) from just a few nuclei. Thus the
multiple ' F hyperfine coupling in this compound
effectively destroys the long-range character of the
SN interaction.

The term M~&/ (aa) arises from interaction terms
of the form I'; I&'. Because of the anisotropy of the
' F hyperf inc coupling, 's there are indirect (SN)
interaction terms of this form (see Appendix) in
addition to the usual dipolar contribution. Because
of an accidental cancellation of coefficients, the
SN terms are relatively small in MnF2. However,
this unlike-spin indirect-coupling effect is poten-
tially of interest in other antiferromagnetic ma-
terials. For our present purpose we adopt the di-
polar moment term M~& (+a) calculated by Paquette
et al. ' for the nearly identical crystal FeF2.

One can see immediately from the moments in
Table II that the F resonance is an example of
case (b) from Sec. III, i. e. , Tz/«Tss. To esti-
mate Tas we use instead of (13) the truncated-
Lor entzian approximation

I/@Is 1 ~3 (Mls)3/2 (MIs-ss)-1/2

which yields

T', =-330 p,sec .
The Gaussian approximation T~&~ = v 2 (M/s/) ~/s to the
line shape generated by BC/, alone gives Tel = 18. 7

psec. Tz therefore makes a contribution of only
a few percent to the decay rate, and the observed
linewidth should be essentially accounted for by

3C» alone. In other words, one can all but ignore
the presence of the Mn nuclei.

B. Measurement of Inhomogeneous Broadening and
Free-Induction Decay

In order to make a comparison of the calculated
moment M& with the free-induction decay function,
the inhomogeneous broadening of the sample has
been measured using a technique of pulsed strong
rf fields. The technique, which is described in de-
tail by Abragam, consists of measuring the nu-
clear magnetization following a pulse of applied rf
field H& at a frequency & in the vicinity of the reso-
nance frequency coo. The rf pulse must be long
enough for equilibrium to be reached in the rotating
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frame but short compared with T&. For a square
pulse, thermodynamic arguments give a ratio of
final to initial magnetization:

Mg bH
Mo 4H +0 +H (18)

The response function (19) differs from (18) in that
it is broader and no longer falls to zero at LB=0.
As we shall see, m(0) is a rough measure of the
fractional inhomogeneous broadening. With re-
spect to (19), we remark that this result is only
valid for the assumed condition of reasonably long-
range inhomogeneities. Second, it must be said
that the entire procedure is only meaningful for a
comparison with the calculated M2 if the inhomoge-
neous broadening is a relatively minor effect.

In applying this technique to the measurement of

where sH = (&u —~0)/y is the distance in field from
exact resonance and H~ is the spin-spin interaction
local field to be derived from X» by H~ = Tr(R,', )/
y Tr(I, +I,') . Equation (18) is seen to be an inverted
Lorentzian, varying from a value of unity for b,H-+ ~ to zero at the center of the resonance. The
function given applies, of course, only to a per-
fectly homogeneous resonance line.

The effect of inhomogeneity is included in the
analysis by convolvlng (18) with a normalized dis-
tribution s(h) of fields &uo/y, which we take for con-
venience to be centered at k=0. The reduced mag-
netization m(b, H) = M&/Mo then becomes

inhomogeneous broadening for MnF3. ' F, there is
~

a complication due to the presence of the 'Mn spins
which must be dealt with rather carefully. In the
thermodynamic picture in which (18) is derived the
latter nuclei constitute a very large energy reser-
voir to which the "F's are coupled with a time con-
stant of the order of Tz . Thus, as the rf pulse
length t„ is varied, the magnetization first comes
to quasiequilibrium near the value in (19), then
decays eventually to (essentially) zero.

The measured decay function m vs E at a fre-
quency near line center is shown in Fig. 1. It is
seen that the rf field is small enough so that the
initial decay toward equilibrium is very nearly ex-
ponential. The associated saturation time constant
7„,is given roughly by v„', - y H, T, . Following
the decay of this initial transient the magnetization
is given by m(aH) e '"~', where 7 is the '9F-

Mn coupling time constant. The desired mea-
surement of m(AH) is obtained, thenb, y extrap-
olating the data for t &v t backto t =0. The
data in Fig. 1 are fitted to a double exponential
form

m(t~) = [1 —m(bH)]e '~ '~'+m(bH) e '~ '
This is seen to give a good account of the data,
yielding 7.„t=63+5 &sec, ~ =1.1+0.2 msec, and
m(EH) = 0. 38+ 0.05. With the approximate expres-
sion above for z„, we find H, -1.2 G. The mea-
sured value of v

~ is conveniently long, ' since the
analysis is seriously impaired if 7.„&-~' .
could not, in our case, be made arbitrarily short
because of limited rf power available for rf pulses
of this length. ln any case, r,«& T2 even for

I I I I I I I I I I I I I

0.8

0.6

& 0.4
E

0.2

FIG. 1 Reduced ~ F nuclear magnetiza-
tion following the application of a square rf
pulse of amplitude H~ as a function of the
length t~. -Pulse frequency given is very
near the line center (4. 2'K). Solid curve
is fitted to the data as described in the text,
the dashed line showing the extrapolation
tomtom@) att =0.

0.1

0
I I I I

~00 200
I I I

500 400
t„(psec)

I I I I

500 600 700
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I I I I I I I I I I I I I I I

0.9
0.8
0.7

+ 0.6' 0.5

0.4
0.5—
0.2—
0. 1

p p I I I I I I I I I I I I I I I I

159,930 940 950 960 970 980 990 f60,000
f IN kHz

FIG. 2. Measure response function [Eq.
(19)] for ' F in MnF~ at 4. 2'K. Solid line
is the evaluation of Eq. (19) using Lorentz-
ian model function for 7 (h), fitted to the
data. Fit parameters are center, 159966
kHz; half-width, 14 kHz; minimum, m(0)
=0, 36.

yH, T,"

H~(H~+ P~)
m(+H) I Lo I

(H H )3 (20)

With the above procedures, then, an experimen-
tal plot of m(aH) vs aH was obtained as shown in
Fig. 2. The measurement was carried out at
4. 2 K. The function m(b, H) is centered at 159.966
+ 0.001 MHz, in excellent agreement with the fre-
quency data of Jaccarino and Walker. The mini-
mum value m(0) = 0. 36 characterizes the inhomo-
geneous broadening as appreciable, but not un-
manageably large. In order to fit the data of Fig.
2 with Eq. (19) we consider primarily the case
of a Lorentzian distribution for d(h). This is the
most likely possibility in the event of long-range
inhomogeneities due to dilute imperfections. We
also consider the case of Gaussian d(h), but not in
full detail because a machine calculation is re-
quired. With &(h) = v 'H, (hm+ H, ) ', (19) becomes

value (H~:—2. 0 G) which results when the estimated
H, contribution is subtracted from the measured
H~. We note that the local field in (21) is more
sensitive than the total second moment to the
terms M~" (SN) and M," (+a), these terms making up
80%%uo of the calculated H~. The discrepancy we find
is only slightly outside experimental error but sug-
gests that calculated values of the above-mentioned
terms may be too large. In particular, the SN in-
terference effect in M~3~ (+a) may be more important
than suggested in Sec. IV A (see Appendix), since
the relevant parameters for the actual case of anti-
ferromagnetic MnF3 are not available.

Finally, we compare our measured free-induc-
tion function with a calculated model function based
on Mm (Table II) and the measured inhomogeneity
parameter H, . Under the assumption of long-range
inhomogeneity it is straightforward to show that the
observed free-induction signal will have the form

f,b, (t) =f~~(t) f d(os(~) cosset, (22)

where He= 8~+Hz is the "dynamic" contribution to
the response width. The total width H~+ H~ is
simply the sum of dynamic and inhomogeneous
widths. Equation (20) has been fitted to the data
of Fig. 2 as shown with excellent results. The
width Hz + HD = 3. 50 G + 10%%uo and amplitude at center
H, /(Hz + HD) =0.36+0.05 give H~ = 2. 24 G, and H,
= l. 25 G.

HD may be compared with a calculated H~ which
can be shown to be

y HP = —,MP(dipole) + —,Mm~(dipole-SN)+ Mz~(SN)

+-,' M3'(~z)+M", (++ ) . (21)

Inserting the numbers from Table II we find H~
= 2. 5 G, somewhat larger than the experimental

f,~,(t):—exp( —yet —-', M'3't ) . (23)

The free-induction-signal data are shown in a
semilogarithmic plot against t in Fig. 3. Equa-
tion (23) is also plotted with the parameter values
determined above [Tz~ = 18. t psec, Tz(inhomo)
= (yH, )

' = 3l. 5 psec] so as to fit the initial part of
the decay. The data are seen to vary in a very
nearly Gaussian manner. This is undoubtedly ac-
cidental. Equation (23) corresponds to a slightly
narrower homogeneous line than the data would in-

where S(&u) is the ~-space counterpart of 5(h). With
the Lorentzian distribution s(h) discussed above and
a Gaussian model for the preponderantly dipolar
homogeneous line, (22) becomes
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dicate, the error in T2 (i.e. , the e point) being
less than 15%. A simplified analysis has also been
carried out assuming e(h) to be Gaussian, resulting
in a function f,„,(t) that is then purely Gaussian.
The width parameter for &(h) is obtained simply
from m(0) =0. 36, with the result for f,b,(t) plotted
as a dashed line in Fig. 3. No marked difference
is observed between the two cases.

In discussing the experimental fit to these data
one must also include some broadening effect due
to the ~'Mn spins, i. e. , by including a factor e '~ ~

in the decay function [see Eq. (14)]. Although the
estimate obtained earlier [Eq. (17)]would make
only a relatively slight improvement in the fit, the
truncated-Lorentzian model calculation may over-
estimate' T', by a factor as great as 2. 5. Were
this the case (e g. , Tz &.150 psec), we would at
least find T~ within experimental error.

In view of the simplicity of the Gaussian model
and the uncertainties in determining d(h), the agree-
ment found here is considered satisfactory. The
observed free-induction signal is seen to corre-
spond, if anything, to a slightly broader line than
the second moment indicates. There is clearly an
absence of narrowing, and in fact good evidence for
the correctness of the line-shape formulation of
Sec. III.

V. CONCLUSIONS AND DISCUSSION: ECHO DECAY

The reformulation of unlike-spin broadening
given in Sec. III has been seen to give a good ac-

count of the ' F linewidth in antiferromagnetic
MnF2, where the narrowing effects implied by the
moment technique are clearly absent. Presum-
ably a line-shape measurement by steady-state
methods would give a similar result. This would
provide a useful confirmation of the present work.
What remains to be understood is the spin-echo
decay.

In contrast with the free-induction result of Sec.
IV, the spin-echo decay has been found to be very
nearly exponential with a somewhat longer decay
constant (-30 p, sec).8 It is difficult to say whether
this is or is not consistent with the present mea-
surements. On this question we make the following
obser vations including some qualitative experimen-
tal results:

(i) The echo measurements of Ref. 6 establish
the exponential character of the decay only for
times of order T~ and greater, which is insufficient
to characterize the line as "narrowed. " Only if
experiment shows that the exponential character
extends to the t «T~ region can the line reasonably
be said to be narrowed.

(ii) It is difficult to account for the exponential
character of the echo decay in the absence, as we
have demonstrated here, of narrowing effects. The
only line-shape theory which predicts long-time
exponential free-induction behavior is the model
calculation of Anderson and Weiss~4; experimental
evidence suggests that this type of behavior is the
exception rather than the rule.
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(iii) Because of the unavoidable presence of in-
homogeneous broadening in MnF~, it is difficult to
rule out the possibility that long-time echo re-
sponse is due to nuclei "detuned" from their neigh-
bors and thus not subject to dynamic relaxation
processes. This contrasts with free-induction re-
sponse, where long-time behavior comes from
spins in the center of the line.

(iv) As noted in the Introduction, the "moments"8
of the echo decay vary with the pulse angle 8 in a
—,'m -8 echo sequence. Although a firm conclusion
cannot be drawn from the second moment alone, it
is possible that the general character of the decay
may also vary with 8. There is a well-known
theorem, valid for a single species of nucleus with
long-range inhomogeneities, that the —,'m-m spin-
echo decay is identical to the free-induction decay
of the corresponding homogeneous system. It is
straightforward to show that this correspondence
also holds for the present case of two quasi-unlike
' F species in MnF2. Thus a careful measurement
of the —,'m-m echo decay function should provide the
same information as the experiments of Sec. IV.

There are, however, severe practical difficulties
in carrying out such a measurement. First, in
order to measure the echo response at short times,
the line must be artificially dehomogenized to make
P~' «T~. It then becomes quite difficult to obtain
a uniform 7t-pulse condition over the entire line-
breadth as this requires yH, » I/T&*. Thus the
initial flat region of echo decay (f «T2), which is
essential to the decay measurement, is beyond the
reach of even a relatively high-power pulse rig.

One can carry out the measurement without ex-
ternal inhomogeneity and account for the interfer-
ence effect between echo and free-induction signal
as carefully as possible. Such a measurement has
been performed, allowing some qualitative conclu-
sions to be drawn about the echo decay as a func-
tion of 8 for t& T,. Pulses were applied with a 10-
kW pulsed oscillator, achieving a 3- p, sec m-pulse
condition on a 1-cm sample. ' Echo response was
observed for 8 =-,'m and m and for the line severely
dehomogenized with 8 adjusted to give the best re-
sponse. The last conditions are thought to corre-
spond roughly to the measurements of Ref. 6. The
following pattern of behavior was observed: With
8 =w the echo was almost unobservable, reflecting
a close similarity of echo-decay and free-induc-
tion function. At t=50 p, sec, this echo was at
most -3% of the initial free-induction amplitude.
The —,'m--,'w echo was definitely larger and easier to
observe, suggesting that its decay time is indeed
longer than for —,'m-m in accord with the moment be-
havior. This effect is even more striking because
the initial amplitude is only half that of the 2m-w

echo. Most interesting, perhaps, is the fact that
the largest, echo for f, & 2T2 was obtainedbydehomog-

enizing the line with an external field and optimizing
the pulses. Such an echo has the smallest initial
value because of the wide range of pulse angles,
yet it was found to be easily observable for t &100
gsec. This effect was too clear cut to result sim-
ply from the loss of I'I" terms from the spin-spin
Hamiltonian.

Under the condition of a strong dehomogenizing
field, then, it appears that the echo decay becomes
longer than for "clean" —,'m--,'m or —,'m-m pulse se-
quences. Apart from the possibility of item (iii)
above, this behavior is difficult to account for. In
any case it seems unlikely that such an echo-decay
time (i.e. , the results of Ref. 6) is directly com-
parable with free-induction measurements. As
noted above, the most appropriate comparison is
between free induction and —,'~-m echo decay; the
latter, being the shortest echo-decay time, is
thought to be consistent-with the measurements
and conclusions of Sec. IV.
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APPENDIX

The Suhl-Nakamura coupling is derived4' by
calculating the second-order perturbation energy
of the (' F) hyperfine coupling, summed over
intermediate states in which one spin wave is ex-
cited. For the ' F hyperfine coupling we adopt the
experimentally determined hyperfine tensor com-
ponents for ZnF2, :Mn ', ' as these are in close
agreement with NMR results for MnF2 where com-
parison is possible. Referring to Fig. 4, we as-
sociate with each up-spin Mn ' site (j, for example)
the two nearest ' F nuclear spins. All spins in a
given set of "like" ' F's are accounted for in this

fashion. Each set may be further divided into two

simple tetragonal lattices [i.e. , (A) and (B)], iden-
tical to that of the up-spin Mn ', but displaced along
the (110) direction. The hyperfine coupling tensor
for ' F nucleus j(A) may then be written

3C„~ =I)(~& [AxxS~+Arr(S,"q+S~2)]

+ Ig~~ ~
[ArrS ~ +Axx(Sgg+ Syp)] (Al)

In (Al), the g axis is in the (110)plane of Fig. 1(a),
the y axis is normal to the plane of the figure, and
the z axis is along the (vertical) c axis of the crys-
tal. The Mn ' spin operator S& is associated with

site j and operators S,, and S» are associated with

sites displaced from j by vectors p, and j, (see
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figure), respectively. For the l coefficients,
the notation from Ref. 19 is adopted in order to
make use of the numerical values quoted there.
Thus, A~'x and AYY refer to X and Faxes defined
in Ref. 19. The AY~ coupling terms are omitted
here, because they are not relevant to the SN inter-
action calculation.

Equation (Al) may be rewritten in terms of rais-
ing and lowering operators as

~, —,I~&„) [a' S~+a (S»+S&.)+b' S&,
—b (S»+S&2)1

+2I~&g) [a S~+a (S~, +Vga)+b S, —b'(S~i+S~a)],

(A2)

where

Qf ~ II &(AI, II+AI, II)
2 XX YY

(AS)

bI, IIS+ 1(AI,II Al, ll)XX YY

The "normal" SN interaction energy consists of
matrix-element products of the form (0 IS'& Ik)
&&(klS;10), where 10) is the ground state and Ik)
is the state withone spin wave of wave vector k.
From (A2), we see that the coefficients of such
products will be either (a')2+(b')2, u'a'I —bib", or
(a")'+(b") These quanti. ties as well as the hyper-
fine coefficients themselves from the work of
Clogston et al. ' are given in Table III. We note
that the approximation of isotropic hyperfine cou-
pling(inwhicha =a andb =b =0) is actually quite
poor with the SN coefficients varying by nearly
a factor of 2. Nevertheless, we proceed with this
scheme in order to avoid an unwarranted increase
in complexity in evaluating a small effect. Thus,
we replace the three combinations in Table III with

the average quantity (a )„as shown and expect the
results to be accurate to perhaps + 25%. Equation
(A2) then becomes

TABLE III. Hyperfine coupling parameters for 9F in
ZnF2. Mn ', evaluated from data of Ref. 19. Quantities
listed are defined in text.

a
II

bI
bII

(aI) 2+ (bI) 2

aa —bB
( II)2+(bII)2

13.7 x10 cm
18.4 x 10 4 cm ~

—1, 86x 10-4 cm-&

4. 96x10 4 cm ~

1.908 x10 6 cm-2
2. 612 x 10 6 cm 2

3.628x10 6 cm 2

2. 72x]p 6 cm 2

~f = 2 (a'),', '
[I~&»(S, +S,, + S,~)+I, &»(S;+S,', + SJ2)1,

(A4)

~here (a )„~ corresponds to the usual isotropic
hyperfine coefficient A.

Before proceeding we note also from Eq. (A2)
that the hyperfine anisotropy allows the presence of
SN coupling term of the form I,'.Iz. . For j and j'
"unlike" these terms are secular in MnF2 and thus
contribute to the M121 (++) second moment in Table
II. A rough estimate of the magnitude of this effect
is given below.

Beginning with (A4) we now follow Nakamura' in
converting 3C„» to spin-wave operators, evaluating
the second-order perturbation energies and working
out the second-moment contributions. The details
of this process are straightforward and well known,
so we shall only state the results. We note that one
must distinguish carefully between the hyperfine
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operators for ' F nuclei at A and B sites in Fig.
4. This distinction was omitted in Refs. 5 and 7,

leading to incorrect second-moment expressions.
In terms of spin-wave operators, (A4) becomes

1/P.
$CMe= — a ~ Ij(p) e ' '

a~ cosh8-„+sinh8~ e ' ' "&+e '"'~2 + -„sinh8-„+cosh8; e ' ' '~+e '"' '2

+ ([to E e ' "[o [coshc.„+sinhc; (e' ' "+en' 'e)] +i(; [sinhe-+ coshe; (e" ' "+en' 's)]])

(A5)

(A6)

We emphasize that (A5) applies only to nuclei of
type A in Fig. 4. The coupling with type-8 nuclei
is obtained by simply reversing the sign of p, and

p2 in (A5).
The SN coupling coefficients D&&. are defined in

the usua, l way, '

K[2{= —
2 Z (D„1.I~1~. + D. 11 I1 I1 ),

change model for the magnon excitations in MnF&.
Equation (A7) corresponds to Nakamura's Eq. (23a),
but there is no counterpart to Eq. (A8) in previous
literature.

With (A6) and the dipolar interaction Hamiltonian,
it is straightforward to derive the following expres-
sions for the Suhl-Nakamura and SN-dipolar (cross
term) second moments:

where we distinguish between A-A and A-B coupling
coefficients with superscripts, i.e. , D,.&". =LB,, and

D,&f WD, 1".. Equation (A5) then leads to Suhl-Naka-
mura energies

/ 2 Q ~st {f{1 K1e ]

)( [X(3+ {s{&' {21-p2] + B {"'{pl p2])

M' (BN]=,I(l (Ee' (D ") + E (D" ])j' (~) j' (~)

M (dipole-SN) = y AI(I+1) Zr'
S' Q)

(1 —3 COS 8;;e )D(1e

j' (~) rH

(A9)

(Al0)

and

y((o{~ ' P1 + (o-{~ ' P1 + 8{k ~ P2+ {s-{2 P2)] (A7)

2 y elk ~ (Q j KjB )
g7 B ( )av Q [X(l +(o2{](~ p1+{s212 ~ pp

zJÃ ]; x —y

where the primed summation excludes the term
j'=j. In order to evaluate (A9) and (Alo) we make
use of the tabulated spin-wave Green's function for
the bcc lattice given by Walker, Cetlin, and Hone. '
This is defined as

+ 2e{2 ' {P1 P2)) 2y( e{]P(1+ z{ '
P2)] (A8) U(2, r) = —lim Z,„.0+ g l, E'+ZgJ

(All)

Here the magnon energy is taken to have the form
c,=z SJ(x —y )' ' with x=1+{2, where c{=g11BH„/
zJS is the ratio of anisotropy to exchange fields,
and

y(n) = z 'Z e" ' '« .

Thus we employ the usual nearest-neighbor ex-

U(q, r) is real for energies 2 outside the magnon
band and can be identified directly with the terms
in D,-,". and V,.&, [(A7) and (A8)] for x& 1. Further-
more, the terms in (A9) can all be written in terms
of U and U' = {]U/Bx, where we make the substitution
x = (1+ o() —e in (All). With this procedure the
sums in (A9) are rewritten

Z,', (D1,".)' = (((2')„/z J) [(—",x- 2) U'(000)+ (8x- ~~) U'(100)

+ (2x- 7) V'(100) + (2x ——',) U'(111)+ (x ——,') U'(200) —U'(210)

—2 U'(211) + 4[U(000) + U(100) + U(110) + U(111)]}—(D, ~") (A12)

Z (D,',', )' =(&a').,/zJ)' &(
—", x- 2).U'(OOO)+(8x-~) U'(1OO)

gt

+ (2x —7) U'(110)+ (2x- —', ) U'(111)+(x- 2) U'(200) —U'(210)

——,
' U'(211) +8[U(000)+ U(100)]j, (A]3)
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TABLE IV. Interpolated values of BU/~x at various
lattice points for x=1.016. Interpolation carried out as
described in text.

Coordinates

(000)
(100)
(110)
(111)
(200)
{210)
(211)

acr
ex

4. 145
2. 679
2. 304
2. 061
l. 786
1.650
1.530

where U(a, b, c) stands for U(x, p) with p as the
lattice vector (a, b, c). The sums (A12) and (A13)
are seen to be closely related, differing [apart
from the self-term (D, ,")] by th. e quantity 4[U(000)
+ U(100) —U(110) —U(111)]. This is easy to show
directly with Eqs. (A7) and (A8) and provides a use-
ful check on the results.

For numerical evaluation of the U's and U" s the
value x= 1.016 (c(=0.016) was adopted for MnF2. 7

This choice is not critical as long as the spin-wave
gap energy e, = (2n) ~ zZS is adjusted to have the

experimental value &~ /ks = 12. 54 'K.2~ The U's
were evaluated by fitting the quantity'8 ImE(x)
= xU(x) to a functional form'8

1m'(x) =1m'(I) —(2/v) (2 —I)'"

effort has been made to resolve these discrepan-
cies. We finally note that omitting the distinction
between A-A and A-B coupling coefficients [(AV)
and (A8)], as wasdoneinprevioustreatments, re-
sults in a second moment - 50/o larger than the
value we give.

An estimate of the dipole-SN cross term (A10)
was carried out by direct summation over the near-
est 50 lattice sites using the tabulated Green's func-
tion" to evaluate D,J", and D~~~. The parameters
given in the previous paragraph lead to the value
of Mz~(dipole-SN) in Table II. The resulting tabu-
lation of D, ,''s also gave a useful check on the sums
in (A9), accounting for -90/0 of the calculated mo-
ment sum. This tabulation also forms the basis for
the remarks in Sec. IV A on the nature of the
' F- F SN interaction.

Lastly, we consider the SN coupling of the form
I,")I(3) between unlike '~F's, as described at the
beginning of this Appendix. For a rough estimate
of this effect, we consider only the coupling be-
tween nearest-neighbor "unlike" pairs. These
share a common Mn ' neighbor, and we calculate
the SN coupling via this common neighbor only,
neglecting the other eight interaction paths. The
term we evaluate is expected, however, to pre-
dominate and give a reliable order-of-magnitude
estimate.

The coupling operators for an unlike-neighbor
pair are obtained straightforwardly from (A2) since
one ' F has type-I coupling and the other type-II:

at +=1.012 and 1.020. This procedure yielded an
estimate of the quantity A(x —1)+B(x —1) ~ at
x= l. 016 which was always within 0. 1% of the value
obtained from tabulated E(x). The U" s were then
obtained by differentiating (A14). The values of
U'(000) and U (100) so obtained were also compared
with values obtained from the sum rules'8 using
the other U 's, giving agreement ))(('ithin 0. 2%%uo or
better. ~ The U" s resulting from the above pro-
cedures are stated in Table IV.

Using the U 's from Table IV and tabulated U 's in

Ref. 18, we obtain the following results. Equa-
tion (A12) gives gz. (1Y&&".) = 3. 13 with (D,&") = 9.51.
and Eq. (A13) gives P&,(D&~, ) = V. 83, all in units of
(( a' )„/zJ)'. From (A9) we have M,"(SN) = 2. V4

((a )„/zJ') . Inserting the value of (a )„from
Table III with J adjusted to give the correct spin-
wave gap energy (8= 3. 51 'K) yields the value of
M~ (SN) in Table II. The numerical values of
K;. (D;,"') (=12.64) and D;,

" given here are -10%%u().
larger than the corresponding quantities given in
Ref. V, and the moment contribution g~. (D),"')2
= 3. 13 from A-A coupling about 25/0 smaller. No

X"'=-' b/(I"'S +I'"S )+-'(('(I' )'S +I'"S )

Q(2) ( bll(I(2)S +I(2)S ) Q+ l)(I(2)S +I(2)S )

(A15)

In (A15), S, are the transverse spin operators of
the common Mn ' neighbor. By the same pro'ce-
dures that led to (A7) and (A8) we then find for the
coefficient of I,"'I.' ',

(A16)

Taking the hyperfine couplings from Table III, J as
given above, and U(000) = —1.272 from Ref. 18,
we find D„'„'=—2. 1&&10 rad/sec. The magnitude of
the corresponding dipolar coefficient is estimated
to be l. 2 X 10 rad/sec, so that the SN effect is
relatively minor. It is diminished considerably by
a cancellation between the two terms in (A16).
The relative phase of the SN and dipolar effects is
such as to cause a net reduction in the coupling
effect.
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