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Extensive calculations of low-energy-electron~diffraction (LEED) spectra on face-centered
cubic metals have been made with the layer-Korringa-Kohn-Rostocker (layer-KKR) method
which treats multiple scattering within layers by the KKR method of band theory and multiple
scattering between layers by matrix methods based on a beam representation of the wave
field. The theory of the method is compactly and simply formulated using matrix notation.
Calculations made with zero absorption in the material exhibit the close relationship in the
structures of the curves for energy bands, reflected-flux spectra and transmitted-flux spec-
tra, when plotted on a common energy scale. A check on the accuracy of the method is pro-
vided by the close agreement of the energy bands with independent calculations by standard
methods. Calculations made with absorption for A1{001}, Cu{001}, and Ag{001} using 29
beams and 8 phase shifts for incident electrons up to 150 eV and for A1{001} at angles of in~
cidence up to 25° are compared with experiment, A correction for lattice motion is intro-
duced and several ways of matching waves at the surface are discussed. Detailed spectra
at various angles show close correspondence between theory and experiment in relative peak
positions, widths, and shapes and permit discrimination among crystal potentials., Estimates
of inner potentials by comparison of measured and calculated spectra appear to provide in-
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formation on the energy dependence of the effective one-electron potential in real crystal.

1. INTRODUCTION

In a number of recent papers!~® the low-energy-
electron-diffraction (LEED) spectra of Al{001} sur-
faces have been calculated in reasonable quantitative
agreement with experiment, using several different
one-electron potentials and a variety of methods.
In a previous paper' we have used a potential which
fits Fermi-surface data, supplemented by an imag-
inary part to describe inelastic scattering, and
found a satisfactory fit to the positions and shapes
of the spectral peaks out to electron energies of
150 eV for A1{001} at near-normal incidence. In
this paper® we extend the calculations on Al{OOl}
to other angles of incidence, add the correction
for lattice motion, discuss the effects of various
forms of surface matching, and compare theory
and experiment for Cu{001} and Ag{001} using
similarly constructed potentials.

We state briefly three useful conclusions which
follow from our work and are discussed in more
detail below: (i) the problem of diffraction of plane
waves by a semi-infinite periodic solid with a
realistic one-electron potential can be solved with
sufficient accuracy to eliminate uncertainties in the
calculation (leaving just the uncertainties in the
potential); (ii) band-structure potentials (i.e.,
potentials that fit data on or near the Fermi sur-
face), when supplemented as noted above, fit ex-
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perimental LEED spectra surprisingly well up to
the much higher energies of LEED experiments;
(iii) comparison of theoretical and experimental
LEED spectra permits an estimate of the energy
‘dependence of the effective one-electron exchange-
correlation potential in real crystals.

Our calculations are all carried out with a method
conveniently referred to as the layer-KKR method, *
which combines a treatment of multiple scattering
in each layer by the Korringa-Kohn-Rostoker (KKR)
method of band theory with our previously developed
propagation matrix method® of handling multiple
scattering between layers in a beam representation.
We give a formulation of this method (Sec. II) in
matrix-vector notation using the particularly simple
analysis that follows the Korringa approach to KKR
theory.® The analysis relies on expansions in
plane and spherical waves and identities relating
such expansions. The layer-KKR method draws
upon the work of Kambe, 1° who developed the ap-
plication of the KKR method to a single layer, and
it is closely related to the method of Jennings and
McRae, 1! who combined KKR for single layers with
a matrix treatment of interlayer scattering. In our
work, this basic two-step procedure is extended to
complex potentials and carried through with a suf-
ficient number of beams and phase shifts to provide
an accurate solution to the LEED problem for a
given potential at incident energies up to 150 eV.
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Lack of agreement between measured and calculated
spectra can therefore be related directly to in-
adequacies of the potential and the model of the sur-
face (if not to errors in the measurement) but not

to inaccuracies of calculation.

LEED spectra for Al{001} without absorption, i.e.,
with a real potential (the Snow self-consistent Har-
tree-Fock-Slater potential!®), are calculated by the
layer-KKR method in Sec. IO in order to exhibit
the close relationship of both reflection spectra
(flux vs energy) and transmission spectra (flux
into propagating Bloch functions vs energy) to
the band structure—all plotted on a common energy
scale. The results also exhibit the interconnection
of the bands of Al along (001) by real lines. In.
addition the calculated bands have been satisfactorily
checked against results found by standard methods
of band-structure calculation.

Further tests against experiment of the Al{OOl}
model used previously! are made in Sec. IV. This
model introduces absorption by combining the Snow
potential with an imaginary part taken from the work
of Lundqvist'® on the interacting uniform electron
gas. LEED spectra are calculated over a series
of polar angles up to 25° —but without the correction
for lattice motion. The correspondence with mea-
sured spectra is rather good, although some dis-
crepancies are noted, particularly at higher angles.

A simple procedure for averaging the scattering
over lattice motion given by a Debye spectrum is
carried out in Sec. V. The averaged matrix ele-
ments of the £ matrix of an individual atom are
shown to depend on effective complex phase shifts
which are given by an explicit sum over the original
phase shifts (of the stationary atom) multiplied by
a Debye-Waller factor. The resulting changes in
the Al{001} spectra are shown to improve agree-
ment with measured peak amplitudes.

Various methods of surface matching are de-
scribed and compared in Sec. VI with the object
of simulating the effect of the gradual variation
of the potential between vacuum and crystal in-
terior without detailed calculation of the trans-
mission through the transition region. The dif-
ferent matching procedures do not change the
spectra much, particularly at higher energies,
but a method designated as the no-reflection
method seems most suitable. This method leads
beams through the transition region without reflec-
tion, but with appropriate refraction. The potential
difference between vacuum and the inside of the
crystal is determined by shifting calculated normal-
incidence spectra along the energy axis to corres-
pond best to measured spectra.

Averaging over lattice motion and matching by
the no-reflection procedure are combined in Secs.
VII and VIII with potentials for Cu and Ag that gen-
erate satisfactory band structures. LEED spectra
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are then calculated for the {001}faces of Al, Cu,
and Ag and compared with experiment and with each
other on a reduced plot to bring out the consider-
able variation of these spectra from each other.
This variation is much greater than the difference
between calculated and measured spectra in each
case and arises from the considerable variation of
the crystal potentials. The essential scattering
properties of these potentials are given by the phase
shifts and all of those used in the calculations are
shown over the energy range of interest. The dif-
ferences among Al, Cu, and Ag are brought out more
clearly by a plot of the partial cross sections vs
energy.

A discussion of the empirical energy shift re-
quired to bring calculated LEED spectra into cor-
respondence with measured spectra is given in Sec.
IX. The shift amounts to a determination of the
average work function over the energy range of the
spectra; from the fit over the range 30-150 eV the
work function is found to be smaller than the static
value. A plausible argument for just such a small
work function is given from the known variation with
energy of the effective one-electron exchange-cor-
relation potential for a uniform interacting electron
gas.!® It is concluded that the careful analysis of
LEED spectra may well provide useful information
on the behavior of exchange-correlation potentials
in a real crystal; also, that potentials which pro-
vide good band structures may work well over large
energy ranges because the change with energy of
exchange and correlation combined is rather small

II. FORMULATION OF THE LAYER-KKR METHOD

The layer-KKR method has been discussed pre-
viously, 7 but the presentation there is lengthy and
directed toward application to the band problem.

It is useful to review the formulation here with
particular emphasis on clarifying the basic ideas,
simplifying the notation, and considering specifical-
ly the LEED application. We give a complete set

of formulas on which the calculations are based,

but not the detailed derivations for which we refer
to our previous paper.

The method has a clear separation into two parts
which will be discussed in turn: (i) the multiple-
scattering problem between layers, including proper
treatment of boundary conditions at the vacuum
interface and at infinity in the bulk crystal, and
(ii) multiple scattering between atomic scatterers
in an elementary layer, i.e., a plane of atoms of
one kind that is periodic in the infinite p plane
(f is a two-dimensional position vector in the plane
of the layer, perpendicular to the z direction).

Beam Representation of the Wave Field

Underlying the formulation is a special repre-
sentation of the wave field which is particular suit-
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able for surface problems (or slab problems which
consist of a succession of layers of periodic me-
dia)—the beam representation. 4 1nterms of this dis-
crete representation, a very convenient vector-
matrix notation can then be used to describe the

wave field ¥(¥) and its transformations. Consider
the expansion
- N -
W)= Y(p, 2) = El ba(2)D,(D), (1)
n=
p,(B)= ol o+ Kpp)ed , (2)

where Y(¥) satisfies the Schrdodinger equation [v2
+E - V(¥)J¢(¥)=0 in the given potential V(¥) which
describes the layered structure and may be com-
plex; I-Zm, is the nth reciprocal-lattice vector of the
g;vo-dimensional lattice or net in the plane at z,

k, is a given component of wave number in the p
plane corresponding to the incoming wave, and E
is the energy (l?p and E characterize the incident
electron and the entire wave field). Thus ¥(¥)

at any z is expanded in a two-dimensional Fourier
series in the p plane which is cut off after N terms.

i

a;(z) e.ikn:‘

20510 -

a(z) e."kru'

Note that &(z) and a(z) are continuous at any z,
including interfaces between crystals or with
vacuum. Consider the relation between the wave
field vectors &(z.) and &(z,) at the left and right
sides of a layer. These vectors must be linearly
related by a matrix Q (the transfer matrix) because
of the linearity of the differential equation for

(),

8(2,)=Q%(z.) . (6)

Then Q describes the effects of the given layer on
the wave field for all conditions of incident fields;
Q will be related later to a scattering matrix

for the layer, but now we assume it is known, If the
crystal is made up of repetitions of the layer giv-
ing rise to Q, then eigenvectors of Q describe
characteristic modes of the crystal, since the cor-
responding §(¥) repeats with a constant factor on
translating through one layer; the modes may also
be called generalized Bloch functions, generalized
to allow the magnitude of the constant factor to dif-
fer from unity. Introducing ®, the ordered-column
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If the wave field is in a vacuum, ¥,(z) may be
uniquely expressed as the sum of two running (or
attenuating) waves with constant amplitudes o}, and
a;, for waves toward +z (the right) and — z (the
left), respectively:

Ya(2)= ape™net + oy e Fne *
= @5 (2)+@; (2), (3)
Bne=[E - (K, +K,,)2] V2. (4)

Thus ¥(p, z) in vacuum is expanded in a special set
of 2N plane waves or beams which all have the same
energy and reduced component of wave number in
the p plane. By opening an infinitesimal slot inside
the crystal at any plane z, we find that this same
form for ¥,(z) is obtained in the slot; hence (3) ap-
plies everywhere in the crystal, but now «, and a;

‘are functions of z.

Multiple Scattering between Layers and the 9_ Matrix

In the beam representation $(¥) can be compactly
designated by the 2N component vectors &(z) or
a(z) defined by

=D (2) alz) . (5)

matrix of Q, ordered so that the first N columns
propagate or attenuate toward +z and the second
N toward -z, we have

Qe -84, ()

where the eigenvalue matrix A is a diagonal ma-
trix with elements e+ containing the thickness a
of the repeating layer and the k, values of the
various Bloch waves (k, can be complex in gen-
eral). Now any ®(z) can be resolved into Bloch
waves with an amplitude vector y (independent of
z) in the form

2(z2)=®y . (8)

Note that (5) shows that D(z) is the Bloch wave ma-
trix of the vacuum.

If the crystal is semi-infinite (extending toward
+2z), then no Bloch waves come in from infinity
and (the transpose of) ¥ has the form (xx- -+ x00
++.0); i.e., the last N components of ¥ vanish.
The matching conditions at a vacuum-crystal in-
terface at z =z, are then
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g(Z()):P(Zo)_C_!(Zo) =_§(Zo)_7’ (9)

or, in terms of the unit amplitude of one incident
wave, N unknown reflection coefficients &,, N un-
known transmission coefficients into Bloch waves
T, (9)gives 2N equations in 2N unknowns,

1 T,
0
Ty
0 _
8"Y(29D(z,) =1 % | .o
Ry
: 0
Ry

Finally, we note that a scattering matrix for a
layer can be defined by the linear relation between
incoming waves and outgoing waves on the left and
the right:

¢*z,) <p*(2-)) i
govt=(=_5) =g £ F) =gt 11
at= (2 ) =S(Ey) =s2 (1)
where ¢*(z) are the N-component vectors defined
in (5). Now comparing (11) and (6) gives

<§11 - §112§é§ Sa1 §1z§léé> 12)
Sz Sa1 Sz /1’

Q:

where Sy is the upper-left NXN quadrant of S,
etc.

Multiple Scattering in a Layer and the § Matrix

For this paper we restrict attention to a single
layer of thickness a containing a two-dimensional
periodic array (Bravais net) of nonoverlapping,
spherically symmetric, scattering potentials, each
of finite radius less than iz and centered on the
midplane of the layer; between the spheres the
potential is constant. This scattering object will
be referred to as an elementary layer with a muf-
fin-tin potential made up of an array of atomic
potentials, each in the center of a cell. At z_ and
z,, the left and right boundaries of the layer,
(hence z, — z_=a) the wave field is given in the
beam representation by the vectors ®(z_) and
&(z,), or by the mixed beam vectors &'" and °**
as in (11). Then &'" determines the entire field
structure including 2°“‘ and the problem is to find
the matrix S which transforms &' into ®°*. For
this potential, it is convenient to define the beam
representation slightly differently by replacing Eq.
(4) by kpy=[E - Vo- &, +K,,)?]’2 where V, is the
complex constant potential between atoms (imag-
inary part —ig).

The essential element in the analysis is to

transform the beam representation into a spher-
ical-wave representation in which the scattering
can be accurately calculated by using the phase
shifts of the potential at each atomic center and
then to transform back to the beam representa-
tion. The analytical tools required for these
transformations are various identities giving ex-
pansions in spherical waves. The development
given here will be along the lines introduced by
Korringa in his formulation of the KKR method®
in which the wave field is resolved into incident
and scattered waves, but now carried out for a
layer with plane waves incident upon it.

It will be convenient to introduce a second origin
at the center of one atomic potential in the layer
(the reference center) whose position vector with
respect to the first origin is ¥ and to systematical-
ly use primed notation for position coordinates
with respect to the reference center; hence, we
introduce

- - - -
;':r_ro; FE(P,Z), FOE(ISO’ZO), r E(/‘;,,‘Zl)y

b e I__ _ 1
P =Pp=Po Z2 =22y Zo=2Z:x2a.

Now introduce the asymptotic spherical-wave
expansion for zp('f) around the reference center and
in the reference cell (which holds on the sphere
and in some range outside it) in the form

P(F)=2D, [AL 9. (F) + B, (F')], (13)
9,N=4¢v,,&)jEr"), (14)
30, (F) =Y, () (er') (15)

where L enumerates the pairs of indices 7 and m,
the ¥,,, are spherical harmonics, j;(kr ') is the
spherical Bessel function of the first kind,
(k7 ") the outgoing-wave spherical Bessel func-
tion—both of order I, and k= (E -Vy)'/2 Note
9, (F') and 3¢, (F') are spherical waves belonging
to a particular E or 2, and implicitly contain this
variable. There will be a maximum value of L
required in the calculation which will be denoted
£. The value of £ will be determined by the
largest non-negligible phase shift 7,. Then if the
higher phase shifts were strictly zero, with this
&£ there would be no approximation in cutting off
the series (13). [This can be seen from the van-
ishing of the elements of D'’ in (29) when 7, van-
ishes; hence, the corresponding part of S in (38)
vanishes. ]

From (13), () is determined throughout the
layer by the Bloch relations

P(F+R,) =% Fiy(F) , (16)

where ﬁ, is a two-dimensional lattice vector of the
layer. In (13) the terms in B; and A, which can
be regarded as components of vectors B and A,
describe, respectively, the separationof ) inthe
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reference cell into outgoing spherical waves scat-
tered by the atomic potential at r'= 0, and incident
spherical waves coming from other sources (out-
side the cell). Now we can proceed in three stages
to relate '™ to °"*: first by relating A to '* and
B through a decompos1t1on of Ainto contributions
from outside and inside the layer second by re-
lating Bto A through the scattering phase shifts;
third by relatlng <IJ°“t to d>“' and B by forming the
outgoing plane waves as ‘the sum of contributions
from incident plane waves (on the layer) and scat-
tered waves from all the atomic centers in the
layer. Then eliminating A and B among these
three linear relations gives the ‘desired relation
for S.

The first stage in the derivation of S establishes
the relation B

A-=Ug"+VB. an

The £X 2N rectangular matrix U is obtained by
transforming the incident plane waves into spher-
ical wave expansions in $,(f'), showing they con-
tribute to A. First, the general components of the
incident plane waves from the left and right are
rewritten in the form

04(2) 5(5) 2 0% (25) po(Po) e Fne @/ 2oy F | (18)

R=(k, +K,, £k , (19)

which expresses each component in terms of its
value on the layer boundaries z, and at a definite
value of p(=p, the position of the reference center),
multiplied by a phase factor ¢*r¢%/ % and by a plane
wave ¢'¥n'¥ | The latter may be expanded in

spherical waves in T by the identity

et = anyy, v, (K29, ), |B|=k (20)

where the condition on |k,*| follows from (19) and
(4). Since the constant potential V between the
atomic potentials is generally complex, the quan-
tities k= (E - Vy)'/? and k,, are generally complex,
and even when V, is real, k,, for large _'K,,,, is imag-
inary. However, the formulas still hold; in par-
ticular the ¥, (k%) can be calculated as polynomials
in the (complex) components of the unit vector

E /k. Note that || means the magnitude of the
vector k'f, with complex components and is in gen-
eral complex (=%). Thus the incident wave vectors
9*(z.) and ¢7(z,) [see (11)] give rise to spherical
waves J ;(F') in the reference cell whose coeffi-
cients give the matrix U in the form

U=47YD' (3a) . (21)

In (21), Y is an £X 2N matrix whose elements are
=Y (&), Yp .=V (),

L=1to &, n=1to N (22)

and Q’ (a/2) is a 2Nx 2N diagonal matrix which sup-
plies the phase factors ¢*ne?/ 2 in (18); D'(z) has
elements

D'r:m (Z) = Dm+N n+N(Z) = eik“ 6,,", ’ (23)

where 6,,,= 0 unless m =% and 6,,= 1. Note D'(2)
# D(z) because the lower N elements in D () are
the same as the first N,

The £X £ matrix V is obtained by summmg the
outgoing spherical waves By 3¢, (f" —R,) from all
the other atomic centers at the positions _R' ¢ 0,
but with the proper relative phase factor e'® R
determined by the Bloch property (16). This sum
is converted to an expression in T’ by the identity

->f -]
:}CL(I‘ —R’):47T L?LZCLLlLZJCLI(—ﬁ) ng(I‘ ),
|R|>|F'] (20)
where the Gaunt coefficients Cy L, 2Te given by
Crr,1,= f YL(E) YLI(E) YLZ(E)daﬂk . (25)
4r

The result of using (24) in the sum and picking out
the coefficient of 9, (') is to determine the ele-
ments of the £X £ matrix V in the form

L
V =“47T qu; CLLZLSS)L (26)
D=~ Ej .RJJCL ﬁj)y j#0. (27)

The second stage in the derivation of § introduces
the relation between B; and A, in terms of the phase
shifts n; of each spherical atomic-scattering po-
tential

B-D'A, (28)

!
where D/
ments

is a constant diagonal matrix with ele-

DI::L ,= 00,1,/ (cotn, —4) = 5L1Lzem’ sinm, . (29)

The third stage in the derivation of S establishes
the relation

9°"'=9'(a)91"+\_¥§ . (30)

In (30), _D'(a) is the diagonal 2N X 2N matrix defined
in (23) which introduces the correct phase change to
convert the components of &', namely, ¢*(z.) and
¢"(z.), to the components of 3°", namely ¢*(z,) and
¢7(z.), respectively. Obtaining W, like V, requires
summing the outgoing waves from the atomlc cen-
ters with proper phases B3¢, (F' - R,) ¢'®’ & put,
unlike V, now all centers are summed over (includ-
ing R, = 0) and the sum is to be expressed in the
plane-wave basis at z=z, and z_ required for d:““‘
This sum is contained in the expansion of Green’s
function G(r') for the layer, i.e., the solution of
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the Schrédinger equation in vacuum for energy E
and wave number component E,, in the presence of
unit 6-function sources at the atom centers ﬁ,,
which has the well-known form?!?

1 > exp(ik| 7' —Rélfmk R,)
47 5 It -R,;l

GE")=- . (81)
Each term of (31) can be expanded in spherical
waves in 1~ by means of the identity

PR | FIAR| = 4n 2, 8, (750, (R)
R[> |5 . (32
In (32) put T'l'=?'-'fé* and take Tp,= (05, 25,

(52', +3a); hence, T,, is on the layer boundaries
(as desired for CI>°“‘) Take Fll w1th1n the reference
atomic potent1a1 and take R= To —R,, hence,

IR >1T/1 [so that the required inequality in (32) is
satisfied]; then, using (32) with these substitutions,
(31) becomes
Gy +Tp)=—k21 9 1 (7 Z;eik" ﬁjJCL(r& "‘Rj) ,
(33)
which contains the desired sums.

Now express G(F') in the beam representation
as a sum of beams (i.e., plane waves with the same
energy E) chosen to satisfy outgoing-wave condi-
tions at z' == «, and with a proper discontinuity (in
slope) at z' =0. This gives

10, 14

G(F)=(1/2i@) e ne ' p(5")/kye , (34)
where @ is the area of a unit cell of the net of R,’s
Again as in (32) putting T =T, + T's., hence | z{ + 2z, |
=%a+z,, and noting the factors e***ne ¥ p (py)
=¢t¥n "™ can be expanded using (20), then (34) be-
comes

(2n/i@)25, 8 1 (¥])
X2 pe™ne® 2Y L (K2) p(p3)/Fe . (35)

Comparison of the coefficients of J in (33) and
(35) evaluates the 2NX £ matrix Win the form

G(?l' +;2,¢) =

= (2ni/k@)D'(a/2) %' ¥, (36)

where Y is the transpose of Y defined in (22), D (2)
is defined in (23), and 5c'1 is the diagonal matrix
with elements

:K:-l =%, mvN n+N‘6mn/knz: m,n= ltoN. (37)

Finally, combining (17), (21), (28), (30), (36)

and eliminating A and B gives

$=D'(a) + (87%/k@)D " (a/2) %!
x Y((D')* -V)" YD (a/2) , (38)

where formulas for the matrix elements of _I_)',
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, Y, D , and V are given in (23), (37), (22),

29), “and (26), respectively. We can easily under-
stand qualitatively the significance of the terms
which made up § in (38) and convert the incident
field into the outgoing field. Starting from the
right, D'(a/2) operates on the field of incident
plane waves to shift their phase to the midplane

of the layers; Y then transforms the field into sta-
tionary spherical waves around the atom centers,
(D"~ - V)™ transforms stat1onary spherical waves
into outgomg spherical waves, X~ Y transforms
outgomg spherical waves into outgomg plane waves,
D (a/2) shifts the phase from the mldplane on to
the boundaries of the layer, and D ’(a) adds the in-
cident waves after they have been shifted in phase
through the full layer thickness to give the total
outgoing plane-wave field. The calculation of re-
flection coefficients ®, and relative fluxes

(e /R1,) | ®,] 2 now follows from § by finding Q
from § using (12), ® from Q by solving the eigen-
value equation (7), and the ®, from the linear equa-
tion (10). Details of the numerical procedure for
evaluation of these various quantities will not be
discussed here.

III. BAND STRUCTURE AND LEED SPECTRA WITHOUT
ABSORPTION

Although absorption and lattice motion produce
similar marked effects on the character of LEED
spectra, we first exhibit the spectra calculated
without these complications for two reasons—as a
test of the method of calculation and to indicate
clearly by comparison the changes produced by
absorption and lattice motion. The calculations
are somewhat more difficult without absorption be -
cause it is more complicated to determine which
Bloch functions carry flux into the crystal, and
because the spectra show much fine structure
which requires calculations at much more closely
spaced intervals than with absorption. However,
the effect of absorption on the Ewald procedure we
use is small, whereas methods which depend on
absorption to sum the multiple-scattering series
do not work in the no-absorption limit. The cor-
rectness and accuracy of the computation program
will be tested by comparison of the energy bands,
which are generated in the course of the LEED
calculation (from eigenvalues of the Q matrix),
with the results of various standard procedures
for solving the band problem in a bulk crystal. We
also obtain solutions to the band problem corre-
sponding to attenuating waves, which are difficult
to obtain from the usual band-structure calcula-
tion procedures, but play an important role in
surface problems. We show the real lines cor-
responding to these solutions in Fig. 1.

The LEED calculation has been carried out on
A1{001} at normal incidence over the energy range
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0-70 eV using the Snow potential'? with no imag-
inary part (8=0) and a simple boundary condition
at the surface (chosen halfway between neighboring
planes of atoms) which takes the vacuum level at
the muffin-tin reference level, i.e., no discon-
tinuity at the surface on proceeding from vacuum
into the space between the scattering spheres. The
results of the calculation are shown in the six
plots of Fig. 1 which share a common energy scale;
in particular, the band structure is plot 4 (from
the top) shown along the A line (T at the top, X at
the bottom) with a reduced %, scale. The bands
are shown supplemented by the real lines between
band edges —actually by the projected real lines,
since the quantity plotted as a function of E is the
real part of the complex %k, for which E remains
real between bands. The visible projected real
lines in the plot start from band edges inside the
Brillouin zone, e.g., from 42 to 45 eV at k,a/7
~(,8, but there are also projected real lines along
the energy axes at I' and X which are not shown,
e.g., from 5 to 7 eV along the axis at X, and also
one from 14 eV to —,

Plot 5 provides a complementary view of the real
lines, namely, their projection on the imaginary
2, and E plane, where the reduced scale of &, is
such that at the value —1 the square of the corre-
sponding attenuating Bloch wave is reduced by a
factor 10 in a distance a. The real lines from the
view of plot 5 are either tight loops joining band
edges, e.g., from 5 to 7 eV-—although sometimes
loopswill merge, as occurs at 28 eV—or they are
half-loops arcing down to E= - but quickly cross-
ing the line of maximum attenuation in the diagram.
These half-loops easily identify the start of each
new band, showing that eight or nine new bands
(some degenerate) start over the 70-eV range of the
plot (the apparent half-loops starting at 63 eV ap-
pear to be part of large closed loops). Each new
band, once started, actually may be traced con-
tinuously to E =+ by using real lines to bridge
the energy gaps. The uniqueness of the continua-
tion is shown more clearly by adding a small
amount of absorption, whereupon the distinction
between bands and real lines is wiped out since
k, is always complex. The projected real lines
in the band gaps of plot 4 then each split into two
parts which join continuously—the lower part of the
left band (the part up to the band edge) with the
upper part of the right band and vice versa.

The actual magnitudes of the energy bands have
been compared with the calculations by Connolly*®
with the augmented-plane-wave method and the
identical potentiall? for Al. Careful comparison
of plot 4 with Connolly’s shows that the two plots
are very close.'® The calculated energies have
also been checked by comparison of a few pairs
of E, k, values with results of a standard KKR
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band -structure program. !’ Agreement is found to
within 0.1%, the accuracy of the KKR calculation.
Finally, the E,K pairs have been used to make a
valuable check on the formulation of the method as
well as on the calculation program by comparing
the same E and K pairs using separate LEED cal-
culations for the {001} and the {111} surfaces. All
the detailed matrix elements are now different, but
the results for Kk at the same E agree to 0.002%.
The LEED spectra obtained from the complete
Al{o01}, 6=0°, LEED calculation, which requires
the Bloch functions as well as the band energies,
are shown in plots 1, 2,3 and 6. The reflection
spectra for the 00, 11, and 20 beams show sharp
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FIG. 1. Band structure, reflection and transmission
spectra on a common energy scale from 0 (vacuum level)
to 70 eV for A1{001}. Calculation assumes no absorption
(8 =0), normal incidence (§=0), the Snow potential (Ref.
12), muffin-tin zero at vacuum level (no step), no shift
of spectra along energy scale, Plots 1 to 3: reflected
flux relative to incident flux for 00, 11, 20 beams. Plot
4: band structure along [001 ] with real part of real line
dotted and bands of A; symmetry marked. Plot 5:
imaginary part of real line. Plot 6: transmitted flux
into Bloch waves relative to incident flux, marked to
correspond to bands of plot 4. o’ =a/2=period in the
2 direction.
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FIG. 2. Schematic LEED pattern from {001} surface of fcc crystal with pertinent indexing of beams for azimuth
angle ¢ =0° [diagram (a)] and 45° [diagram (b)]. The plane of incidence in each case passes through a horizontal axis.

The pattern moves to the right as 6 is increased.

structure—steep rises, sharp corners and peaks,
deep dips (i.e., to very small magnitudes)—which
correlate closely with each other and with features
of the band structure, such as steep rises occurring
in the vicinity of band edges. Only bands of 4,
symmetry (marked by letters a to % in Fig. 2) are
significant because the incident electron strikes
the surface normally and contributions from other
bands are forbidden. The excitation of various
bands is most easily seen in the transmission spec-
trum of plot 6 which gives the flux carried by all
propagating Bloch functions at any energy. The
same letters which mark the A, bands in plot 4

are used for the corresponding transmitted -flux
values in plot 6. This plot shows vividly the div-
vision of flux among the A; Bloch waves at any
energy. There is some flux in every 4, line, but
one band usually has most of the flux, except near
band edges of overlapping bands where one band
dies out and the other rises, e.g., around 20 eV
where flux in band 5 transfers to band ¢, around

33 eV where flux in band d transfers mainly but not
entirely to band ¢;, and then around 42 eV flux in
e, is transferred mainly to new band f;, but also
slightly to e, (the part of e on the lower side of the
band edge at 42.5 eV). Note that narrow band g
supplies three propagating Bloch functions in a nar-
row energy range around 56.5 eV, all excited.

One can trace a path of strong excitation through
plot 4 in the sequence a, lower b, upper ¢, upper
d, ey, f1, &2 hz resembling a broken-up free-elec-
tron 00 band. Note that the transmission spectra
also show features associated with the free-elec-
tron band structure, such as the sudden sharp dip
in amplitude of band ¢ at 18 eV when the 11 beam
starts to propagate (in vacuum), or in band e at

37 eV when the 20 beam starts propagating.

In actual crystals, the presence of absorption,
besides strongly reducing the intensities, smooths
out the sharp features, rounds the peaks and cor-
ners, and fills in the deep dips in the LEED spec-
tra. Absorption also substantially changes the ap-
pearance of the band structure, since every k&,
now has some imaginary part and all bands may
now cross each other on the plots of E vs the real
part of k,. For high absorption these band plots
(i.e., projected real lines) look free-electron-like.
Peaks in the reflected LEED spectra still correlate
with the crossings of bands but the band plots,
particularly at higher energies, can be too com-
plicated to give much insight into the LEED spec-
tra directly.

No precise check on the LEED spectra against
independent calculations is available as was pos-
sible for the energies. However, an internal check
on the precision of the calculation is provided by
the test of flux conservation: The total incident
flux is found to equal the flux of reflected prop-
agating beams plus the flux transmitted into prop-
agating Bloch waves to seven or eight figures (16
figures are carried in all operations).

IV. LEED SPECTRA WITH ABSORPTION AT VARIOUS
ANGLES OF INCIDENCE FOR Al {001}

The Snow potential for Al used in Sec. III has
been fairly successful''*® in fitting observed LEED
spectra for A1{001}, when augmented by an imagi-
nary part of 0.3 Ry (4.1 eV) to describe absorption,
and used with no discontinuity (in the real part of
the potential) at the surface to avoid the unphysical-
ly high reflection produced by a sharp step. The
calculated spectra are then shifted down in energy
by 7.5 eV to match experiment—which amounts to
an empirical determination of the work function
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FIG. 3. A1{001}, 00 beam spectra, measured and
calculated, as functions of polar angle 6 at ¢ =45°, Cal-
culated with Snow potential and absorption (8 =4.1 eV
=0.30 Ry), step of —iB in potential at surface, spectra
shifted —7.5 eV. Zero levels of experimental and theo-
retical curves marked for each angle.

(see Sec. IX). Our previous work concentrated on
one angle, and it is desirable to test the validity of
the model further by comparing theory and experi-
ment for the extensive measurements on the angu-
lar variation of these spectra.!® This comparison
is made in Figs. 3, 4, and 5 for the 00 (specular),
11 and 02 beams, respectively, over the angular
range 6=6-25° at ¢=45°. (See Fig. 2 for the con-
ventions used on beam labels and the definition of
¢; the 6 rotation of the crystal is assumed to occur
horizontally in these figures, moving the 00 spot

to the right for increasing 6.)

The same general level of agreement between
theory and experiment attained in our previous pa-
per! at 6=6°, ¢=45° is reproduced here for the
other angles although there are noteworthy differ-
ences at the higher angles. The positions of the
experimental peaks generally correspond closely
to theory; the relative amplitudes not so well, al-
though there is reasonable correspondence. How-
ever, the correction for lattice motion has not been
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made in these calculations. There are no experi-
mental data for the 00 beam at normal incidence,
but we note from Fig. 3 that the theory predicts a
fairly large peak (presumably a primary Bragg
peak) at about 130 eV which drops in intensity by
more than a factor of 2 when 6 changes from 0 to
6°, and becomes asymmetric as a shoulder devel-
ops on the high-energy side. The experimental
values should also be sensitive to angle, and proper
comparison with theory requires that the experi-
mental angles be very close to those of the theory.

The nonspecular beams (Figs. 4 and 5) exhibit,
in general, large Bragg peaks which can be corre-
lated with the Bragg reflections expected into these
beams from the incident beam. Sizable “second-
ary” peaks, 2 such as those observed between the
Bragg peaks in the 00 beam, are not observed
here. As the 6 angle is varied, most of the ob-
served peaks persist, moving slowly to left or
right as the angle changes, as expected from free-
electron theory.?® The peaks also show gradual
changes in shape and intensity. Occasionally, .
some peaks seem to disappear or to change radical-
ly at certain angles. This fact has been observed
and explained by several authors, quite properly
we believe, in terms of scattering into Laue or in-
to other Bragg beams that happen to satisfy the
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FIG. 4. Al1{001}, 1T beams, calculated as for Fig. 3.
The experimental curves in Figs. 3 and 4 are slightly
changed from the curves published in Ref. 19, where too
large a correction was made for the dependence of in-
cident current with energy. The change affects the non-
specular spectra and the relative peak heights, but not
the specular spectra and the peak positions.
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diffraction conditions simultaneously with the ob-
served Bragg peak at the given energy and angle.?!"??
The theoretical curves presented here do not al-
ways seem to reproduce this effect at the angle
observed experimentally. For example, Fig. 3
shows this effect at 20° in the experimental spec-
tra in the peak around 70 eV whereas the theoreti-
cal spectra appear to show such a change nearer
to 15°. Since the explanation in terms of other
beams involves only bulk properties of the crystal,
we conclude that this discrepancy might indicate
that the potential used in the present calculations
is not wholly adequate. Other discrepancies be-
tween theory and experiment may be due to surface
effects which are not taken into account in the
present model of an “ideal” surface. There is, in
particular, some reason to believe that such ef-
fects have greater influence on the curves at angles
far from normal incidence, as the electron path
lengths in the surface region will be greater for
electrons nearer to grazing incidence.

V. CORRECTION FOR LATTICE MOTION

Lattice motion has a strong effect on LEED spec-
tra, as can be seen from the experimentally ob~
served temperature dependence of LEED inten-
sities. The theory of the elastic and inelastic
scattering given in Sec. II is plausibly and simply
extended to a theory for a vibrating lattice by aver-
aging the scattering of each atomic potential over
the motion of that atom. This averaging gives an
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effective scattering by each atom at its mean posi-
tion to which the theory for the rigid periodic lat-
tice can be applied. This procedure is systemati-
cally developed from many-body perturbation the-
ory by Duke and Laramore. #'2* Note that averag-
ing the scattering is not equivalent to averaging
the potential and then finding the scattering; such
a procedure would, for example, smear out the
(1/7) singularity of the potential at the nucleus and
substantially reduce the scattering. It is inherent
in the approximate treatment of lattice motion by
average scattering that the atomic motions are
treated as independent, and that correlations in the
motions of neighboring atoms are neglected. Also
a further approximation is made at this point for
convenience of calculation, namely, that a Debye
spectrum of lattice modes describes the motion of
an atom adequately. A more realistic spectrum
could be easily introduced, including a dependence
of the motion on distance from the surface, if de-
tailed information were available.

The scattering of an atom may be described by
the matrix elements of its # matrix®® between plane-
wave states. For a spherical atom these matrix
elements can be expressed in terms of the phase
shifts 1, by the relation®

(K |t|&)=20; t,(2L+ 1) P, (cOSE,) | (39)
ty==—(¥Mm-1)/2ik , |K|=|K] (40)

where P, is the Legendre polynomial of order [,
and 6, the angle between k and k’. Let ¢, be the

¢ matrix for an atom displaced by T from its nor-
mal position; then #, can be written in terms of the
t matrix at the original position by introducing the
shifts in phase of the plane waves between the two
positions?”

(B |8, [k)=e! FE"F (K| ¢]K). (41)
Averaging (41) over lattice motions gives
(K[t [k Dar= @ FF0 ™) 0 (K 2]E), (42)

where the first factor in the right, the Debye-
Waller factor, when T is averaged over a Debye
spectrum of lattice modes, is®

:e-A(ﬁ-E')z (43)

b

<ei(ﬁ-i')-r>D Av

ha 1 2 €p/T
A= 3_ — _T_ j xxdx (44)
WkB®D 4 @vD 0 e - 1 ’
where M is the mass of an atom, kg is the Boltz-

mann constant, and @, is the Debye temperature.
Using the standard formula®

o

e BT (204 1)i'j,(kr) P (cosb,)

1=0, 1, y®  (45)

(43) becomes
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Putting (39) and (46) into (42) gives
((E' ‘tr'E»D Av
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(486)
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Using a standard formula in the theory of angular
momentum?®

bl > (21+1)P,(cos¥),

000
(48)
where (§1{2} ) is the Wigner 3-j coefficient, in (47)
gives

«E' I ¢, IE»D Av©E
with
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P, (cosb) Py, (cosb)= Z,<

20 121+ 1)P(cosby,),  (49)

(211 + 1)

X (2y+ 1)i2 (- 2iAR%) . (50)

Comparing (49) to (39) shows that 7, in the Debye-
averaged matrix element corresponds precisely to
t; in the matrix element at the original position.
Hence, effective (complex) phase shifts 7, for the
scattering averaged over the motion could be de-
fined by

=_ [ 241

T, = - 1)/2ik (51)

and used in the LEED theory of Sec. II. In fact,
the LEED theory uses the particular function of
phase shifts given in (51) or (40), as shown by
(29).

The changes that occur in the calculated LEED
spectra when this correction for lattice motion is
added to the effects of absorption are shown in
Fig. 6, which gives the results for A1{001} at 6=6°,
¢=45° @,=418°K, and the same potential, match-
ing condition and energy shift as used in Sec. IV.
The results of a similar calculation at normal in-
cidence with and without absorption are shown in
Ref. 1. (Real values of k% were used in the calcula-
tion of 7,, consistent with our use of real phase
shifts for an atom imbedded in an inelastically
scattering medium. ) The correction for lattice
motion introduces a new mechanism of incoherent
scattering which, like the absorption, broadens
and reduces the peaks, and acts similarly to an
energy-dependent imaginary part to the potential
inside the atomic-scattering potentials. The over-
all effect is similar to that of a Debye-Waller fac-
tor in x-ray diffraction theory; i.e., the intensities
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at higher energies are reduced much more than
those at lower energies. Figure 6 shows the effect
is to give a substantial improvement in the agree-
ment between theory and experiment, e.g., the
double peak in the 00 beam at 77 eV is converted
to a single peak, and a similar change occurs in
the 02 beam at 90 eV. The relative intensities are
now closer to experiment, although the theoretical
peak at 26 eV in the 00 beam is too high and the 11
peak at 60 eV does not have the right shape—other
differences between theory and experiment lie with-
in the error of the measurements. 3

VI. EFFECTS OF DIFFERENT METHODS OF MATCHING
WAVES AT THE SURFACE
Our first matching method is based on the sim-

plest assumption about matching fields across the
surface of the crystal in a LEED calculation;
namely, we truncate the potential of an infinite
crystal halfway between two planes of atoms and
put the constant vacuum level on one side. Then
continuity of the wave field and its normal deriva-
tive at this abrupt step in both the real and imagin-
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FIG. 6. Effect of temperature corrections on A1{001}
spectra for 6 =6°, ¢ =45°; potential and surface matchings
as for Fig. 3; spectra at T=298°K computed with Debye
spectrum of lattice motions at ©5=426°K, compared with
rigid lattice and experimental spectra. Values on the
ordinate scales for peak energy, I/I, (rigid lattice), and
I/1, (T =298°K) correspond, respectively, to the follow-
ing: for the 00 beam, 70.5, 0,053, and 0,019; 11 beam,
62.5, 0.020, and 0.0092; 02 beam, 86.5, 0.028, and
0.0085.
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FIG. 7. Effects of different matching procedures on
calculated A1{001} spectra at =6°, ¢ =45°, f =4.1 eV
for 00, 11, and 02 beams. Plots a: abrupt step at sur-
face in real and imaginary part of potential —7,5 —4.,14
eV. Plots b: no-reflection matching (see Sec. VI).
Plots c: B -reflection matching (abrupt step only in
imaginary part of potential, spectrum calculated and
shifted = 7.5 eV).

ary parts of V(r) and consideration of the boundary
condition at infinity determine a unique LEED prob-
lem. The result of this procedure applied to
A1{001} generates the LEED curve marked (a) in
Fig. 7. This method of matching has the drawback
that the artificial abrupt step in the potential pro-
duces an unphysically large reflection. The actual
potential has a gradual change from vacuum to crys-
tal interior®® which would produce a much smaller
reflection.

A second matching method is based on the sim-
plest way to eliminate these artificially strong re-
flections; namely, we calculate the LEED spectra
produced by a potential without the abrupt step by
moving the muffin-tin zero (the real part of V) up
to the vacuum level. At normal incidence a conse-
quence of this procedure is to translate both the
band structure of the crystal and the peaks in the
LEED spectra toward higher energies by the same
amount. Thus the calculated spectra must be
translated back by this amount to put the peaks at
their correct energies.®® This translation was
determined empirically to be 7.5 eV for Al{001}
by shifting the calculated spectra to get the best
match with experiment (at 6=6°). The discrepancy
between this value and the shift value of 12.4 eV
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expected from the experimental work function will
be discussed in Sec. IX. This procedure with a
shift of 7. 5 eV was used to calculate all the curves
in Figs. 3, 4, 5, 6 and curves (c) in Fig. 7.

This second matching method, however, has two
failings: (i) By eliminating the potential step we
also eliminate the change in angle that occurs when
the beams are refracted through the surface. Re-
fraction, which is governed by Snell’s law, is in-
dependent of how the potential varies through the
surface and therefore occurs even when the poten-
tial varies gradually. Thus, the fact that we have
eliminated the abrupt potential step is equivalent
to saying that the incidence angles quoted in the
figures are the angles made with the surface normal
by the primary beam inside the crystal rather than
by the primary beam in vacuum as they should be.
The differences between these angles vanish, of
course, at normal incidence, and are believed to be
smaller than the experimental error in all other
curves shown here. (ii) The method does not elim-
inate the small amount of reflection at the surface
that is caused by the sharp step in the imaginary
part of the potential (from zero in vacuum to the
value — 0. 3 Ry) used in our calculations on A1{001}).
Although the effect of this step appears to be small,
note, however, the pointed shape of the leftmost
peak in the 00 spectrum of (c) that does not occur
in the other spectra in Fig. 7. For the purposes
of the present discussion we call this matching
method the “B-reflection” method (- ¢B being the
imaginary part of the potential V).

In the third matching method to be considered,
it is assumed that the incident beam from vacuum
arrives on the crystal side of a gradual potential
step of unspecified profile without having suffered
any reflection in the step region. The beam has
the same intensity and %k, value as outside the crys-
tal, but a new k, value given by &,= (E - Vo - k?)Y2
as it moves between scatterers inside the crystal.
Similarly, it is assumed that all beams incident on
the step from inside the crystal join on to the cor-
responding waves in vacuum without any reflection
back into the crystal. For short, call this the “no-
reflection” matching procedure, %*

At normal incidence, the intensity of reflection
at any energy above the muffin-tin zero is indepen-
dent of the step height, so that any value of the real
part of V, may be used in the calculation and the
best value of this quantity determined by shifting
the spectra to match experiment. Calculations
away from normal incidence can then be carried
out with the best value of the real part of V, so
that the refraction of the incident beam is taken in-
to account properly. (Note that the spectra for
oblique incidence would not translate rigidly with
change of V,.) The no-reflection procedure ap-
plied to A1{001} gives the curves (b) in Fig. 8. All
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calculations on Cu and Ag in this paper used this
procedure.

A possible defect of both the “B-reflection” and
the “no-reflection” methods is that those beams in
the crystal which move toward the surface in di-
rections such as to be totally internally reflected
are not reflected at all in the “no-reflection” meth-
od and only slightly in the B-reflection method.
Instead, these beams are assumed to match decay-
ing vacuum waves without reflection. This assump-
tion is a good one if such beams are in fact strong-
ly inelastically scattered by surface excitations
such as surface plasmons. To test the conse-
quences of this assumption in the present case,
which has no special surface scattering, we have
carried out calculations in which proper total in-
ternal reflections were imposed for those beams,

but no reflections at all were assumed for the
beams that physically pass through the surface.
The results were essentially the same as curves
(b).

The curves in Fig. 7 show some differences in
the shapes of the lowest peaks of the 00 and 11
beams, but generally the different matching meth-
ods do not affect the spectra much, particularly
the nonspecular beams and the higher-energy parts
of the 00 spectra. A tentative conclusion is that
the spectra above about 40 eV are insensitive to
the actual shape of the electronic potential profile
between vacuum and the crystal interior. These
high-energy parts of the spectra may thus be more
suitable for obtaining the structure of the surface
layers, i.e., the atomic positions, than the low-
energy parts.
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VII. COMPARISON OF THEORY AND EXPERIMENT FOR
cu{ 001}

Figures 8 and 9 show comparisons between the
experimental data of Andersson® for the {001} face
of copper and calculations made with the potential
of Chodorow as quoted by Burdick® with the addi-
tion of an imaginary part -8, 8=0.25 Ry. As for
A1{001} the calculations reproduce both the primary
and the secondary structure of the spectra fairly
well. Note that the calculated spectrum is a sen-
sitive function of the angle of incidence: Fig. 8,
plot 1 compares the 00 spectrum calculated for
normal incidence with that measured at an angle of
incidence 3° away from normal. There is definite
disagreement between the two spectra, which dis-
appears when the calculation is repeated for the
actual experimental angle of incidence (plot 2).
These two cases emphasize the fact that it can be
important to carry out the calculations at the same
angle for which the experiment was done. In Fig.
8, plots 2, 3, 4, the experimental 00, 11, and 20
spectra are compared with the results of calcula-
tions done for the rigid lattice, and Fig. 9 does
the same for calculations valid at 298 °K, i.e.,
including the correction for lattice motion with
@p=339 °K discussed in Sec. V. We note again
that consideration of the lattice motion improves

the agreement between theory and experiment.
Andersson gives the magnitudes of the reflected
flux as a fraction of the incoming flux. The cal-
culated spectra are generally a factor of 2 to 3
greater than his measured values, as can be seen
by comparing the scales on the two sides of Fig.

9. Such a difference is not surprising because one
would expect that only a fraction of the surface is
regular enough to contribute to LEED. Without
the lattice-motion correction the calculated inten-
_sities are of the order of ten times the experimen-
tal measurements.

Calculations have been made previously for
Cu{001} by Capart, ¥ who also compared his results
with Andersson’s data. Our results appear to cor-
respond more closely to the experiment than Ca-
part’s. We note three differences in the method of
calculation: Capart performed his calculations
only for normal incidence, which immediately re-
duces the degree of correspondence that can be
hoped for; he used only three phase shifts in his
calculations, against eight used in ours; he used
the KKRZ method, which effectively eliminates the
T space sums of the Ewald procedure (which we in-
clude) thus reducing the accuracy which can be ex-
pected a priovi.

Both our calculations and Capart’s make use of
phase shifts as the atomic-scattering input for the
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phase shifts 7;(E) for 7 =0, 1, 2, 3 used in the Al, Cu,
and Ag calculations, where 7;(0) =0. Note that 7, for

Cu at 4,5 eV shows a rapid increase of 7 in magnitude,
which is subtracted from the higher-energy part of the
curve, The energies are measured with respect to the
muffin-tin zero, not with respect to vacuum, since the
curves describe properties of the isolated atomic sphere,

LEED intensity calculations; this permits direct
comparison of the atomic scattering. The phase
shifts we used are depicted in Figs. 10 and 11, The
most striking difference between these curves and
those given by Capart is that our s phase shift goes
through 37 at approximately 100 eV while Capart’s
passes through this scattering maximum at only 60
eV. It is not clear whether this difference in the
phase shifts accounts for the difference in the LEED
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FIG. 11, m(E) as in Fig. 10 for I=4, 5, 6, 7.
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spectra or whether the difference in calculational
procedures is important. 38

VIII. LEED SPECTRA FOR Ag{001} AND COMPARISON
WITH Cu {001} AND A1{001}

Silver is another fcc material for which a self-
consistent band-structure potential is available.%®
The phase shifts computed from this potential are
markedly different from those of aluminum and cop-
per, as we can see from Figs. 10 and 11. The dif-
ferences are revealed more directly by the partial-
wave contributions ¢, to the total scattering cross
section o of a single metal atom than by the phase
shifts, and are given by the formulas

0=23,0, (52)
and
21+1 .
0= g sin®n; , (53)

where 7, is the Ith phase shift. Note that the de-
finition of o, includes the factor (27+1), the number
of spherical waves with this phase shift, a factor
that weights the higher phase shifts more than the
lower ones. The expression for o, is largest when
7, goes through (n + $)w. A relatively small change
in the potential can displace the phase-shift curve
enough to move the maximum of o, to quite a dif-
ferent energy range.

The energy dependences of the ¢,’s for aluminum,
copper, and silver are given in Fig. 12 in units of
aﬁ (the Bohr radius squared) and can be compared
with the cross sectional area of the unit mesh of
atoms in a plane parallel to the surface of the crys-
tal. For silver and aluminum this mesh area is
nearly the same (29. 8a2 and 29, 3aZ, respectively),

PARTIAL CROSS SECTIONS
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FIG. 12. Energy dependence from 0 to 160 eV of the

partial cross sections o ,(E) for 7=0, 1, 2, 3.
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while for copper it is somewhat smaller (23. 3a§).
We note that at approximately 55 eV the f wave
alone, i.e., o3, for silver makes a contribution

of % of the mesh area and that the sum of the con-
tributions of all phase shifts exceeds the mesh area.
The partial cross sections of copper and aluminum
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as calculated here are generally smaller; hence,
we expect to find the LEED spectrum of silver less
free-electron-like than that of either aluminum or
copper. This expectation seems to be borne out by
the calculations of the LEED spectra of the specular
beams from the {001} surfaces as shown in Fig, 13.
This figure compares the theoretical spectra at
normal incidence for A1{001}, Cu{001}, and Ag{001}
on a reduced energy scale,’® and shows that the
phase shifts of the three metals are sufficiently
different to predict quite different LEED spectra.
(The Debye temperature used in all silver calcula-
tions was 225 °K and Bwas 0.25 Ry). Since the ex-
perimental data for the specular beams at normal
incidence are not available, these curves cannot be
compared with experiment, However, Fig. 14 and
Fig. 15 compare the nonspecular beams 11 and 20
at normal incidence for Al, Cu, and Ag{001} with
one another and show that the experimental data
confirm the differences predicted and are repro-
duced quite well by the theory.

In Figs. 14 and 15, the experimental data for
A1{001} are those of Jona'® and for Cu{001} those
of Andersson.’® The Ag{001} data were taken on
single-crystal silver film grown epitaxially on a
rock-salt substrate*! —they should be considered
preliminary because of experimental difficulties,
including the possibility of surface contamination
by chlorine originating from the film substrate.
Data on the Ag{001} at an angle of incidence of 10°
are compared to the corresponding theoretical
spectra in Figs. 16 and 18 and the nonspecular
beams for §=0° in Fig. 17. Below approximately
40 eV in the 00 beam (Fig. 16) there is practically
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FIG. 16. Ag{001}, 00 beam spectra measured and

calculated, at 6=10°, ¢ =0°, Calculations use Snow
potential (Ref. 39) and absorption with 8 =3.4 eV, no
reflection matching with step of —5.0 eV, correction
for lattice motion at T=298 °K with 6, =225 °K.

no correspondence, which may be due either to
inaccuracies of the potential or to the presence of
surface impurities or other experimental difficul-
ties. Note that the 1T and 11 beams at §=10°
(Fig. 18) differ much more from each other than
from the calculated spectra, and also from the 1T
beams at 6=0° (Fig. 17).

In conclusion, we point out again that the Snow
band-structure potential for silver predicts sur-
prisingly large partial cross sections for the silver
atom at LEED energies. It is in fact found that
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FIG. 17. Ag{001}, spectra at normal incidence, 00,
1T and 02 beams, calculations as in Fig. 16,
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__FIG. 18. Ag{001}, spectra for 6=10°, ¢ =0°, 02,
11 and 11 beams; calculations as in Fig. 16. These
spectra, with Fig. 16, give all beams in the first three
shells at the given angles.

the LEED spectra of Ag{001} are both stronger and
more sensitive to the angle of incidence than the
corresponding spectra for aluminum, which may
well be a consequence of the greater scattering
power of the silver atom.

IX. LEED SPECTRA AND ENERGY DEPENDENCE OF
THE EXCHANGE-CORRELATION POTENTIAL

In Sec. VI, we have described how LEED calcu-
lations can be performed at normal incidence with-
out fixing the quantity A, which measures the real
part of the potential between the atoms in the crys-
tal relative to vacuum, and how A can then be
empirically evaluated by shifting a calculated spec-
trum to match the corresponding measured spec-
trum; a single A for each metal could then be used
to give satisfactory agreement for all beams at all
angles of incidence. We now discuss the expected
value of A arising from a simple static model of
the crystal potential and the reasons why this ex-
pected value and the empirical value differ.

The simple static model of the crystal potential
uses a band-structure potential (e. g., the Snow
potential for Al) which is supplemented by a con-
stant imaginary part and fixed relative to vacuum
by the measured work function. The static poten-
tial model would then determine the one-electron
energy levels of the scattering system and hence
the value of A. For example, we note the follow-
ing energy levels (the numerical values are for Al
using the Snow potential): the vacuum level—outside
the {001} surfaces (for convenience fix its value at
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0); the Fermi level, which lies below the vacuum
level by the work function (~4. 2 eV); the average
potential between atoms or muffin-tin zero (8.2 eV
below the Fermi level, hence —12.4 eV); the bot-
tom of the conduction band (-~ 15.2 eV); and the
volume average potential (—20.4 eV). Thus the
expected A for Al is —12.4 eV to be compared to
the empirical value of —7.5 eV.*”? We believe the
explanation of this difference is that the above po-
tential model and energy levels apply to a slowly
moving electron, whereas the empirical value re-
fers to an electron at LEED energies up to 150 eV.
To bring out the difference between potentials for
slow and fast electrons, note that the one-electron
potential may be regarded as a combination of two
parts**: (i) an electrostatic potential due to the
charge distribution of the crystal, including both
the periodic charge and the charge in the surface
region tailing off into vacuum and giving rise to a
dipole layer; (ii) an exchange-correlation potential
V.. which corrects for the detailed interaction of
the electrons, taking account of the exchange and
correlation “holes” in the distribution around a
given electron. The first part is independent of
the energy of the electron, but the second part is
really energy dependent and if this dependence is
taken into account, the energy levels above will
be modified.

A detailed theory of V,, in a crystal is not now
available, but we can obtain some idea of its mag-
nitude and behavior from the theory of the uniform
electron gas'® of the same average electron density,
i.e., the same density as the conduction electrons,
a density corresponding to 7 =2.07q, for Al. This
theory identifies V,, with part of the electron self-
energy and yields the imaginary part —iBof V.
used in the LEED spectra calculations (an average
Bof 4.1 eV was used for Al). The real part of V,,
rises by 5.5 eV between the vacuum level (15.8
eV above the bottom of the band, since the Fermi
energy of the free-electron gas is 11. 6 eV) and 100
eV above the vacuum level, and is quite flat above
100 eV. Thus we can expect that fitting the calcu-
lated spectrum to the measured spectrum around
and above 100 eV would require a shift A of —12.4
+5.5=-6.9 eV, in surprisingly good agreement
with the value — 7.5 eV previously found for A.
With this A, calculated peaks at lower energies
should be slightly too high, as appears to be the
case, for example, for the peak around 25 eV in
the 00 spectrum of A1{001} in Fig. 6. However,
the total magnitude of the change in V,, (5.5 eV),
although observable, is still small compared to the
range of 100 eV. Hence, the simple static model
of the crystal potential works fairly well. There
is some indication that the changes with energy of
the exchange and correlation considered separately
would be substantially larger. Overhauser®® esti-

mates the exchange and correlation energies sepa-
rately as functions of energy in a uniform electron
gas, although only over a small range of energies
above the Fermi level, and shows a near cancella-
tion of the sum of the changes. This near cancel-
lation, although derived only for the uniform gas,
suggests that it is not adequate to introduce only
the energy dependence of exchange, at least for
the valence electrons.

The magnitude of the real part of the exchange-
correlation potential in a real crystal should be-
come smaller at high energies like in the uniform
electron gas, since this change results from the
decreased correlation between the incoming elec-
tron and the electrons of the crystal when the in-
coming electron has a high velocity. An equivalent
statment is that the self-energy, work function,
and image potential all become smaller as the elec-
tron energy increases. Because the results with
an energy -independent potential match up the peaks
in the spectrum over the whole range from 30 to
150 eV particularly well, it is further suggested
that the exchange-correlation contributions in the
real crystal vary less with energy in this range
than do the contributions for the uniform electron
gas. However, the value of the exchange-correla-
tion between 30 and 150 eV, although nearly con-
stant, is different from the low-energy value which
enters into the calculation of the work function.

For Cu{001} an experimental value of A=—9.5
eV is determined by shifting the calculated spectra
to match the measurements; similarly for Ag{001}
the experimental value is A= -~ 5.0 eV. The poten-
tial used for Cu gives the Fermi level 7.7 eV above
the muffin-tin zero®*3; for Ag the corresponding
figure is 6.4 eV .2** The static work function®®
for Cu is 4.5 eV and for Ag, 4.4 eV. Thus the ex-
pected level change between vacuum and the muffin-
tin zero is — 12.2 eV for Cu and —10. 8 eV for Ag.
We correct these in the same way as for Al, by us-
ing the change in the real part of V,, taken from
Lundqvist’s curves® for the real part of the self-
energy of the uniform electron gas at an 7= 2. 67,
for Cu and 7,=3. 022, for Ag. Thus for Cu the rise
in V,, between the vacuum level (which is 11.5 eV
above the bottom of the conduction band since the
Fermi energy is 7.0 eV) and an energy 100 eV
above the vacuum level is 5.0 eV; similarly for
Ag (Fermi energy 5.5 eV) the change in V,, be-
tween vacuum level and 100 eV above is 5.2 eV.
Hence the corrected calculated values of A are
-12,2+5.0=-"7.2eV for Cuand -10.8+5.2=-5.6
eV for Ag to be compared with experimental values
-9.5and - 5.0, respectively. The value for Cu
is not as close as for Al and Ag, but all three val-
ues are reasonably close,*’ and show the same
qualitative result that the work function contribu-
tion to A is smaller in magnitude at higher ener-
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gies.

In summary, if this explanation of the shift is
correct, then comparison between LEED theory
and experiment offers a prospect of obtaining in-
formation on the energy dependence of exchange-
correlation energies in real crystals, and of
evaluating theories of this quantity. In view of the
large number of assumptions required to handle
exchange and correlation in calculations for real
crystals, such information would be very useful.
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