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The renormalized-atom approach, first used by Chodorow, is shown to yield quantitative
estimates of some of the essential potential-dependent parameters characterizing transition-
metal band structures on the basis of essentially atomic considexations. These ax'e the posi-
tion I'& of the conduction-band minimum, the mean d-band energy, the energies associated
with d-band extrema, and the degree of s-d hybridization as defined within the Heine-Hubbard
peeudopotential schemee. The estimates of I"

~ and the d-band extrema utilize "renormalized-
atom" band potentials within the Wigner™Seitz cell in which the interelectronic exchange is
taken into account without resort to the p~ appxoximation and incoxporate the appropriate
boundary conditions at the %igner-Seitz radius x&8. The results have comparable accuracy
with those obtained from augmented-plane-wave calculatione employing the same crystal
potential within the muffin-tin approximation. The band results are qualitatively similar to
those obtRined using more coQveQtionRl p poteDtlRls. The %lgner-Seitz viewpoint ls there-
by seen to be useful in obtaining quantitative xesults for certain high-symmetry points in
0 space aside from I'~ with far lese coxnputational effort. ID addition, the present scheme
may provide a bettex' staxting point for dealing with d-d exchange-correlation effects. Also
discussed are a number of features general to the problem of constructing adequate transition-
metal crystal potentials, in particulax, how to deal with nonintegral d- and conduction-electron
counts pex' atom Rnd conf lgulRtlon Rnd/or Inultlplet averaging

I. INTRODUCTION

Vfhile energy-band calculations in transition and
noble metals have been successful in reproducing
such complicated experimental data as Fexmi sur-
faces~ there ls no ovex'-Rll satisfying explRnRtlon
of their electx"onic and magnetic properties at the
present time. The complication, of course, axises
from the presence of two distinct species of band
electrons arising, respectively, from the d' and
conduction bands. The conduction-electron prop-
erties are presumably similar to those encountered
ln simple metals, such Rs K Rnd Al, Rnd expex'1-
ence with exchange and correlation effects in such
metals may be useful here. Because of their tight-
binding-like character, it is less obvious thRt this
same experience has much relevance to d electrons.
Here intra-atomic exchange and correlation effects
of the soxt, considered by Van Vleck, Hubbard, 3

and Gutzwiller4 may be of considerable importance,
Th18 pRpex' will con81dex' R clR88 of band poten-

tials which may provide a useful starting point for
the incorporation of intra-atomic d-d exchange and
correlation effects in potentials appropriate to the
transition metals. Such considerations will be of

importance in the explanation of the cohesive enex-

gy of pure metals 38 well as the single-electron
properties of alloys having these as constituents.
These potentials will be used to investigate the po-
tential-dependent parameters involved in the orthog-
onalized plane-wave (OPW)-tight-binding-Korringa-
Kohn-Rostoker (KKR)-pseudopotential schemes
developed by Heine, ~ Hubbard, and others. ' (With
apologies to other workers, this approach will be
termed the Heine-Hubbard theory. ) The renormal-
ized-atom picture will be described in detail and
shown to yield the stxucture-independent properties
of the bands satisfactoxily.

The renormalized-atom approach was first used
by Chodorow, and extended by Segall'o for Cu.
this scheme one utilizes the free-atom s and d wave
functions, truncates them at the radius t'~ of the
Wigner-Seitz (WS) sphere, and renormalizes them
within this sphexe, thereby pxeserving charge neu-
trality. This pxocedure preserves the shape of the
wave functions inside the sphere. In this way the
Rfoms Rx'6 px'epRx'ed ln approximately the form ln
which they actually enter the solid before placing
them together. By beginning with renormalized
wave functions rather than free-atom charge den-
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FIG. 1. Co 3Q and 4g radial functions zI'(x) obtained
by renormalizing free-atom 3d 4s and 3d functions to
the signer-Seitz sphere. Also shown is a k =0 orthogo-
nalized plane wave, similarly normalized to the Vhgner-
Seitz sphere.

sities in constructing a potential, interelectronic
exchange may be explicitly introduced and corre-
lation effects taken into account to the same extent
as in the Wigner-Seitz method. In this method a full
self-Coulomb hole is supposed attached to the site
at which the electron is sampling the potential. The
result is thus not identical to a Hartree-Fock deri-
vation of a band potential. The procedure, which
is in. closer parallel to that followed in atomic cal-
culations, obviates the necessity of using local-
density-dependent p'" potentials of either the
Slater ' or Gaspar-Kohn-Sham form. ' The use of
a local-density-dependent potential then becomes
a matter of physical choice rather than computa-
tional necessity. One might, for example, choose
t applyth p'"app o ato tot t a st..o-
metal conduction bands. Unlike the local-density
approximation, the renormalized-atom approach
introduces a correlation hole centered in the Wig-
ner-Seitz cell. This could be a poor approxima-
tion for an itinerant electron sampling the outer
portions of a Wigner-Seitz cell where a correla-
tion hole might be more appropriately centered
about the electron's position. The p'~ or some

other approximation might be better here. The
situation is different for d electrons. Most im-
portant to their properties is the potential in the
interior of the ion, in the region indicated in Fig.
1. In this case, the renormalized-atom approach
seems an excellent first approximation. The d-d
exchange-correlation problem then centers on how

one modif ies the signer-Seitz approximation. The
previous work of Van Vleck and of Hubbard pro-
vides substantial physical guidelines as to how this
might be accomplished.

t-dependent Hartree-Fock-signer-Seitz poten-
tials, henceforth termed "renormalized-atom po-
tentials" for both d and conduction bands, will be
explored in this paper. Questions of self-consis-
tency mill not be considered, but deferred to a sub-
sequent paper. Even so, the band results will be
seen to be in reasonable accord with experience
based on experiment and on calculations employing
other types of potentials.

Of equal importance in this paper will be the in-
vestigation of the potential-dependent parameters
important to a transition-metal band structure.
While the renormalized-atom scheme is useful in

such a study, it is in fact unimportant as to whether
the band potential itself is or is not of the renor-
malized-atom type. The parameters of interest
are the following: (i) the energy location er of
I'„ the bottom of the conduction band relative to
the constant muffin-tin potential between augmented-
plane-wave (APW) spheres, (ii) the location &~ of
the resonant d level at each atomic site, which will
be shown to define the mean d-band position, and

(iii) the d-band widths and the parameter deter-
mining the degree of d hybridization with the con-
duction bands. The renormalized-atom approach
will be shown to have considerable utility in that
essentially atomic estimates can provide a good
representation of these parameters. In this con-
text, the simple signer-Seitz boundary condi-
tions, normally applied to conduction bands, will
be seen to be more important to d-band properties
than is generally recognized.

The renormalized-atom concept is useful, in ad-
dition, in permitting easier visualization of the
sources of the cohesive energy' and compressibil-
ity of transition metals which are still not com-
pletely understood. Another application, which in
fact is the original motivation for this work, is in
connection with nondilute ordered and disordered
alloys. The renormalized-atom scheme is useful
both in constructing potentials of such systems and

as a means for understanding' the chemical shifts
of core and valence levels. The scheme may also
be exploited in estimates of the screening of the
Coulomb repulsion term appearing in the Hubbard
Hamiltonian. These matters are not considered
in the present paper.
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Section II defines and discusses the renormalized-
atom scheme. Among the matters considered here
are (a) the magnitude of the absolute shift of &~,

relative to the free-ion d energy, upon renormal-
ization, (b) the construction of /-dependent renor-
malized-atom potentials appropriate to the method,
and (c) approaches that may be useful in construct-
ing potentials that take into account the fact that
transition metals frequently have nonintegral num-
bers of d and conduction electrons per atom.

Several points of detail, important to the calcula-
tions, are discussed in appendices. Appendix A
deals with the properties of intra-atomic exchange
and the problems associated with its utilization in
band calculations. Appendix B presents some de-
tails of the calculations. Having restricted the
self-Coulomb hole to the WS cell within which the
potential is defined, the metal outside the cell is
neutrally charged, but it nevertheless may make
multipole contributions to the zero of the spherical
potential inside. These are estimated in Appendix
C and are found to be insignificantly small, as
might be expected.

Renormalized-atom potentials of the type dis-
cussed in Sec. II are used throughout the remain-
der of the paper. The band results arising from
this choice are of interest in themselves but the
observations which will be made concerning the re-
lation of the potential-dependent band parameters
deduced from the renormalized-atom viewpoint and
the results of band calculations are quite indepen-
dent of the choice of the potential. This viewpoint
therefore permits simple and reliable estimates of
some of the most important parameters determin-
ing a transition-metal band structure which can
only be obtained with a great deal of effort using the
muffin-tin approaches to band theory. In short, it
resurrects a point that seems to have been lost
sight of in recent years: that the Wigner-Seitz
viewpoint is both simple and as accurate as stan-
dard band calculations when applied to structure-
independent features of the bands at high-symmetry
points.

These points are illustrated in Secs. III and IV.
The former is concerned with the placement of &„
and ~&. Atomic estimates of the energy of a re-
normalized d function in the d-band potential asso-
ciated with a single WS cell accurately predict
the mean &„, corresponding to the center of gravity
of the d bands obtained from APW calculations em-
ploying the same crystal potential in the muffin-tin
approximation. Similar atomic estimates yield &~

equally accurately. It should be emphasized, how-
ever, that the d functions utilized above are free-
atom functions truncated at and renormalized to the
WS cell. By contrast the s functions determining
&~ are obtained in the standard Wigner-Seitz man-
ner by integrating the Schrodinger equation in the

renormalized potential and installing the boundary
condition that it have zero slope at the Wigner-
Seitz radius r&&.

Section IV deals with other features of transi-
tion-metal band structures that may be d.duced
from the renormalized-atom approach. One of
these is the width of the unhybridized d bands. The
d-band extrema obtained by finding energies corre-
sponding to d functions, P(r), satisfying Wigner-
Seitz conditions at rzs (and not at 'r

p,p„as in Heine's
work) appropriate to "bonding" (dP/dr„8= 0) and
"antibonding" [P(rws) = 0] orbitals are in excellent
agreement with the d-band extrema resulting from
APW or KKR calculations. The P(r) in question
are obtained by integrating the Hartree-Fock equa-
tion containing the renormalized-atom d potential
over the full Wigner-Seitz cell, without recourse
to the muffin-tin approximation. In this connection,
it will be noted that the P(r) obtained in this way
are nearly identical to those found from band cal-
culations. Accordingly, in addition to accurate
estimates of the more important energies, the re-
normalized-atom approach also yields proper wave
functions which are defined over the full Wigner-
Seitz sphere.

The strength of the s-d hybridization is also dis-
cussed, albeit briefly, since the present results
are in essential agreement with those of Heine.

The Wigner-Seitz approximation is known" to
provide excellent estimates of &&. Thus the agree-
ment with APW theory that is found here is not
surprising. The more novel aspect of the present
work is that the same atomic considerations can
be applied equally successfully to the energies
characterizing the mean (e~) and the extrema of the
d bands as well as the corresponding eigenfunc-
tions.

II. RENORMALIZED ATOMS

The renormalized-atom approach permits the
definition of a wave function rather than a charge
density throughout the Wigner-Seitz sphere and
preserves the shape of the atomic wave function
in the interior of the ion core. Interelectronic
exchange terms may then be derived. This can-
not be done with the charge density resulting from
the standard energy-band practice of superimpos-
ing free-atom charge densities. The superposition
may be said to violate the Pauli exclusion principle
in that it does not preserve proper wave-function
shape in the interior of the ion. The implications
of this are most serious for transition metals where
the potential in this region is important to d-band
properties. Renormalized 3d and 4s functions for
various atomic configurations of Co are shown in
Fig. 1. The quantity rP(r), whose square is the
charge density at radius x, shown there is such
that the normalization condition
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[rP(» )] dr= 1

is maintained. The radial regions where the de-
tails of the potential are most important to the 3d-
and, 4s-electron behavior are also indicated. Thus,
in the Sd region the detailed behavior of the poten-
tial dominates in determining the d-electron energy
and the shape of the wave function at some given
energy. While the charge outside this region af-
fects &&, its primary influence is to produce a po-
tential well in which the 3d electrons are placed.
The gross features of this charge density, such as
the requirement that a Wigner-Seitz cell be neu-
trally charged, rather than its precise shape are
of predominant significance. The importance of
the inner region is in large part due to the centrif-
ugal barrier arising from the angular kinetic en-
ergy. The 4s electrons with their larger principal
quantum number are more diffuse and therefore
the potential at larger distances from the nucleus
becomes important. The same trend occurs in the
4d and 5d metals. Here too the d electrons sam-
ple regions inside those important to conduction
electrons.

The importance of the inner region to d poten-
tials provides incentive to exploit the renormalized-
atom approach and to implement quantitatively the
views of Van Vleck and Hubbard which emphasize

intra-atomic exchange and correlation.

A. Wave Functions and Energy Shifts

(2)

be the renormalized wave function, the radial part
being P. Here p~ is a free-atom function cut off at
r» and N is a constant normalizing it to the Wigner-
Seitz sphere. Figure 1 shows examples of the ra-
dial parts of such free-atom renormalized wave
functions for Co.

The differences in the d function shown in Fig. 1

are characteristic of, though smaller than, the
variation in d character actually encountered in a
set of d bands (an example, for Co, is discussed in

connection with Fig. 11). Note that the shape of the
functions is essentially the same in most of the
"3d region. " This fact is important to the deriva-
tion of a common exchange potential which can be
usefully applied to d states anywhere in the bands.
This matter is considered in Appendix A. The P&

defined in E(l. (2) may be used to construct the re-
normalized-atom potential V,'(r) within the Hartree
localized exchange approximation in the following
manner:

(atomic-rydberg units are used throughout). The
superscript & on Q; denotes the atomic configuration
and the sum over j spans the ion core plus the occu-
pied valence-electron states. The energy of a d
electron in a potential V& is approximately

This estimate will be seen to be in excellent nu-
merical agreement with the band pseudopotential
parameter which marks the center of gravity of the
d bands obtained from V„. This result is attrac-
tive in view of its immediate physical interpretabil-
ity but may seem surprising since P~ is, in general,
somewhat different spatially than either the band
wave function at &~ or some average band function.
The success of E(l. (4) follows from the infre(luent-
ly exploited fact that, given V„, &„ is actually in-
sensitive to the details of P~. This insensitivity
results from a competition between the potential
and the l(l+ 1)/x~ centrifugal term in the "d region. "
This feature is absent in the case of conduction

electrons.
One reason why the renormalized-atom Q~ are

a reasonable first approximation to the metal (and

are useful in predicting &~) is that d renormaliza-
tion is not too severe. This is seen in the bottom
of Fig. 2 for the d" 's' configuration. The free
atom d charge lying outside x» ranges from about

2% in Ag to slightly in excess of 20% for &. The

percentages are smaller in the d" s and larger in

the d"s configurations, but in all cases they are
small compared with the 60-75% effects associ-
ated with the valence s electrons shown in the up-

per section of the figure. The Heine-Hubbard type
of approach to the transition metals assumes, in a
variety of ways, that there is little d charge in the
outer parts of the WS cell. One might therefore
expect this approach to be inapplicable to the case
of metals like Y. Nevertheless, it will be shown

here that the renormalized-atom approach to the
Heine-Hubbard theory yields results for V that are
of comparable accuracy as those for Co or Cu.

With two-thirds to three-quarters of their free-
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FIG. 2. Percentage of free-d s-atom d charge lying
outside the metal Wigner-Seitz spheres (bottom plot);
also, the s and total s-plus-d free-cP's-atom charge
which lies outside ~ws (top plots). Limited data are
shown for the total exterior charge associated with the
cP s free-atom configuration.

atom charge outside xws, the valence s electrons
undergo a substantial compression on going into
the metal. Such a compression is also a charac-
teristic of the simple metals, such as K, and it is
important to their cohesion. In the free atom, the
valence electron lies outside an attractive +1-
charged ion core and it would contract if it were not
for the cost in increased kinetic energy. Because
the outside boundary conditions of a free atom and
one embedded in a solid are different, the contrac-
tion can be achieved in the solid with a net lower-
ing of the energy. The wave function at the bottom
of the conduction band (0= 0) meets the Wigner-
Seitz boundary condition since it is flat at r». An
example is shown in Fig. 1. Since r&(r) and not
P(x) is plotted, the function is proportional to x in
the outer portion of the cell. Its energy &~ is low-
er than that of either the free-atom or the renor-
malized-atom s function. The latter, which is also
shown in this figure, has greater curvature in the
"4s region" and as a result an increased kinetic
energy. The associated energy is - 0. 4 Ry higher
than &~. Simple calculations in the spirit of Wig-
ner-Seitz would place the origin of a free-electron
parabola at &~ and fill the band to the level neces-
sary to accommodate the required number of elec-
trons. These yield estimates

5E = az+ ~ k~- &~t
k. 2

of the cohesive energy for, say, E which are within
97%%u~ of the observed value. The same effect is
important to the cohesion in the transition metals,

although the considerations are considerably com-
plicated by the presence of the d electrons in these
materials. In solids it is && rather than some
center of gravity of the conduction bands that is of
primary importance, and accordingly its behavior
will be monitored in the discussions to follow.

The total free-atom charge outside rwa provides
the best measure of the full renormalization effect.
Data for the d" s, and some for the d" s, con-
figurations are plotted at the top of Fig. 2. The
rise, going from Cu or Ag to the left across a row,
is largely due to an increase in free-ion size while

xws holds almost constant. The experimental rwa
increase substantially to the left of Cr and Mo ard
this, plus the dropping d-electron count, over-
power any increasing ion size, causing the dropoff
in the curves. The relation of rws to ion size is
important to the cohesion of the transition metals.
This matter will be discussed elsewhere. Of im-
mediate consequence to the present paper is the
effect of renormalization on the band structure.

The results of Fig. 2 for the total charge show
that roughly one electron's worth of charge which
lies outside ewe in the free atoms must be brought
inside the Wigner-Seitz sphere in a metal in order
to ensure charge neutrality within the unit cell. It
should be recognized that this charge shift will
occur in these monatomic metals even if the poten-
tial is constructed by the more conventional means
of overlapping atomic charges. In ordered binary
alloys, the atomic cell of some atomic species will
not be necessarily neutral. The required charge
shift between constituents can be easily incorporated
by constructing a potential of the renormalized-
atom variety in which each atomic cell is initially
neutral or suitably charged. By contrast, the stan-
dard superposition of free-atom charge densities
treats this charging effect in an uncontrolled man-
ner, unless the calculations are carried through to
self -consistency.

In order to obtain some physical feeling for the
magnitude of the d-level shift resulting from re-
normalization, it may be useful at the outset to
estimate crudely the effect of the leading term
which is the compression of s charge,

q =— p„(r)d~r, (6)
"»&ws

originally outside xws into the WS sphere. Here
p„(r) is the s charge density corresponding to the
free atom. As this charge is shifted inside ~ws,
it produces a repulsive Coulomb contribution & to
the d-electron potential. If, for simplicity, it is
assumed that the d electrons lie in the inner region
of the atom in which p„(r) is small, then & may
be written as the difference of two Coulomb ener-
gies:

4= 2q(R„„—R„) . (7)
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Here

R-1 —q-1

""~ws
is the average inverse radial distance associated
with the charge in the free atom to be shifted and
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FIG. 3. Free-atom (&& and &, ) I and renormalized-
atom k& and ez) one-electron energies for Cr, Fe, Ni,
and Cu in the d", d" 's, and cP g configurations. &z was
obtained for a 0 =0 orthogonalized plane wave in the re-
normalized-atom Hartree-Fock potential. ez was obtained
for the renormalized d function of the atomic configuration
in question.

is that associated with the charge q after it has been
shifted in accord with the renormalization prescrip-
tion for which p„,„(v)=Cp„(x), C being a constant
and r x„s.—For Co (d s) one finds R,',„=0. 60 a. u. ,
R,', = 0. 26 a. u. , and q = 0. 7, which results in b,

= 0. 5 Ry, which may seem surprisingly large. The
radial distances satisfy the expected inequality
R„,&x» &R,&. Since x» and q vary relatively
slowly over all but the lightest elements of the 3d

row, one can expect this result to be characteris-
tic for most of its members in the d"s configura-
tion. This expectation will be confirmed below;
E„ lies substantially above the free-atom one-elec-
tron energy &„". For the d" 's configuration the

total d shift results from about equal Coulomb con-
tributions from d-d and d-s interactions. The d-d
contribution is large despite the small renormal-
ization effects experienced by the d electrons be-
cause there are many of them per atom.

An estimate of e, —ef based on Eq. (4) accounts
for the renormalization change of both the full po-
tential and the d function and is therefore expected
to be more reliable. d-level shifts for a few 3d
elements are shown in Fig. 3. A more complete
survey of results for the 3d" 's configuration will
be considered in Sec. III. However, the present
results are characteristic. Here the d levels are
shifted upward by 0. 5-0. 75 Ry, with respect to
vacuum, while the s-band origin && is lower than
the free-atom s energy for reasons discussed ear-
lier. The d shifts are seen to be greatest for the
d" s and least for the d" configuration.

It has been frequently assumed in the literature
that the resonant d level, marking the center of
gravity of the d bands, is at or close to its free-
atom value. The results above indicate that this
assumption is seriously in error.

The large upward shift of the d levels upon re-
normalization may seem surprising since one might
naively suppose that this is accompanied by a
corresponding increase in the total Hartree-Fock
energy of the renormalized atom. In fact, as has
been indicated previously, " the total Hartree-
Fock energy varies very little with renormaliza-
tion. This is because the two-electron Coulomb

(U;;) and exchange (8„)terms which are respon-
sible for the renormalization shifts must not be
double counted in the total energy; i. e. , the sin-
gle-electron energy terms which must be summed
to give the total are

e, —25m, [U;) —Z() 5(m„, m, q)],

where the sum is over occupied states. Volume
renormalization of the Coulomb terms in this equa-
tion virtually cancels the shifts associated with &„.
The fact that the center of gravity of the d bands
corresponds closely to the renormalized &„ is
nevertheless of considerable importance to ques-
tions of cohesion, work functions, and to alloying
properties.

The preceding discussion of the renormalized-
atom approach to band theory is summarized in
Fig. 4, in which Cu and ¹iare chosen as examples.
One starts with a free atom having a configuration
which is as close as possible to that encountered
in a solid. The renormalization procedure then
yields the energies &„and &&, which correspond
closely to the center of gravity of the d band and
the bottom of the conduction band, respectively.
The prepared atoms are then placed together. The
d band broadens about p and hybridizes with the
conduction band, whose minimum still lies at &&.
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V, (r) = (n -x —1)Xd(r)+ xg, (r) (10a)

V, (r)= (n —x) y~(r)+ (x —1)y, (r),
where

(10b)

This scheme is attractive because of its immediate
physical interpretability and because it is easily
implemented in certain more complicated metals
containing several constituents. Furthermore,
as has already been pointed out, exchange effects
can be included in a more quantitative fashion, as
can correlation effects, in terms of the pictures
proposed by Van Vleck and Hubbard.

B. Potentials

Equation (3) describes a potential where, much
as in a free atom, there is a full self-Coulomb hole
attached to the Wigner-Seitz sphere in question.
Atomic potentials of course involve configurations
having an integral number of d and non-d electrons.
However, it is characteristic of real transition
metals that the number of such electrons may well
be nonintegral. The possibility of the existence of
nonintegral d counts will be included here by con-
sidering atoms having a d" "s"configuration in
which x is not necessarily integral. In such an

atom, the spherical Coulomb terms sampled, re-
spectively, by a d and an s electron are

Interelectronic exchange contributions are ac-
counted for using averages over given configura-
tions. The "average-of-conf iguration" scheme'
involves averaging the direct and exchange con-
tributions over the full set of multiplet states which
can be constructed from the d" "s"configuration in
question. Potentials of this type have been widely
employed in band calculations appropriate to non-
magnetic metals, but with approximations for the
exchange terms which are not necessary here. In-
clusion of exchange leads to equations having the
same structure as Egs. (10). However, the y; now

include interaction terms corresponding to the ex-
change integrals. Potentials of this kind suffer
from the fact that the interelectronic terms giving
rise to Hund's rules in free atoms have been aver-
aged out. This might be expected to be a serious
shortcoming for magnetic metals such as Cr and
Fe. In order to explore this approximation a few
potentials will be considered where the average-of-
configuration d-d terms have been replaced by coun-
terparts characteristic of Hund's-rule ground mul-
tiplets. This replacement will be seen to have
substantial effects on the resulting band structures.
These examples will therefore serve to emphasize
the importance of improving the d-d exchange-
correlation potential to be used in band calculations.

C. Fractional Occupancy

The resulting potential constructed in this way is
clearly l dependent. The utilization of such a po-
tential in the present APW band calculations is
discussed in Appendix B.
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FIG. 4. Summary of renormalization and band contri-
butions to the energy 1evels encountered in a transition
metal as obtained for Cu and Ni in their cP s configura-
tions. The energy of a k = 0 orthogonalized plane vrave,
in the renormalized-atom s potential, is used to place
the bottom of the conduction bands.

The treatment of fractional occupancy which
arises when the number of d and s electrons in the
renormalized atom is nonintegral is not entirely
straightforward and therefore deserves some fur-
ther comment. There are two approaches which
suggest themselves. One might choose to deal with
a single atomic configuration of nonintegral count
in, say, the average-of-configuration scheme"
discussed above, or one might follow Van Vleck
and describe the atom as fluctuating between con-
figurations of differing integral counts. This
choice can be important to the treatment of d-d
exchange-correlation effects for the resulting ef-
fective potentials to be used in a band calculation
will differ for the two cases as will the estimates
of interelectronic contributions to the cohesive en-
ergy

The possible differences between the two choices
becomes quite apparent when the number of one of
the valence-electron species falls below one per
atom, that is, when, in the present d" "s' notation,
x is less than 1. Considering only spherical Cou-
lomb terms, one obtains' from Eq. (10b) anega-
tive s -s Coulomb contribution to the s potential of
weight x —1. This is compensated by a d Coulomb
contribution involving a charge greater than ~ —1.
In the second multiconfiguration approach one might
use a wave function having the form
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with other uncertainties in the problem but is sub-
stantial in terms of the standards of accuracy set
for band calculations.

This problem will be encountered in the present
paper in connection with calculations involving a
d"s configuration for which one cannot readily de-
fine an s potential. In the spirit of the %'igner-
Seitz approximation, it will be assumed that the d
electrons experience a d"s environment, while
the s potential will be determined from a d" 's'
configuration. [The s and d Coulomb contributions
to the potential sampled by a d electron common to
the two @'s of Eq. (12) are given by Eq. (10a). ]

The preceding discussion is obviously incomplete,
since it largely focuses on the difficulties encoun-
tered in the fractional occupancy situation without
providing a satisfactory prescription for dealing
with it. The relative sensitivity of &~ and ~~ to
the starting configuration chosen, which is exhibited
in Fig. 4, emphasizes the fact that this problem
deserves further attention.

I I I

Sc Ti V Cr
I I I I

Fe Co Ni Cu

III. RESULTS: e AND e

FIG. 5. Free- and renormalized-atom d (solid line)
and s (dashed line) one-electron energies for the 3d 4s
metals. The points overlying the e„are d-band centers
of gravity [e.g. , f ~(I'&&)+ 5 e(1't5)) obtained from APW
band calculations based on the renormalized-atom poten-
tials. The ez were obtained for simple k =0 orthogonal-
ized plane waves and for s functions meeting the Wigner-
Seitz boundary condition. The points connected to the
latter are I'& levels obtained in the APW calculations.
Vm&~ is the s-muffin-tin potential. With the exception of
the spur marked Gr. Mult. all results were obtained in
the average-of-configuration approximation. The spur
(dot-dashed line) indicates results for the ground mul-
tiplets of Cr to Cu (ground-multiplet and average-of-
configuration results are identical for Cu and Ni). The
square boxes indicate APW, ground-multiplet potential,
centers of gravity for comparison.
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Figures 5 and 6 exhibit the values of &„and &~

for d" 's renormalized atoms for all 3d and 4d
metals except Mn and Tc. As in the case of Fig.
3, these results were obtained by integrating re-

4 = (1 —x)'~'4'(d")+x'"+(d" 's) .

OPW'r

At
d

The s-potential difficulty encountered in connection
with the first approach may be circumvented in the
following approximate fashion. In the spirit of the
Wigner-Seitz approximation one assumes that an
electron must be present at the atomic site if it is
to sample the potential at all. An s electron would
then see only the second configuration in Eq. (12),
the potential thus being

(10c)

—0.8

—10—

I I I

Y Zr Nb Mo

VMuf f

I I I

Ru Rh Pd Ag

When x-0. 75, this potential will place the conduc-
tion bands -0. 5 eV lower with respect to a vacuum
than Eq. (10b). Such a shift is not large cotnpared

FIG. 6. Renormalized- and free-atom s and d one-
electron energies for the 4d~ 5s metals. Except for
the lack of ground-multiplet data, these results are
equivalent to those for the 3d metals in Fig. 5.
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FIG. 7. Crystal structures of the 3d and 4d metals.
AI'W band calculations have been done for the cases un-
derlined and the xmas employed are in parentheses (in
a.u. ).

normalized Sd functions and both Wigner-Seitz s
functions and simple k = 0 OPW's in renormalized-
atom d and s potentials over the Wigner-Seitz
sphere. It is to be emphasized that the derived po-
tential rather than one of the muffin-tin type is
employed outside the APW radius. The shift of &„

upon renormalization is again seen to reflect the
behavior of the renormalization charge plotted in

Fig. 2 which was discussed earlier.
APW band calculations have been performed for

the metals having the structure underlined in Fig.
'7. In order to compare the centers of gravity of
the resulting d bands with &„ it is best to consider
suitable averages [e. g. ,

—', e(I"z,.)+ —,
' c(I",z)] at high-

symmetry points where hybridization is weak.
These centers of gravity are shown as plotted points
overlying the &„ curves of Figs. 5 and 6. The
agreement is seen to be excellent and confirms
the physical and computational usefulness of q~

in placing the d-band positions. Of course, the
averages determining the center of gravity will
depend slightly on the point in the Brillouin zone,
e.g. , I' or X, chosen. The variation is illustrated
in several cases by the two plotted points for a
given element which are placed on the q„curve.
The scatter is seen to be satisfyingly small and

suggests that q„places the center of gravity of the
d band about as well as the band calculations them-
selves.

Figures 5 and 6 also show several results associ-
ated with the conduction bands. These are the free-
atom s level &,", the two estimates of E&, the s-
potential muffin tins, and &, '. The latter corre-
spond to the s levels calculated for the renormalized
free-atom s function. These are of little use in

placing either the bottom or some center of gravity
of the conduction bands.

The s muffin-tin potential V „« is seen to lie

highest at the bottom of the d rows and to have a
minimum near the middle. This behavior corre-
lates with the lattice constant. The Wigner-Seitz
radius is largest at the bottom of the d row and
smallest near the middle. Such a correlation is
to be expected because the muffin-tin region lies
largely outside the core and d-electron charge.
Accordingly, the potential in this region is essen-
tially due to an effective singly positively charged
ion core which contributes a —2/R Coulomb poten-
tial. Here R is a characteristic radius for the
muffin-tin region and is of the order of r». From
this estimate one finds indeed that V „« follows,
but lies lower than —2/R across the rows by -0. 1

Ry. The discrepancy is due to exchange and to the
fact that the inner part of the muffin-tin region
penetrates some of the d charge. This latter ef-
fect is illustrated in Appendix A.

The placement of && can be achieved as success-
fully as that of &~ using the renormalized-atom
viewpoint, provided the Wigner-Seitz method, where
the energy is determined by requiring the wave
function to be flat at r&&, rather than an approxima-
tion based on a single OPW is used. The results
of both calculations, labeled &~ and && ", are
shown in Figs. 5 and 6. The band results are in-
dicated by solid dots. These practically coincide
with &&, but, except for the elements at the ex-
treme right of the rows, differ appreciably from
Ez "and from V „«. The single-OPW approxima-
tion is evidently poor.

It should be noted that && always lies above V „«,
the effect being largest in the middle of the row.
Evidently the states between V „«and && are "non-
propagating" and therefore forbidden to Bloch elec-
trons.

The preceding discussion, -particularly that con-
cerning &&, has tacitly taken the band results as
sufficiently reliable to serve as an absolute stan-
dard of comparison. This view may be somewhat
misleading, since the standard APW procedure
does not provide an exact representation of the
eigenvalues and eigenfunctions of the full crystal
potential and thus introduces errors of its own. It
is thus particularly significant that the two meth-
ods of calculation are in substantially good agree-
ment, and that the relatively simple renormalized-
atom approach serves as a reliable means of placing
the d and conduction bands relative to each other
energetically. This relative placement has been
a traditional source of difficulty in band calculations
for the transition metals. The present d" 's' re-
sults, obtained with the renormalized-atom poten-
tials, place the center of gravity of the d bands
from zero to 1. 5 eV higher, relative to &„, than
do calculations ' employing the standard superposi-
tion of d" 's' atomic charges plus full Slater ex-
change.
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The results considered thus far have been ob-
tained with potentials which average out spin mul-
tiplicity effects. Since these effects are of impor-
tance, particularly in materials like Cr, Fe, and
Co having large paramagnetic moments, it is es-
sential to obtain some measure of their effect.
One might go about this by replacing the d contri-
butions to the d potentials by those appropriate to
the Hund's-rule ground multiplet of the d" "s"con-
figurations in question. This view is oversimpli-
fied, but ', clearly'something between it and the aver-
age-of- configuration description will be necessary
to explain the magnetic properties of the transition
metals.

Both the renormalized-atom prediction as well
as the band results for E„using the ground-multiplet
potential are shown in Fig. 5 for Cr and Fe. The
results corresponding to the two descriptions are
again seen to be in good agreement. However,
the resulting &„ lie significantly below their coun-
terparts obtained from the average-of-configura-
tion potential. The importance of acquiring an un-
derstanding and proper accounting of the metallic
analog of Hund's rules for atoms if the d bands of
the transition metals are to be placed accurately,
i.e. , to within some fraction of an eV, cannot be
overemphasized.

The principal points made in this section, which
are illustrated in Figs. 5 and 6, may be summarized
as follows.

(i) The renormalized-atom energies e~ and er
provide an excellent estimate of the energetic posi-
tion of the center of gravity of the d band and con-
duction-band minimum, respectively.

(ii) &„ is sensitive to the choice of the d-d ex-
change- correlation potential.

(iii) The renormalized-atom viewpoint is not
successful in placing the bottom of the conduction
band &~ when the estimate is based on a single-
OPW rather than the Wigner-Seitz approach.

(iv) &r lies substantially above Vm«, for most
of the transition metals.

This latter point is of some importance in connec-
tion with Sec. IV, for most pseudopotential discus. —

sions of the transition metals have assumed &~
= V „«and use this to define a natural zero of the
potential in the crystal, specifically, the level with
respect to which d- and conduction-band positions
are measured. V „«will be chosen as the zero in
Sec. IV. Different choices of course are possible,
but they tend to worsen the numerical results.

IV. BAND WIDTHS, s-d HYBRIDIZATION, AND
WAVE-FUNCTION CHARACTER

The Heine-Hubbard theory provides simple pre-
scriptions for estimating the degree of d-conduc-
tion-band hybridization as well as d-band widths.
This section implements these prescriptions using

the renormalized-atom viewpoint. With some mod-
ifications, motivated by the Wigner-Seitz approach,
the results obtained will be seen to be in satisfying
agreement with those found from band calculations.

The strength of the d-conduction-band hybridiza-
tion is determined by the parameter

""ws
y= j (vr) V (r)P„(r)r Cr . (13)

Here j, is a spherical Bessel function, V„ is the d
potential when zero is taken to coincide with V „«,
and

The latter determines where the conduction band
intercepts the resonant d levels. The definition of
y is the same as Hubbard's, but differs by a nor-
malization factor from Heine's, Eq. (48a). It should
be noted that y is sensitive to the choice of K since
ja (and hence p) is quadratic in v for small zr. Fur-
thermore, in the Heine-Hubbard and similar the-
ories the product P„(r)V,(r) is presumed to be small
in the muffin-tin region. This assumption implies
that contributions to the y integration from the muf- '

fin-tin region are unimportant to the result. The
present calculations which do not make the muffin-
tin approximation indicate that the muffin-tin region
makes approximately a 10% contribution to a com-
puted y.

The most visible measure of hybridization is the
band gap along a given k direction which occurs
where the conduction band intersects and mixes
with the d bands. The gap and y are linearly re-
lated. Heine reported crude estimates of y val-
ues which correlated quite well with gaps obtained
from band calculations. y values for the various
renormalized-atom d potentials have been obtained
in the present work. The results are consistent
with Heine's observation, particularly if the & of
Eq. (13) is replaced by that at which the band gap
actually occurs. Since the relation of y to the s-d
hybridization gap has been satisfactorily document-
ed by Heine, no further quantitative comparisons
will be made here.

The effects leading to s-P hybridization and intrin-
sic d'-band width are almost inextricably woven to-
gether in the KKR or APW band formalisms. How-
ever, within the Heine-Hubbard scheme it is pos-
sible to separate the two effects, and, in particular,
to estimate the d-band width quite simply. Heine
suggested that the latter could be obtained by in-
stalling Wigner-Seitz boundary conditions corre-
sponding to "bonding" and "antibonding" require-
ments that define the wave functions at the d-band
minimum and maximum energy & "and &, re-
spectively. For the fcc, bcc, and hcp lattices these
have been chosen to correspond to d states at points
X, &, and M, in the respective Brillouin zones, for
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which there is no s-d hybridization. Specifically,
for the d functions P(r) in question,

is the phase shift associated with the d resonance.
Equations (15) and (17) yield

(dP/Ch) ~ = 0 when & = e ",
P(R) = 0 when e = e

(15a)

(15b)

&max &mi n

n~(xR) na (zR)
jz(vR) jz (wR)

(18)

R being the radius of a suitable sphere to be defined,
The natural choice for R within a muffin-tin scheme
is R=rA~„. Then

P(R) =j 2(tcR) —tanI)2 n2(zR),

where

(18)

tan&2= xy (&~ —&)
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FIG. 8. d-band-width estimates for various 3d and
4d metal d" "s"configurations. The ~ „„atthe pop,
were obtained with Heine's approximate expression [Eq.
(19)]. The widths at the bottom were obtained by scaling
Heine's complete expression [Eq. (18)] by 0.62 as is dis-
cussed in the text. The open circles or symbols enclosed
by open circles are the results of APW band calculations.
The open (APW) and filled [renormalized atom and Eq.
(19)] squares are ground-multiplet results; otherwise all
results were obtained in the average-of-configuration
approximation.

Expanding the Bessel functions and their derivatives
in the small-argument limit, one obtains

(19)

Heine employed this expression to estimate the band
widths. Unfortunately, it differs from D of Eq.
(18) by as much as a factor of 5 for the range of xR
of interest here and thereby masks trends which
might otherwise have been observable in Heine's
data.

As stressed by Heine, there is some question as
to the choice of R for which 4 should be evaluated.
He made the plausible choice, R=xgp„meaning
the boundary conditions are met halfway between
nearest neighbors. The h~„,„, for this choice, are
plotted at the top of Fig. 8. The values of b, ob-
tained from Eq. (18) for the same choice are con-
sistently larger than the APW band results. Scaled
values 0. 622 for the d-band widths are plotted at
the bottom of Fig. 8 and compared to the results of
band calculations. Leaving aside for the moment
the rationale for scaling in this manner, one sees
that with some scatter the scaled 6 track the band
results very reasonably.

The band widths are largest for the d", where the
d bands lie highest, and smallest for the d" s
configurations, where they lie lowest. Because of
the variation of z, the errors in Eq. (19)vary sig-
nificantly from one configuration to another and pro-
duce an inverted order of predicted band widths.
The d-band widths obtained with the present d" 's
potentials are approximately the same for metals
such as Cu and range up to almost 30% greater for
Cr than the band widths obtained in band calcula-
tions ' with potentials employing a superposition of
atomic charges and the Slater exchange potential.

The necessity for scaling 4 disappears when it
is recognized that Heine's choice of R was not ideal.
A far better choice is R = x». This becomes clear
from the results of Fig. 9, in which the d-band ex-
trema are plotted and compared with the energies
at which the d-electron P(l') is noded and flat, re-
spectively, at rNta. The P,(~) determining the ex-
trema were obtained in the spirit of the Wigner-
Seitz approximation by integration in the full re-
normalized-atom V„(x) without utilizing the muffin-
tin approximation. The agreement is extraordinar-
ily good. The WS boundary conditions, applied at
x„~, are seen to determine the extrema of the d
bands as deduced from an APW (or KKR) band cal-
culation. The renormalized-atom viewpoint can
thus be used to predict both the extrema as well as
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FIG. 9. Comparison of APW band results and the
Wigner-Seitz boundary conditions. The lines indicate the
extrema @3 and X~ for fcc, H~2 and 82& for bcc, and first
and tenth levels at M for hcp) of APW d bands employing
l-dependent potentials inside the APW spheres and V off
outside. The circles indicate the energies at which d'

functions {obtained by integrating in Vz throughout the full
WS sphere) are flat {lower circles) and noded (upper cir-
cles) at rzs.

lems surrounding the definition of ~. It no longer
makes sense to employ V „«, a potential inside r~,
as the reference level in Eq. (14). The results of
doing this, with R =r„s in Eq. (18), are inferior to
the scaled results of Fig. 8. Replacing V „«by
the I"&-level position or by a potential such as
V, (ran) only improves matters moderately. While
some variant of Eq. (14) might be defined so as to
lead to 6 (for R=r») values which are superior to
the scaled result, it seems that the latter suffice,
providing semiquantitative predictions and insight
into the relation between band width and hybridiza-
tion. In summary, it appears that quantitative pre-
dictions of d-band widths are best made by directly
ascertaining the energies at which the signer-Seitz
criteria are met.

Sample d-electron P(r) for Co and Y are plotted
in Figs. 10 and 11, respectively, for various band
energies. These are reminiscent of the results ob-
tained by Wood for Fe. The functions displayed
correspond to energies &~ and to the levels at X (for
fcc Co) and M (for hcp Y) which were used as mea-
sures of the band width. The latter are seen to
meet their respective %igner-Seitz boundary condi-
tions close to v~. The variation in Co wave-func-
tion character, from the bottom to top of the bands,
is not severe because x„s falls well out on the free-
atom d-function tail. Renormalization effects are
severest for F (see Fig. 2) and consequently varia-
tion in P(r) across the bands becomes greater, in-
volving a factor-of-3 change in the charge residing
in the inner wave-function loop. The renormalized
free-d" 's-atom P„(r) are also plotted and are
somewhat compressed with respect to the P(r) ob-
tained at &„. As we have already seen, these dis-
crepancies have virtually no effect on renormalized-
atom estimates of &„. The variation in band wave-
function character and the discrepancies between it
and the renormalized atom P~(r) are, however, of
considerable interest to the question of self-con-
sistent band potentials.

The Wigner-Seitz condition, applied at r„8, has

0.5 I.O I.5
r (a.u. )

2.0 5fr~s
I.O

P(r)
FIG. 10. Co radial fundtions Pz(r) and P, (r) obtained

by integration in renormalized-atom d and s potentials
in the full Wigner-Seitz sphere. The d functions were
obtained for energies at the bottom (X3), top (X5), and cen-
ter of gravity (zz) of the bands. Also shown is the renor-
malized-free-atom d function appropriate to the d s con-
figuration for which the band potentials were derived.
Only the outer part (outside r-0. 25 a.u. ) of P,(r), eval-
uated at the I'~-band energy, is shown in the figure and
in the insert. The tail of the P~{r) obtained for the OPW
estimated value of c~ is also shown in the insert. Func-
tions are normalized such that fssP(r)trttfr= l.
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FIG. 11. F radial function P~ (r) obtained by integration
in the renormalizedd g V& for the bottom, top, and center
of gravity (e&) of the 4d bands. Also shown is the renor-
malized free-atom P4„(r) for the same configuration.
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been seen to determine the I'& position of the con-
duction bands far more accurately than an estimate
based on a single OPW. Our preliminary esti-
mates' pf renprmalization effects were limited to
Co, ¹i,Cu, and Ag, for which we employed the
single-OPW approximation. This works quite well,
as can be seen in Figs. 5 and 6, and we did not
realize the necessity for abandoning the OPW
scheme until the metals in the middle of the tran-
sition-metal rows were considered. For these
metals the I"& wave function achieving the WS bound-
ary condition is badly described by a single k= 0
OPW, as will be seen below. The two functions are
almost identical. While the Wigner-Seitz function
is precisely flat at yaws, the OPW used here is not. 0

There is a qualitative difference between the ways
the "bonding" d- and I'q conduction-band states
achieve the boundary conditions (15). As is illus-
trated in Figs. 10 and 11, the position Ro, where
the d function is flat (after the final node), moves
outward with increasing energy &, i. e. ,

dRO/de &0 .

These considerations become more delicate when
applied tp s functions P . at I'&, since these peak
near x» rather than well inside as in the case of the
d functions. In this case the wave-function "flat"
in question therefore may cprrespond either to the
tail of P,(r) as for the d functions or to the maxi-
mum of P,(r) For Cu .and Ag, the P,(r) peak in-
side r» and the situation is the same as for the d
bands; i. e. , there is a condition on the wave-func-
tion tail,

dRO/de & 0,
with Ro=x». On the other hand, for the metals
to the left of Ni and Pd the maximum of P,(r)
would like to lie outside r„8. Equation (15) then
becomes a constraint requiring P, (r) to have its
maximum at x«as is seen for Cp in Fig. 10.
In this situation a single k= 0 OPW poorly repre-
sents the I'& eigenfunction. Since the maximum of
P, (r) moves inward with increasing energy, the
preceding inequality is reversed, i. e. , dRO/de &0.
This effect is most severe for Cr and Mo. Owing
to rapidly increasing lattice constants, the effect
diminishes as one moves from Cr and Mo to Sc
and Y.

The boundary condition (15b) is of interest only
in connection with the "antibonding" d states associ-
ated with the top of the band. As shown in Figs.
10 and 11, the position R, for which P(R, ) = 0 moves
inward with increasing e. Thus dR, /de&0. Heine's
treatment of the d-band widths assumed Rp=Ry
= 'YApw. This assumption sets the d-band minimum
too low and the maximum tpo high, thereby leading
to too broad a band in relatipn to that obtained when
Ro= Rs ——yaws

The preceding considerations are of importance
also if one wishes tp examine, for example, the
effects of pressure on various band states. The
quantity of interest here is de/dr„s S.ince de/dRO
&0 and de/dR, &0, it is clear that compression of
the lattice will produce d-band broadening when ef-
fects arising from any changes in potential are ne-
glected. The variation of potential with pressure is
expected to broaden the d bands further, and in
addition to shift &~ upward.

The position of I", will be similarly lowered under
compression. However, the magnitude of the shift
relative to the d-band edges is difficult to assess
without recourse to detailed calculations. The
present results show that, except in the vicinity of
Cr and Mo, the shift in I'& is smaller than that of
the d-band minimum.

The discussion here has centered on wave func-
tions, such as those plotted in Figs. 10 and 11,
which result when the Schrodinger equation with
the appropriate V,(r) or V~(r) is integrated outward
to x«as is customary in the Wigner-Seitz method.
This contrasts with the KKR (or APW) method,
where one similarly employs the Schrodinger equa-
tion solution, at some & and /, within the APW
sphere and connects it to a wave function of the
same l of the type displayed in Eq. (16). For ~

defined by Eq. (14) and q, obtained from logarithmic
derivatives at xApw the resulting muffin-tin-region
wave functions are virtually identical to the results
pf direct integration in the renormalized-atpm pp-
tential. The discrepancies are of the order of the
width of the plotted lines in the figure. Good agree-
ment is not surprising; boundary conditions fix the
amplitude and slope of wave function (16) at rAp„,
the function has approximately correct curvature,
and the distance over which the function extends,
i. e. , x„pw tp 'vws& is small. These results suggest
that it is practicable to associate l = 2 function pf
the type plotted in Figs. 10 and 11, which extends
out to xws, to d-band eigenvalues obtained in a
KKR or APW band calculation. This (and its ex-
tension to other l components of low-lying band
states) has obvious computational implications.
Calculations requiring band eigenfunctions become
simplified and self-consistent band calculations
employing renormalized-atom potentials become
straightforward. A self-cpnsistent treatment of
the band potentials will yield d bands which lie
somewhat lower and narrower than those reported
here.

APPENDIX A: EXCHANGE

The purpose of this appendix is to extend the
previous investigations of exchange potentials of
Hartree and Slater and collaborators, ' and, in
particular, to separate core-, d-, and "conduc-
tion"-electron effects. The problem with exchange
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is, of course, its nonlocal character. The inter-
action potential can be rewritten as an effective lo-
cal potential using a scheme originally employed
by the Hartree's. The local potential sampled by
electron i becomes

v,'„(~)y, (~) = —Z
al I occupied

states g

0()5(m, (, m, ;)

"
(

('f(~ )A(~'') - -, ~'~') ()i(~),
kr —r'I

(A1)
where the 5-function limits the interaction to elec-
trons of like spin.

Three objections have been raised in the litera-
ture against the use of such exchange potentials in
band calculations and hence in favor of approxima-
tions such as the local-density ()p'~3) type. These
are as follows.

(a) That V,'„ is strongly dependent on the spatial
character of Q„not allowing a single given poten-

Co CORE EXCHANGE POTENTIAL

AS SAMPLED BY:

———a 3d {Co ) d ELECTRON

------ a 3d {Co~+)d ELECTRON

a 4s ELECTRON
------ THE p' ~ APPROXIMATION

C4
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FIG. 12. Exchange potentials due to the argonlike core
of a free Co' ion as sampled by a 4s orbital and by d orbi-
tals appropriate to the Co (de), Co'Q' ), and Co' (d ) ions.
The 4s potential divergences arise owing to the 4s nodes
which enter the denominator of Eq. (A1). The inner part
of the 4s potential is not plotted. Also shown is the
Slater p approximation applied to the core charge
density.

tial to be employed when integrating for eigenva]. -
ues and eigenstates throughout a band. This is
thought to be particularly troublesome for d bands,
for as Wood showed, and we have seen here, there
is considerable variation in radial character through
a band.

(b) That the form of Eq. (Al) is sufficiently
complicated that it is impracticable to use either
in initial estimates of band potentials or in self-
consistent band calculations. For the present pur-
poses Eq. (Al) is to be integrated over a Wigner-
Seitz cell and thus we require wave functions (t), and

(t); defined in convenient form over the cell.
(c) That a p"' potential is to be preferred as an

approximation to a full exchange -correlation po-
tential.

One conclusion of this appendix is that arguments

(a) and (b) are not compelling while, for certain
purposes, (c) may be. It is quite possible that
electron-electron terms are best accounted for in
free-electron bands by a p" local-density approx-
imation. The results of the appendix, however,
support the suggestion' that exchange contributions
from ion cores be dealt with explicitly by Eq. (Al),
perhaps with a polarization term to account for
correlation effects. We also believe that a local-
density approximation is neither necessary nor the
most satisfying starting point for describing d-d
exchange and correlation.

To set the discussion in perspective, let us in-
spect Fig. 1, which displays renormalized-atomic
wave functions for Co d and s electrons as well as
the 0= 0 OPW introduced earlier. The figure illus-
trates the extent to which d charge is concentrated
inside and s- or conduction-electron charge outside
one-half the Wigner-Seitz radius. The plotted s
and d "regions" indicate the radii important to s-
and d-electron energies and wave-function behavior
and should be borne in mind when inspecting the
exchange potentials in Figs. 12-16. (The variation
in d character seen in Fig. 1 is suppressed because
of renormalization, i. e. , the free-ion Co and Co
d functions display greater variation and it is this
greater variation which will be relevant here inas-
much as we are considering free-ion exchange po-
tentials. )

Figure 12 displays the exchange potentials due
to the argon core of a free Co' ion as sampled by a
4s electron and by Co (d ), Co'(d ), and Co"(d )
free-ion d functions. (V,„' for the interior region,
) &0. 35 a. u. , has not been plotted. ) This pro-
cedure was adopted in order to give some mea-
sure of how V,„might vary with differing 3d radial
character and hence how it might vary through a
3d band. Figure 13 similarly displays the exchange
potential arising from the 3d shell of a Co' ion
and Fig. 14 displays that arising from a single Co
4s electron. The sums of these terms, corre-



RE NORMALIZED ATOMS AND THE BAND THEORY OF. . . 396'7

Z
O
X
ILJ

I

4.0

0
0 0.5

I
I

I I
I

I
I 'I

I
I I
I
I
I

I
'I

I
I

\
I 'I
I

I 'I

3.0—
I

I

I I

I

2,0—,
I

I

I

I

I

I

I
I

I
I
I
I
I
I

I

I

I

I

1.0,
I

I

I
I

I
I

I

I
I

I

I

I

I

I

I

I

1.0 I.5 2.0

Cp 3d SHELL EXCHANGE
POTENTIAL

AS SAMPLED BY:——a 3d (Co ) d ELECTRON
—- —a 3d8 (Co+) d ELECTRON
-- —-- o 3d (Cp +)d ELECTRON

a 4s ELECTRON
THE p(/3 APPROXIMATION

2.5

The 4s divergences arise from the nodes of Q, in
the denominator of Eq. (Al). The divergent regions
are not important, since they are necessarily the
regions where the 4s has little weight. We might
note that in the outer region, important to a 4s
electron, the partial p' term is larger than the
exact exchange by almost an order of magnitude.
Of greatest interest is the insensitivity of the d po-
tential to d character. It should be recognized that
wave-function shaPe, but not amplitude, is impor-
tant to V,„since P&'s appear in numerator and de-
nominator of Eq. (Al). In the case of the d elec-
trons, appropriate to any given element, the wave
functions have nearly fixed shaPe. out through their
maximum, no matter what their over-all behavior
is. This fact tends to stabilize the exchange po-
tential, making it relatively insensitive to the
changes which occur in d Q& in this region. Figure
12 suggests that fixed core-exchange potentials can
be defined for either d or non-d bands and that any
error introduced by not allowing for varying Q,
character is small compared with the other uncer-
tainties in the problem. This encourages one to
take seriously Hedin and Lundqvist's suggestion'
that core-exchange effects be separated from con-
duction-electron-conduction-electron terms and
treated rigorously.

r (a.u. )

FIG. 13. Exchange potentials due to the 3d shell of a
Co' ion as sampled by 4s and 3d orbitals in the manner of
Fig. 12. The self-exchange d-d term is included in the
d potentials. Also shown is the Slater p'/ approximation
applied to the 3d charge density.
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sponding roughly to a Co Sd 4s atom, appear in
Fig. 15. Also plotted in the figures are the p'
evaluated in the Slater approximation, "with the
densities of the particular electrons responsible
for the exchange potentials in question. Since the
contributions of various shells to a p potential
are not additive, it is not proper to make detailed
quantitative comparison between the "partial" p'
of Figs. 12-14 and the free-ion exchange potentials
of Eq. (Al). Total ion p', ~', and exchange potentials
were compared in the past, ' '" as is proper. It is
nevertheless valuable to consider core-, d-, and
"conduction"-electron exchange contributions sep-
arately and it is perhaps also useful to have the
partial p' for comparison.

Consider the core contributions to exchange
shown in Fig. 12. Quite aside from the 4s diver-
gences, the d and s potentials are quite different,
but this poses no difficulty for APW or KKR band
theory, which can easily incorporate E-dependent
potentials inside the APW spheres, but less trivial-
ly outside, where the d potential is unimportant.
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FIG. 14. 4s-exchange-potential contribution as samp-
led by 4s and 3d orbitals in the manner of Fig. 12. The
self-exchange s-s term is included in the 4s potential.
Also included is the Slater p4, .



3968 HODGE S, WATSON, AND E HRENRE ICH

6.0—-

2.0—

0
0

I

I

I

I

1

I

I

0.5
I

I.O

r (a.u. )

I

1.5
I

2.0

3d EXCHANGE POTENTIAL

4s EXCHANGE POTENTIAL

)/3
P

I

2.5

current electron-gas dielectric-function data to ob-
tain the behavior of P appropriate to the exchange-
coxxelation potentials for nearly-free-electron
metals. P took on Slater's value in low-density re-
gions and approached the 3 value obtained by Kohn
and Sham as density increased. Figures 12-14
suggest that the agreement of Fig. 15 depends on
compensating cancellations in the different ways of
calculating the exchange contributions and that a
p' potential prescription which is satisfactory for
the band calculation of a paramagnetic transition
metal may run into difficulties in a "ferromagnetic"
calculation employing different potentials for spin-
up and -down bands. This is an interesting matter
outside the scope of the present appendix.

It should be emphasized that when dealing with
exchange effects in this paper we are assuming the
Wigner-Seitz approximation, with its full self-
Coulomb hole at the Wigner-Seitz cell in question.
This is an assumption concerning correlation ef-
fects. The situation is at least superficially simi-
lar to Hartree-Fock theory for a free atom where
an occupied one-electron state has a full Coulomb
hole attached to the atomic site, but it is quite dif-
ferent from a straight Hartree-Fock derivation for
bands in a solid. Consider the one-center exchange

FIG. 15. Total exchange potentials, as sampled by 3d
and 4s electrons due to the core, 3d, and 4s shells of a
3d 4s Co atom. Also shown is the Slater p approxima-
tion employing the full ion charge density.

-05—
Cu

The d-d exchange potentials of Fig. 13 include
an intraelectronic self-exchange (or self-Coulomb)
term unlike the core terms of Fig. 12, and as a
result lt is more appropriate to make comparisons
between them and the partial p~ . Similarly, the
s-s term of Fig. 14 is entirely a single self-ex-
change term. It provides the one case where an
exchange term exceeds its partial p' counterpart
and this fact is essential to the numerical agree-
ment between the total 4s exchange potential and
p' seen at larger x in Fig. 15. Again, more im-
portant is the insensitivity of the Y' terms seen
in Figs. 13 and 14, suggesting that it is not unrea-
sonable to define a fixed total V,„for purposes of
a band calculation.

Figure 15 shows a now familiar result, namely,
that the full Slater p' potential is in excellent
agreement with the full 4s exchange potential in
the outer regions of the atom important to 4s elec-
trons and lies somewhat higher than the Sd potential
in the 3d region. This result is reminiscent of
Hedin and Lundqvist's treatment of the exchange
problem. ' They considered a local potential"'
of the form P(p) p ~', where P is a s1owly varying
local density-dependent amplitude, and utilized

-I.O—

-t.5—

-2.0—

yaws

I.5 2.0 2.5

r (a.u. )

FIG. 16. Outer regions of renormalized Cu d s atom
Coulomb and total potentials as sampled by 3d and 4s elec-
trons. The Coulomb potentials include the self-exchange
or Coulomb-hole terms. The total potential includes the
additional interelectronic exchange terms in the average-
of-conf iguration approximation.



RE NORMALIZED ATOMS AND THE BAND THEORY QF. . . 3969

terms associated with a tight-binding description of
a band. It may be shown that the resulting one-cen-
ter self-exchange-like term is proportional to the
fractional occupation of that band. Since a single-
center integral of this type is of the order of 1-2
Ry, its effects on the band results are very large
indeed. For extreme population differences, it
might shift one band level with respect to another
by as much as 10 eV from the levels predicted with
p' or renormalized-atom potentials. The correla-
tion assumptions associated with the renormalized-
atom description may be incomplete but they are
more satisfying than a literal Hartree-Fock deriva-
tion whose effective self-Coulomb hole depends on
the accident of band occupation and on the nature of
multicenter exchange terms.

One final matter deserves attention before con-
cluding this appendix. In the course of constructing
separate d and non-d potentials for various transi-
tion metals, we noted that the d potential invariably
lay deeper in the outer portions of the cell. One
might assume that this is due to better screening of
the nucleus by d electrons, since they are concen-
trated nearer the nucleus. Figure 16 shows this
argument to be incorrect. The "Coulomb" terms
include the subtraction of the self-Coulomb or ex-
change hole; i. e. , a d-electron experiences a d" s"
Coulomb potential and an s a d"s" ' potential. We
see that the two terms, thus defined, are essentially
identical in the muffin-tin region and that the en-
tire discrepancy in total potentials is due to intex-
electronic exchange effects. In other words, a
conduction electron is almost as effective as a d in
Coulomb screening of the outer part of a Wigner-
Seitz cell. Even though the d potential in this region
is not of great quantitative importance to d-band
behavior, the result serves to underscore the im-
portance of improving the understanding of exchange-
correlation effects in such problems as those of
concern in the main part of this paper.

In conclusion, the experience with Figs. 12-14
suggests that fixed d and non-d exchange potentials
can be satisfactorily used in band calculations pro-
viding they are taken to be different and that the er-
ror in doing this is slight compared with the other
uncertainties in the problem. The explicit introduc-
tion of exchange can be readily accomplished with
the renormalized-atom approach, but not when free-
atom charge densities are standardly superposed.
In addition, the latter approach violates the Pauli
exclusion principle in its description of Coulomb
terms. Given d and non-d wave-function compo-
nents defined over the full Wigner-Seitz cell, it
should be possible to construct self-consistent
band potentials with exchange treated directly. It
is our intention to return to this matter in a later
paper. The important criterion in the choice be-
tween a local-density-dependent potential and one

in the family of Eq. (A1) is a matter of physical in-
sight. A p" approximation may be preferable for
conduction-electron- conduction-electron effects,
though this has not been used in this paper. Core
contributions are possibly best treated within the
exchange approximation, perhaps with polarization
terms. ' We consider the explicit treatment of ex-
change to be both practicable and better than the
p' approximation when dealing with intra-atomic
d-d exchange and correlation in a metal.

APPENDIX B: CALCULATIONS

When available, analytic Hartree-Fock wave
functions were used as the starting point of the
renormalized- atom calculations. Such functions
were, in general, not available for the d" 's' con-
figuration. For this configuration the d and s Har-
tree-Fock equations were solved to self-consistency,
numerically. Exchange and Coulomb terms due to
fixed Ar- or Kr-like cores, of the+ 1-charged d" '
ions, were employed. These free-atom functions,
the renormalized functions, and resulting potentials
were generated on the Herman-Skillman radial
mesh; i. e. renormalization was to the mesh point
closest to the crystalline r„s. This introduced
only slight errors, since the Herman-Skillman mesh
is reasonably fine in the vicinity of the x~.

The band calculations were performed employing
the APW-energy-band programs available at Iowa
State University. The APW energy bands were cal-
culated using the E= 2 logarithmic derivatives ob-
tained using the V„potential and logarithmic deriv-
atives for other /, from 0 to 12, obtained using the
V, potential. This was sufficient for our purposes,
though one might be tempted to employ more V, .
Segall used a V„V~, and V„ in his calculation for
Cu. We were not prepared to deal with an /-depen-
dent muffin-tin region and therefore used the s
muffin tin V „«. This choice was dictated by the
fact that the muffin-tin region is important to the
conduction but not to the d-electron energy levels.
V ff tends to lie something like 0. 1 Ry higher than
its d counterpart„as is suggested by Fig. 16, thus
raising d energies. The states at the bottom of the
d bands are most diffuse (see Figs. 10 and 11) and
hence are most affected. Their energies may be
as much as 0. 03 Ry higher than they would be for
a pure d potential. Energies in the bulk of the d
bands, and the &„, are affected by less than 0. 01
Ry.

APPENDIX C: LATTICE CONTRIBUTIONS TO
SPHERICAL POTENTIAL

In first approximation, the spherical potential
inside a neutrally charged Wigner-Seitz cell arises
from the charge within that cell. This could be
modified somewhat if the exchange-correlation
hole were permitted to wander outside the cell,
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but at least the spherical Coulomb potential comes
predominantly from the charge inside. There are
additional small multipole contributions arising
from the fact that the charge outside is not spheri-
cally distributed about the cell in question. The
renormalized-atom approach is particularly con-
venient if such contributions can be ignored. The
purpose of this appendix is to determine their im-
portance in fcc and bcc lattices. We will see that
these multipole effects shift the potential by
-2&&10 ' Ry or less and hence are insignificant.

We will follow Rose's expansion for the inter-
action of some charge distribution p(r') in a cen-
tral region, with a distribution p;(r) in some region
8; away, r' and r being defined from the end points
of R;. The particular expansion only holds ' if
R; &r+ r (i. e. , it will not yield a proper definition
of the potential in the outermost region of the sig-
ner-Seitz cell due to charge in the outermost part
of a nearest-neighbor WS cell) but it will suffice
for our purposes here. The spherical potential
obtained in the central region is a constant of the
form

x „, z,{z,.}m; (i), (c&)

M~(i) —=f, . p(r)r ~F~(f')dr .
The leading term for a cubic lattice has L = 4,
m = 0, and we will limit consideration to this.
There will, in general, be two contributions to the
M4, the first from any asphericity in the d-elec-

tron charge and the second from the fact that the
signer-Seitz ceDs are not spherical, The latter
dominates since the net deviation from d-band
sphericity generally involves a few tenths of a
cubic d electron's charge and because (r ) tends
to be much smaller than t'», a value characteristic
of the second term. Assuming a constant charge
dens1ty p ln the contrlbutlng muffin-tin region, the
second term,

~,'= (5/4~)"'p f~'Po(cosa)d7. ,

where the integral extends over the muffin-tin re-
gion, takes on the numerical values 155 and 145
a. u. for Cu in a fcc and bcc WS cell, respective-
ly, and 1710 and 1580 a. u. for Y in a fcc and bcc
%8 cell, respectively.

The Cu and Y lattices are among the smallest
and largest encountered in the 3d and 4d metals.
Hence their r» provide bounds on what can be ex-
pected from the above term. The lattice sum of
Eq. (C1) has been carried out to ninth neighbors in
the fcc and to but second neighbors in the bcc lat-
tice. The smaller summation suffices for our pur-
poses and with typical muffin-tin-region charge
densities of 0. 01-0. 03 electrons per a. u. one
obtains V,»„-—2X 10 Hy for the rws correspond-
ing to Y at the larger density in either the fcc or
bcc lattice. About half this value is obtained for
the Cu lattice. Contributions from d asphericity
are something like an order of magnitude smaller.

We thus arrive at the expected result that the
external multipole contributions to the spherical
potential are unimportant; only the central-cell
terms are significant,

*Work supported by the U. S. Atomic Energy Commis-
sion,

PWork supported in part by Grant No. GP-16504 of the
National Science Foundation and the Advanced Research
Projects Agency.

~E.g. , see L. Hedin and S. Lundqvist, Solid State
Phys. 23, 2 (1969).

2J. H. Van Vleck, Rev. Mod. Phys. 25, 220 (1953).
3J. Hubbard, Proc. Roy. Soc. (London) A276, 238

(1963); A277, 237 (1964).„A281, 401 (1964).
M. C. Gutzwiller, Phys. Rev. Letters 10, 159 (1963);

Phys. Rev. 134, A923 (1964); see also J. Kanamori,
Progr. Theoret. Phys. (Kyoto) 30, 275 (1963); C. Her-
ring, in Magnetism, edited by G. T. Rado and H. Suhl
(Academic, New York, 1966), Vol. IV.

R. E. Watson, H. Ehrenreich, and L. Hodges, Phys.
Rev. Letters 24, 829 (1970), in which preliminary results
of the present work are given.

V. Heine, Phys. Rev. 153, 673 (1967).
7J. Hubbard, Proc. Phys. Soc. (London) 92, 921

(1967); J. Hubbard and N. W. Dalton, J. Phys. C 1,
1637 0.968); J. hubbard, ibid. 2, 1222 (1969).

R. L. Jacobs, J. Phys. C 1, 492 (1968).

M. Chodorow, Phys. Rev. 55, 675 (1939).
~OB. Segall, Phys. Rev. 125, 109 (1962)."J. C. Stater, Phys. Rev. 81, 385 (1951).
~2R. Gaspar, Acta Phys. Hung. 3, 263 (1954); P.

Hohenberg and W. Kohn, Phys. Rev. 136, 8864 (1964);
W. Kohn and L. J. Sham, ibid. 140, A1133 (1965); L. J.
Sham and W. Kohn, ibid. 145, 561 (1966).

~3K. g. , R. E. Watson and H. Ehrenreich, Comments
Solid State Phys. 3, 109 (1970).

K. Levin and H. Ehrenreich, Phys. Rev. B 3, 4172
(1971); R. E. Watson, J. Hudis, and M. L. Perlman,
ibid. 4, 4139 (1971).

H. Brooks, Nuovo Cimento Suppl. 7, 165 (1958); or
P. W. Anderson, Concepts in Solids (Benjamin, New
York, 1964).

' D. R. Hartree, The Calculation of Atomic Stmctuxes
(Wiley, New York, 1957).

~ G, H. Shortley, Phys. Rev. 50, 1072 (1936); J. C.
Slater, Quantum Theory of Atomic Stmcture (McGraw-
Hill, New York, 1960), Vol. I, Chap. 14.

E.g. , see J. C. Slater, J. B. Mann, T. M. Wilson,
and J. H. Wood, Phys. Rev. 184, 672 (1969).

We should note that the average of configuration



RE NORMA LI Z ED ATOMS AND THE BAND THEORY OF. . . 3971

scheme has only been rigorously derived for integral
electron count and application to fractional count does
not consider the problem raised here.

The OPW employed here involves orthogonalization
to a single site. C. Herring [Phys. Rev. 57, 1169 (1940)]
has pointed out that the single-site approximation is
incorrect when one has as large ion cores, relative to

x~8, as we appear to have here.
E. C. Snow and J. T. Waber, Acta Met. 17, 623

(1969}.
The band gaps typically occur about halfway out from

point I' to the Brillouin-zone boundary. Some measure
of how well y describes hybridization at other k can be
obtained by comparison with the hybridization parameters
employed by L. Hodges [Ph. D, thesis (Harvard Univer-

sity, 1966) (unpublished}], L. Hodges, H. Ehrenreich,
and N. D. Lang [Phys. Rev. 152, 505 (1966)], and H.
Ehrenreich and L. Hodges [Methods Comput. Phys. 8,
149 (1968)] and by F. M. Mueller [Phys. Rev. 153, 659
(1967)] in their interpolation schemes, where their param-
eters are determined by band-calculation results. It
appears that their parameters very crudely agree with

the calculated y but y ].ies somewhat higher near the zone

boundaries. Discrepancies in this region are serious
inasmuch as hybridization is strongest at large k; y
is roughly proportional (Ref. 6) to z~ over the full range
of v, whereas the band parameters have flattened out
at the zone boundary. The reason why the parameters
do not track ~ in detail is not understood. It should be

noted that neither the y of Eq. (13) nor the interpolation-
scheme parameters explicitly include terms arising from
the nonorthogonality between the d and continuum states
(see Hodges's thesis). A correction for this is not ex-
pected to substantially improve agreement between the
two, for the correction to y will have its v dependence
largely residing in an overlap integral, which, like the
term it is correcting, is proportional to ~c; thus y(~}
is expected to remain roughly proportional to w~.

Unlike Fig. 1, P(r) rather than xP(x) is considered
here. These plots display the outside boundary condi-
tions more directly, although they provide less sense of
where the charge density resides.

~4J. H. Wood, Phys. Rev. 126, 517 (1962).
D. R. Hartree, Phys. Rev. 109, 840 (1958).

~6J. C. Slater, T. M. Wilson, and J. H. Wood, Phys.
Rev. 179, 28 (1969).

'R. E. Watson, Phys. Rev. 118, 1036 (1960); 119,
1934 (1960); R. E. Watson and A. J. Freeman (unpub-
lished).

See F. Herman and S. Skillman, Atomic Stynctgxe
Calculations (Prentice-Hall, Englewood Cliffs, N. J. ,
1963).

See Fig. 7 for the crystalline r+8 employed for the
cases for which band calculations were done.

M. E. Rose, J. Math @ Phys. 37, 215 (1958).
3~H. J. Buehler and J. O. Hirschfelder, Phys. Rev.

83, 628 (1951).


