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Resonant Nonlinear Optical Susceptibility: Electroreflectance in the Low-Field Limit
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A theory of the electric field effect on the dielectric function of solids is developed by means
of a perturbation treatment similar to that used to describe nonlinear optical phenomena. The
field-induced change in the dielectric function is given directly as a Brillouin-zone integral
over a fourth-power resonant denominator. It is shown that electric field modulation results
in spectra nearly proportional to the third derivative of the unperturbed dielectric function for
common experimental conditions. The perturbation treatment is related to the standard (high-
field) Franz-Keldysh theories. The differences between the two approaches is discussed in
physical terms. Simplified expressions for parabolic critical points are developed and used
to discuss experimental criteria for the validity of the perturbation theory. Application to
band-structure analysis is discussed. In particular, critical-point parameters (energy,
broadening, etc. ) enter nearly independently, and the mathematical form of the fourth-rank
tensorial line shape is simple enough to permit the calculation of electroreflectance spectra
from existing band-structure calculations.

I. INTRODUCTION

A dc electric field can be considered as a co-
herent superposition of photons of zero frequency.
From this viewpoint, it is expected that the clas-
sical Franz-Keldysh theory, ~ ' which describes
exactly the effect of a uniform electric field on un-
scattered crystal electrons in the one-band approx-
imation, should be related to perturbation theory
and therefore, the electroreflectance (ER) effect
should be related to nonlinear optics. 6 This
hypothesis is confirmed experimentally: Quanti-
tative ER spectra in the limit of a small dc
field 8 are known to scale quadratically in 8 and

linearly in light intensity, providing direct evidence
that ER in the low-field large-broadening limit
involves two dc "photons" and a single ac photon,
characteristic behavior of a third-order suscep-
tibility. In addition, ER theory'2 '~ and spectra~
have been used to calculate nonlinear optical coef-
ficients to reasonable accuracy. The sharpness of
ER spectra, and their connection to critical points
in the joint density of states, indicate that this is
a resonant susceptibility analogous to that en-
countered in Raman scattering. It is the objective
of this paper to develop the perturbation descrip-
tion of ER ' and to establish theoretically the con-
nection of the Franz-Keldysh theory to that of non-
linear optics.

The outline of the paper is as follows. In Sec.
II, we discuss the perturbation theoretic tree. tment
of the electric field, using a standard time-depen-
dent interaction formalism where the field is turned
on adiabatically and the wave function evolves with
time. We relate the resulting expression to the
convolution-integral (strong-field) formalism in
Sec. III by performing an asymptotic expansion of

~ o+ Q
(2 I)

where IIo is the unperturbed Hamiltonian and E„„"
=@co« is the energy of the state y«. The spatially
uniform dc field can be represented by a time-de-
pendent per turbation term

II, =+ eg, ~ xe"'

and the photon field by the perturbation terms

H, +H =+eS, ~ x(e-' +'+e'" '), -

where

E =I, =Nco +ll

(2. 3)

(2. 4)

The amplitude vectors 8~ and S~ are real, and the
turn-on parameters q&0 and l" &0 enable the evolu-
tion of the one-electron wave functions to be cal-
culated starting with the unperturbed crystal at
t- —~. We work in the scalar-potential gauge,

the kernel function which is valid in the limit of
large broadening. The range of validity, relation
to the unperturbed dielectric function, and con-
nection to experiment are discussed in Sec. IV.
The physical meaning of and the difference be-
tween various approaches to the electric field
problem is given in the summary in Sec. V.

II. PERTURBATION THEORY

In this section we derive by means of standard
time-dependent perturbation theory the dominant
resonant term in the third-order nonlinear optical
susceptibility caused by the uniform electric field.
We work in the one-electron approximation, where
the Bloch functions p„p(r) describing electron states
in the crystal satisfy the time-dependent Schrodinger
equation
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=I g„„-(r, t) ,

lim («(r, t) =y«(r)e '" &' (2. 6)

The wave function g«(r, t) can be evaluated as a
power series in the perturbation terms by standard
techniques. Ne find, to third order in the per-
turbations Hz, H„and H,
4„g(r, t)= p„f(r)e "«'+(G H, +G'H++G H )p„„(r)e '"~~

+ [G H~G H&+G 'H&G'H, +(seven re-

maining second-order terms) J y«(r)e-'"~F

+ [G H G ~H G H +G~~'H G~'H G'H

+ (25 remaining third-order terms) J

x q«(r)e '"~~' . (2. 6)

For brevity, only two each of the nine second-
order and 27 third-order terms are written„. the
complete sets are obtained by taking all possible
ordered pairs and triples, respectively, of the

symbol set 1, +, —,and forming products of the
corresponding perturbations and Green's functions
6'~" as indicated by the terms shown. Here,

g)g ~ ~ ~

E "+S]+S + ~ ~ ' Honr.

(2. 7a)

where the i, j, . . . represent a particular com-
bination of symbols (1, +, —), and if

1 if'
i= +, then S, = E, , etc. (2. 7b)

The dielectric tensor ~;& of the crystal can be
calculated from the polarization P =(P,J according
to

which is the standard representation of the dc term
in the high-field Franz-Keldysh theory. It is
equally possible (but algebraically much more dif-
ficult) to work in the vector-potential gauge. The
dipole approximation is used throughout. 6

The time-dependent wave function g„f (r, t), de-
scribing the evolution of the one-electron state
y«(r)e '"~&', is defined by

(Ho+H)+H, +H )g„f(r, t)

= (Ho+ e8) xe"'+ eh2 ~ xe '"+'+ eha ~ xe'" ')4«-(r, f)

first-order terms, 27 second-order terms, and
108 third-order terms, and contains the complete
microscopic description of the entire range of
nonlinear optical effects, such as harmonic gen-
eration, optical rectification, etc. , through third
order. 5 But the terms describing electroreflectance
can be readily obtained by making use of the fol-
lowing observations:

(i) The induced polarization must have the time
dependence of the photon field, since the frequency
of the reflected beam is the same as that of the
incident beam. Ne choose the time dependence to
be that of H, - e '"+', in accordance with the usual
conventions. This reduces the number of first-,
second-, and third-order terms to be evaluated
to 2, 6, and 24, respectively.

(ii) Qf the remaining terms with the proper fre-
quency dependence, there exists only one term in
each order where each resonant factor in the de-
nominator comes into resonance at the same fre-
quency (barring "accidental" resonances due to
specific interband energy separations). This
dominant term for the nth order contains one photon
interaction H, and (n —1) dc field interactions H&.

Through third order, the contributions to 4P, the
field-induced correction to the polarization, will
have the explicit form

bP= ——~ (n
l
kxGH G H+Ivk)

v

——Z &~k!xG"H, G'H, G H. !~k) .
vk

(2. 10)
All other terms within a given order will have at
least one nonresonant denominator replacing a
resonant denominator, and so will be at least of
order (1/E, ) smaller in magnitude. We note,
however, that this assumption is valid only for
@co near or above the fundamental absorption thresh-
old, so that allowed valence and conduction states
separated by the photon energy can always be
found.

We now evaluate Eq. (3. 10) through third order
by inserting complete sets of wave functions
[n'k') between operators, leading to terms of
form

(n'k'! G""'!nk)= 6„.„6f;„(Z„„--Z„.-„, +S, +S,+ ")-',
(2. 11a)

D) = &].8) = &]qS~+4mI',

where

P=-—Z (0„;(f)!x!q„„-(f))
vk

(2. 6)

(2 9)

&n'k'!x!nk) =

—fg P„,„(k)
mE„i„(k)

6f,-„zn' ~n,

if n' =n
(2. 11b)

(2. 11c)
and gg(r, f) is given by Eqs. (2. 7). The subscript
v for the band index denotes a filled valence band.

The exact evaluation of Eq. (2. 9) using Eq.
(2. 6) is a formidable task, since it contains six

where P„.„(k)= —iK(nk
~ V„~nk) is the momentum

matrix element. Clearly, all intermediate sums
over k vanish because each operator is diagonal
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in k. Second, in order for each denominator to
resonate at the same frequency, all intermediate
states must in addition correspond to the same
band. Therefore, the only interband terms involve
the polarization operator x and the photon interaction
H„and the dc interaction HI appears only in in-
traband matrix elements. The approximation of

neglecting idterband matrix elements of x, used
throughout in the Franz-Keldysh theory, is seen
to arise naturally out of the procedure for isolating
the dominant term in the perturbation approxima-
tion.

With these simplifications and through the use
of Eqs. (2. 11), Eq. (2. 10) becomes approximately

(), p.„)

1 1
W,„E.—E,„(k)

A

and retain only the component of polarization 0 in the direction of & = S()/Ih~l, the unit polarization vector
of the photon, then by Eqs. (2. 8), (2. 12), and (2. 13), per band pair (c, v):

(2. 13)

~,„(,1",h)=-, Z '" S v„-
4me')I' (~ P,"„) ~ 1 - . 1 (». I.„)

cv cv

I' „,; Z,. E.+(Sfw —E,.(IE)
~ E.+savy —)),„(f)'~ (Z. —E.„(f) Z.„)

(2. 12)
where 8 = 8& represents the dc field. Since the photon turn-on parameter I' appears in each denominator,
Eq. (2. 12) is well behaved in the limit q- 0. This limit simply represents the physical fact that the dc
field has been turned on long before the arrival of the photon. Accordingly, we set q= 0 and identify I' as
the phenomenological broadening parameter, representing excited-state lifetimes in the usual manner.
With this interpretation, I" is properly a function of k, but varies sufficiently slowly in the vicinity of a
resonance so that it may be appr'oximated by a constant. If we define

4me if + (» ~ P.*„) 1 - 1 1 (» ~ P.„)+ maV „E,„W ~ v" 5' ~ vk 8' E

Equation (2. 14) gives the dominant second- and
third-order field-induced corrections to the dielec-
tric function, varying linearly and quadratically,
respectively, with the dc field 8. If the crystal
has inversion symmetry (P,"„=P,„) or if P,„ is in-
dependent of k, then the second-order term can
be written in the form

b & -Q E(k) g ~ vI F(k) = —'Z„-g v; [Z(k)' ]
(2. 18)

which vanishes in summation by the symmetry of
the Brillouin zone. Therefore, the existence of
a correction term linear in g depends entirely on
the k dependence of the momentum matrix element,
which is typically small enough to be neglected
even in the absence of inversion symmetry. The
same condition and assumptions appear in the
derivation of the Franz-Keldysh theory, ~ 3 so the
second-order correction term will not be discussed
fur ther.

The third-order correction term can be simplified
by noting that 1/W, „(k) depends much more strongly
on k than do either P,„(k) or E,„(k), so that the
gradient operators in Eq. (2. 14) need only act on
the factors 1/W. Also, since the energy range of

1 1 1xQ —g ~ v-„ v-—
, w,„"w,„

Using the identities

(It v-„i(1/W, „)= (I/W~„)(h v„E,„) ~

(2. 18)

(2. 17a)

0=RIB Vt[(1/W, „)(h V»E ))

= —4Z;(i/W, '„)(S.V-„Z,„)'

+Z; (1/W,'„)(8 v-„)'E,„, (2. 17b)

we conclude

n,e((o, I', 8)= 3 ~
'" Z W4 (8 V„) &,„(k)

2q, (fin)'
Id k

LE @ ( ))4, (2. 18a)

I

the resonant parts of ~& is of order 1", the non-
resonant denominators E,„can be replaced by 8,
introducing errors no larger than - I'/K&o. We
find

4me4~ c ~ p,„I~

6»,„((d, I', 8) =-

m(d V
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where

4v e~[a p [ t 2
~I, (2.)'

(kA)' = -', e'(8 &(.,)'E,„=e'&+'/8t(( (2 18c)
Equations (2. 18) represent the main result of

this paper, derived by means of perturbation
theory. For reference, the linear dielectric con-
stant is

(2. 18b)

a,„((d, I') =
~ )I d'k E,-) . (2. 19)

+ co~

If SQ is nearly k independent in a given energy
range, we can write

1 s«,„(E,I", 8)-=, KA E'~,„(E,1");eg
(2. 20)

thus the third-order correction is closely related
to the third derivative of the unperturbed dielec-
tric function. Qf particular importance is the
fact that Eqs. (2. 18) are obtained independently of
details of the interband energy, and may be used

either with calculated energy-band structures or
simplified models with equal validity. As with any
third-order susceptibility, the line shape can also
be represented as a fourth-rank tensor, here
taking the form y«»(&, 0, 0), where the tensor in-
dices i arise from the momentum matrix element
in the prefactor Q, and the indices j represent
the interband reduced mass in the characteristic
energy factor (k A)~.

III. RELATION TO CONVOLUTION FORMALISM

In this section we derive Eq. (2. 18a) as a weak-
field large-broadening limit of the convolution-in-
tegral formalism, s'~ the strong-field limit of the
Franz-Keldysh effect. In the presence of lifetime
broadening, represented by the same phenomeno-
logical broadening parameter I used in Sec. II,
the convolution integral giving the linear dielectric
function of a crystal in the presence of a dc field
8 in the one-electron approximation can be written
as the Fourier transform of a time-dependent
polarization current33:

m &-g .s.z
dt (s p„,[k —,'(t/5) eS ])—

p t/2
x(c ~ P,„[k+2(t/ft)eS] te's+'t" e ' t (dt'/h)E, „(k—eg t'/h) . (3.1)

-t/2

The unit polarization vector & represents the polarization of the incident light and the wave vector inte gral is over
the Brillouin zone (B. Z. ). In standard developments, $,„is taken as R independent (thereby eliminating the
second-order correction term linear in field discussed in Sec. II), and the exponent is expanded in the
weak-field approximation

f„,(dt'/S)E, „(k eE t'/I) =- (t/-ff)E. „+,' t'A', - (3. 2)

where IA is defined in Eq. (2. 18c). With these approximations and the use of Eq. (2. 18b), Eq. (3.1) be-
comes

. (E,„(k) —Z,
SA

e,„(E, I', 7(.l) =
~ ( d~k —exp'- & it A +it [E, E,„(k)]/5)-

77(d g.z, g p I
Q [' 1 . E (k) —E, i'= '1 " aA' -NA

' ia.Ai~ ~

(3. 3a)

(3. 3b)

,- ~ o g~ l, tsAS/3 (3.4)

we convert Eq. (3. 3a) into an asymptotically con-
vergent integral, the first two terms of which are,

The unbroadened convolution integral is recovered
by setting I' = 0 in Eq. (3.Sb).

The perturbation result is obtained by taking I'
so large that the integrand in Eq. (3.3a) cuts off
before the term —i t~A /3 changes appreciably, a
condition expressed by tSQ) « I", i.e;, the field
is sufficiently weak so the magnitude of the char-
acteristic electro-optic energy )SQ ( is significantly
less than the broadening energy I'. Then, writing

't

by explicit integration,

c,„(&u, I', (g)-
g s.z.

~s 1
E, —E,„(R)

Ai(x)- 0, (3.8a)

2q t, (eA)'
[E,-E,„(k)]' '

(3. 8)
which are identical to the results obtained in Sec.
II.

An alternative approach is to use explicitly the
asymptotic expansions
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1 2
Gi(x)- —1—,+ ~ ~ ~

mx x' (3. 6b)

in Eq. (3.3b), which leads directly to Eq. (3. 5).
Since the function Ai(x) has an essential singularity
at infinity (converges to zero more rapidly than an

inverse power of x), it contributes nothing to the

asymptotic expansion, which comes entirely from
Gi(x). A similar situation occurs in the theory of

Zener tunneling, ~ a direct electric field tunneling
effect which also cannot be described in any finite
order of perturbation theory. In regard to the
Franz-Keldysh theory, this result demonstrates
that the term Ai(x), describing the imaginary part
of the field-dependent dielectric function in the

absence of broadening, can be obtained only by
summing the perturbation series exactly to infinite
order, as is done in the derivation of Eq. (3. 1).
Therefore, Eq. (3. 5) must fail as 1'- 0, since it
is completely independent of the term Ai(x) in Eq.
(3. 1) in this limit. We discuss this more fully in
Sec. IV.

By combining the results of Secs. I and II, we
estimate the effect of the k dependence of the mo-
mentum matrix element in crystals lacking inver-
sion symmetry, and show this is small. We ex-
pand the matrix element in a power series in t in

Eq. (3.1). This expansion is inherently asymptotic
and, in the absence of broadening, resulting in-
tegrals for parabolic-model band structures fail to
converge (evaluation for exact band structures pre-
sumably remains finite but is too difficult to per-
form). Since multiplication of the integrand by f
is operationally equivalent to 8/SE, the k-depen-
dent term of the matrix element results in a 8,„
resonance compared to the W ' resonance of the
ER term in Eq. (3. 5). Therefore, matrix ele-
ment effects are inherently of order I' /E~ smaller
in magnitude. Even though it is always possible
to find a range of field small enough so that the
linear (matrix element) term dominates the quad-
ratic (ER) term, it is unlikely that such linear ef-
fects related to the k dependence of the matrix ele-
ment will be observed.

E,„(k)=E, +I'k /2p, . (4. 1)

(2 ~/II2)1/ 2

(n8)' = 4(8fI )',
z = e "/ tc = (E,—E,)/It() .

(4. 2c)

(4. 2d)

(4. 2e)

In Fig. 1, the real and imaginary projections of 10
times the bracketed parts of Eq. (4. 2a), the convolu-
tion expression, and Eq. (4. 2b), theperturbationap-
proximation, are plotted for various values of F/It 8

I I I I I I I I I I I I I I I

-20—
~ ~

I +I I I I I
I I I I I I

~ ~

1 I 1 I I I I I I

~ ~
V'

I I I I I I I I I

1.4

i I
I I I I I I I I I

i I I I I
I I I I

I I I I I
I I I I I

Here, Eqs. (3.3) and (3.5) can be expressed as
analytic closed-form field-induced changes in the
dielectric function ':
bg(to, F, 8) = (2@i/&o ) QD (h()) / (2iT[e"/ Ai'(z) Ai'(tc)

+ tu Ai(z) Ai(ts) ] —z'/' j (4. 2a)

- (»i/~') 0D'(If())"'f. —3'z z "'j (4. 2b)

where the quantities not defined in Eqs. (2. 18) are
given byes

IV. DISCUSSION

A. Range of Validity

We have shown in Sec. III that the strong-field
or Franz-Keldysh limit, given by Eq. (3.3b), can
only be obtained by summing the perturbation ex-
pansion, given by Eq. (2. 5), to all orders in the
perturbation. It is therefore of interest to inves-
tigate the range of validity of Eq. (3. 5). We do
this by comparing directly in Fig. 1 line shapes
for 4e, and d ez, ca.lculated from Eqs. (3.3b) and

(3.5) for the special case of a three-dimensional
parabolic Mo critical point defined by the three-di-
mensional interband energy

r= ate

4 2 0 —2 -4 4 2 0 -2 —4
( % tu —Eg) /%8

FIG. 1. Comparison of the perturbation (dotted line)
and broadened-exact (solid line) forms of the electric-
field-induced change in the dielectric function. De= b, ~~

+ jQg~, as a function of the relative broadening I'/h6
=2 3I'/AO for a three-dimensional Mo critical point.
Functions plotted: solid curves, 10 & (term in brackets
in Eq. (4. 2a)}; dotted curves, 10 &&(term in brackets in

Eq. (4. zb)).
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1.0 — (p )

LLI

0.5—

1.0— (b)

(c)

~ +aE-r
I

-2

FIG. 2. Comparison of (a) the joint density of states
n(E) of a three-dimensional simple-cubic lattice, (b) its
third derivative (d/dE)3n(E), and (c) a composite modula-
tion spectrum synthesized from Mo, M&, 1VI2, and M3
three-dimensional critical points from Table I. The
quantity n(E) is calculated from the integral representation
of Ref. &9, and the energy units chosen place the Mo, M~,
M2, and M3 critical points at —3, —1, 1, and 3, respeo-
tively. In (b) and (c), I'=0. 2 in the same units, as shown
in the figure. In (c), each critical-point contribution ex-
tends one unit to either side of its respective critical-
point energy, and the magnitudes are scaledinal:3:3:1
ratio to simulate the critical-point degeneracies in n(E).
For comparison purposes, the sign contributed by the
prefactor (SQ) in Table I was neglected in (c): The Mo,
M~, and M2 line shapes correspond to the field oriented
in a positive-mass direction and the M3 line shape is in-
verted.

=2 ~~I'/kA as a function of (h&u —E,)/h8. Of par-
ticular importance is the fact that the perturbation
expression accurately reproduces the main struc-
ture centered about hu = F. . Subsidiary oscillations
which appear in the exact formulation at small
values of I'/

I hQ I are generated by higher-order
resonant terms in the perturbation expansion, and
are not contained in Eq. (4. 2b). Figure 1 shows
that Eqs. (4. 2a) and Eq. (4. 2b) are virtually iden-
tical for I'& 3 I AG I

=2
I h8 I, and we take this as

a working definition of the range of validity of the

perturbation limit. For I' & 3 I kQ I, the asymp-
totic limit will approximate the main features of
the exact expression, but it becomes progressively
less accurate as the broadening decreases or the
field increases.

Whether or not the perturbation approximation
is applicable to a specific experiment can be de-
termined directly from the experimental line shape
if we note that in this limit, the field enters only
as a scaling prefactor 8 . From this square-law
scaling property of Eq. (2. 18b), it follows that
limit is applicable whenever the spectral amplitude
scales as g, and no change in the line shape
(relative heights of line-shape extrema, or shifts
in energy of line-shape features) is observed as the
field changes. In practice, for typical values of
momentum matrix elements (I'-0. 1 h/a~) and in-
terband reduced masses (p, r-0. 1m, ) the low-field
limit is usually applicable whenever the rule of
thumb I nR/R I & 10 is satisfied. Of particular
importance to the experimentalist is the fact that,
in this limit, experimental restrictions for ob-
taining "good" spectra are considerably relaxed:
Since the line shaPe is field invariant, it is not
necessary to use square-wave modulation nor even
to modulate from flat band (unless quantitative
conclusions are expected to be obtained from the
amplitude of an experimental spectrum). Also,
the appearance of the field and reduced mass as the
scaling factor (7 /p, ) greatly simplifies the theo-
retical analysis of experimental spectra.

B. Relation to the Unperturbed Dielectric Function
and Energy-Band Structure

Examination of Eq. (2. 20) shows the field-induced
change in the dielectric function in the perturbation
limit is proportional to the third derivative of the
unperturbed dielectric function. In particular, the
imaginary part of this change is proportional to
the third derivative of the density of states. This
result shows electroreflectance is qualitatively
different from other modulation techniques (e. g. ,
piezoreflectance, thermoreflectance, ' wave-
length derivative spectroscopy ) where the experi-
mentally measured change in the dielectric function
is given by the first derivative of the unperturbed
dielectric function. This explains the generally
sharper, better separated, and more richly struc-
tured spectra of electroreflectance, as compared
to those obtained with other modulation techniques.

To illustrate this relationship, we compare in
Fig. 2 the third derivative of the theoretical den-
sity-of-states curve of a three-dimensional simple-
cubic lattice with a composite curve of changes
in the imaginary part of the dielectric constant,
calculated from Eq. (3. 5), for a sequence of para-
bolic three-dimensional Mo, M» M» and M3
critical points. The functional forms of the changes
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TABLE I. Field-induced changes in the complex dielec-
tric function for one-, two-, and three-dimensional
critical points in the perturbation or low-field limit.
Branch cuts for one and three dimensions are defined for in-
tegerN as lim(E+iI'-E~) =+E as E-~. )is the
orderof the criticalpointM„where l =0, 1, 2, 3 and) ~ di-
mension. D; = (2 I p, ;I/5 ) is the density of states for the ith
symmetry axis. K& is the A-space cutoff for the ith symmetry
axis. Q = (4z e /m ) [2/(2m) ] ) e ' P~ ) and (IQ) = (h e b /

'8p~, ) =8 e (g 7'~) Ecv(k)

quence of the corresponding sharpening of the den-
sity of states. The presence of two well-defined
extrema on these curves is a general property,
and these can be used to determine the critical
point energy, as well as the broadening and crit-
ical point type, to high accuracy. Excitonic ef-
fects in experimenta, l spectra act mainly to mix
line shapes of adjacent critical points' and do not
appreciably affect the above results. "

Dimension ae(E, I',h)- V. CONCLUSION

in the dielectric function associated with each of
these critical points are all obtainable from Eq.
(4. 2b); the general expression in practical units is
given in Table I. The density of states n(E) given
in Fig. 2(a) is unbroadened. Its third derivative
and the composite in Figs. 2(b) and 2(c), respec-
tively, are both broadened by an amount I'= 0. 2,
in units of energy of the density-of-states curve
(Mo critical point at —2, M, at —I, etc. ). The
amplitude of the critical-point contributions in
Fig. 2(c) have been scaled to agree with their
counterparts in Fig. 2(b), and the sign oI the pre-
factor (her) has been neglected as explained in the
figure caption. The agreement between Figs. 2(b)
and 2(c) is immediately apparent, and illustrates
clearly the separation and independence of critical
points to an EB spectrum in a nonparabolic band
structure, and how well the simple line shapes
calculated from parabolic approximations repre-
sent the nonparabolic band structure.

The relative accuracy of simple parabolic line
shapes in the three-dimensional case indicates that
two- and one-dimensional simple parabolic line
shapes, which approximate ER line shapes for
continuum exciton Eo and E, and E&+ ~& transi-
tions~' in semiconductors, and magnetoelectro-
flectance line shapes, ' respectively, may also be
useful. Accordingly, the functional forms of these
line shapes are also given in Table I, and the line
shapes associated with the changes in the real and
imaginary parts of the dielectric functions,
and 4&&, for an Mo critical point for each dimen-
sion are shown in Fig. 3. Since the line shape of
4& = ~&, + i4&~ for any critical point of a given di-
mension can be represented as a linear combina-
tion of the two for the Mo critical point, Fig. 3 is
general. Note particularly the sharpening of the
line shapes with decreasing dimension, a conse-

We have shown that perturbation theory and the
classical strong-field theory both yield the same
expression for the field-induced change in the di-
electric function for weak fields where the broad-
ening energy 1 is significantly larger than l AAi.
Since the two derivations are based on substantially
different assumptions, we conclude by examining
their differences in more detail.

The strong-field theory is a stationary-state or
constant-energy approach which requires the non-
physical assumption that electron scattering is non-
existent (the electrons set up standing waves in the
Brillouin zone) in order to impose a condition on
the phase-coherent part of the Bloch functions to
enable normalization of the wave functions of the
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FIG. 3. Electric-field-modulated line-shape functions
for one-, two-, and three-dimensional critical points.
For each dimension D= 1, 2, or 3, the curves are gener-
atedby the real and imaginary parts of the function i
x(X+i) ', representing the line shapes of the real (&E~)
and imaginary (4e2} field-induced change in the dielectric
function for an Mo transition of each dimension, as shown
in Table I. Note the increase in width of the dominant
structure with increasing dimensionality.
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infinite potential resulting from the uniform field. 6

The perturbation approach avoids the difficulty of
a stationary infinite potential by turning the po-
tential on as a function of time and calculating the
resulting evolution of the unperturbed wave func-
tions. Thus the nonphysical requirement of zero
scattering is avoided by perturbation theory where
the broadening (turn-on) parameter plays a central
part. For comparison, it is easy to show directly
from the acceleration theorem' that the perturba-
tion approach requires phase coherence of the elec-
tron only for a range

~k a

esca

2g 2pI'

where K is the width of the Brillouin zone, and a
is the width of the unit cell in real space. This
ratio is of order 0. 01 for typical conditions in-
volving higher interband transitions, indicating
phase coherence over a physically reasonable range
of 100 unit cells. "

A second difference is a direct consequence of
' the stationary-state vs time-dependent nature of
the two derivations. The stationary-state wave
functions of the strong-field theory represent exact
diagonalization of the intraband part of the poten-
tial, and are linear combinations of all Bloch func-
tions (of a single band). These new wave functions
cannot be identified with any single Bloch state,
whereas perturbation theory describes directly the
time evolution of specific one-electron states. The

inability to relate strong-field states to particular
Bloch electrons was previously noted by Vfannier
and Van Dyke, "and has consequences for the de-
scription of the Stark ladder in ideal one-electron
crystals in an electric field. Stark steps do not
appear in the perturbation approach.

The essential difference between our treatment
and the high-frequency theory of Yacoby is
Yacoby's use of Houston functions ' to describe the
time evolution of the one-electron system. These
representations of the wave function have a time-
integrated (Floquet) phase factor, as contrasted
to the perturbation phase factor increasing linearly
in time, and yield the standard Franz-Keldysh re-
sult because they represent too accurate an approx-
imation.

The mathematical simplicity of the perturbation
formulation of electric field effects on the dielec-
tric function of solids, and the relative indepen-
dence of parameters determining line shape and
magnitude, should simplify theoretical calculations
and aid in determining band-structure parameters
from experimental spectra. The factoring of the
field and reduced mass as scaling parameters to
a general line shape is a significant simplification
which allows the energy gap, broadening param-
eter, exciton strength, and momentum matrix ele-
ment to be extracted from the position, width,
asymmetry, and magnitude, respectively, for a
given resonance. This analysis will be treated in
a later paper. "
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Theory of the Piezoelectricity of Zinc-Blende-Type and Wurtzite-Type Crystals
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A theory of piezoelectricity in zinc-blende-type and wurtzite-type crystals is given. The
charge-transfer effect contributes mainly to the piezoelectric constant. The assumption of
the second-nearest-'neighbor electron interaction (7r-electronic energy) in the crystal enables
us to predict theoretically the charge-transfer value, so that the piezoelectric coefficients can
be calculated. The 7t-electronic interaction energy is found to be 0.5- 0. 8 times the 0-bonding
(tetrahedral-bonding) energy in wurtzite crystals.

I. INTRODUCTION

Zinc-blende-type (ZB) and wurtzite-type (Wu)
crystals are piezoelectric. The piezoelectric co-
efficients of these crystals have been obtained ex-
perimentally. ~'~ The most striking aspect of the
experimental data for the piezoelectric constants
of ZB and Wu crystals is that v 3 e«(ZB), or its
equivalent e»(Wu), reverses sign on going from
II-VI to III-V crystals. But no successful theory
has been proposed which enables us to predict the
piezoelectric constants or to understand the origin
of the effect.

To explain these data, a simple theory of the
rigid-ion model had been proposed. ' In that theory
it is assumed that the charges of anion and cation
in the crystals under stress remain constant, and
only the relative bond angle changes. Then, for
ZB, the piezoelectric constant e&4 is given by

e&4=&s e ~d

where e~ is the effective charge of the lattice and

d is the bond length from anion to cation. The
piezoelectricity of the cubic ZnS crystal shows
good agreement with the theory, 3 but this is not

the case for all other crystals. ~'

Arlt and Quadfliega introduced the charge re-
distribution effect (i. e. , change in ionicity) for the
explanation of experimental data on piezoelectricity.
They ga.ve the relation

e«= (the displacement of ionic charge)
+ (the internal displacement of the electron

cloud relative to the atomic nucleus)
+ (the effect due to the strain-induced

change in ionicity). (2)

The first and second terms in Eq. (2) are equal to
Eq. (1), because the effective charge e* includes
the effect of the displacement of the electronic
charge, i.e. , electronic polarization. The third
term is the charge-transfer effect under the strain.
They estimated the contribution of the change in
ionicity such that the positively charged atoms lose
their charges linearly in expanding the bond length;
i.e. , if the bond length is expanded a factor of 2,
all atoms would become neutral.

Phillips and Van Vechten showed that there is
some correlation between the magnitude of the
charge-transfer effect and the ionicity f, of the
crystal. They gave the relation


