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Thermal Conductivity of an Anharmonic Crystal
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An expression is obtained for the lattice thermal conductivity of an anharmonic crystal by
the method of double-time Green's functions using the energy-flux operator propounded by
Hardy. The study uses cubic and quartic anharmonic terms in the crystal Hamiltonian. It is
found that the nondiagonal part of the energy-flux operator gives a finite contribution to the
transport of energy, though its contribution is small compared to that from the diagonal part.

I. INTRODUCTION

The general theory of the lattice contribution to
the thermal conductivity of a solid, first given by
Peierls, ' is based on the Boltzmann transport equa-
tion for phonon scattering in crystals. This ap-
proach has been extensively applied and discussed
in the literature, ™though the theoretical basis
has been changed. Recent theories of phonon trans-
port in solid express the thermal conductivity in
terms of the correlation functions of the thermal
flux. The crux of the problem lies in the determina-
tion of functional dependence of the energy-flux
operator on the dynamical variables of the system.
The form usually used for the energy flux Q(t) in
the lattice is the Peierls expression based on the
spherically symmetric dispersion formula and is
given by

Q(f) =2 If~„-,fi;,(f)v„-, , (1)
fs

where vt"„ is the group velocity of the normal mode
with wave vector k and polarization index s, &l"„ is
the frequency of the phonon in the mode ks, and
Nr.,=ai&, ap, is the number-density operator in the
second-quantized form, a„., and a„-, being the creation
and annihilation operators. Choquard' has rigor-
ously deduced expression (1) for a three-dimensional
lattice. Recently Hardy has given a systematic
derivation of the energy-flux operator for a three-
dimensional lattice with imperfections and anhar-
monic forces. The treatment is based on the gen-
eral expression for the energy flux in terms of the
particle variables, which are valid for all phases
of matter. He has shown that the expression (1)
corresponds to the diagonal part of the average-
energy-flux operator arising from harmonic forces;
the total average-energy-flux operator contains
some nondiagonal terms even in the harmonic ap-
proximation.

In the last few years, the thermal conductivity of
an anharmonic crystal has been the subject of con-
siderable investigation by many workers. Schieve
and Peterson obtained an expression for the thermal
conductivity of a crystal using the correlation-func-

tion method. A similar expression has been derived
by Deo and Behra for an anharmonic crystal using
the double-time-Green's-function technique. In all
these studies, the effect of the nondiagonal part of
the energy-flux operator to the thermal conductivity
has been neglected.

In the present paper we have obtained an expres-
sion for the thermal conductivity of an anharmonic
Bravais crystal considering the nondiagonal term in
the energy-flux operator given by Hardy using the
double- time-Green' s-function technique. It is
shown that there is a finite contribution of the non-
diagonal part of the energy flux to the thermal con-
ductivity of an anharmonic crystal. The present
approach differs from that of Hardy, Swenson, and
Schieve in the sense that they have used a pertur-
bation expansion for the correlation-function for-
mula for the thermal conductivity

II. GENERAL FORMULATION

We start with the Kubo correlation-function for-
mula for the thermal conductivity, which can be
written"

eo ~tt

K= lim dt e " dX (Q(0) Q(t+iKX)), (2)
0 ~0 40

where k~ is Boltzmann's constant, 0 is the volume
of the crystal, P= (keT) ~, T being the absolute tem-
perature, Q(t) is the energy-flux operator for the
lattice in the Heisenberg representation, and the
angular bracket ( ) indicates the canonical-en-
semble average of the expectation value of an op-
erator

(0) = Tr(e ~0)/Tr(e 8 ),
where Tr denotes the trace of the expression and H
is the Hamiltonian of the system. In the harmonic
approximation, the total-energy-flux operator sug-
gested by Hardy is given by

Q= Q.a+Q..d (4)

where Q,d is the diagonal part of the energy-flux
operator and is given by Eq. (1), and g„~ represents
the nondiagonal part of the energy-flux operator for
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the harmonic system and contains contributions
from the modes with the same wave vector but dif-
ferent polarization directions. The latter in terms
of the particle variables is given by

Qssd 2„~ @tdk Vsk ss~AksBks~ (5)
kss ', SOS '

where

Al7s (al7s+a-ks) A-ks r

Bk,= (ak, - a k, ) = —B k, .
With the help of Eqs. (1), (4), and (5), the ex-

pression (2) for thermal conductivity can be written

Fk, ,;,.(t) = (ak-, (0)a2, .(t)) (ak, (0)a;, .(t) ),
~,",,"(t) = (A„,(0)B;,~ (t))(B„-',(0)A;,,(t))

+ (A„-,(0)A;...(t))(B„",(0)B;,, (t)) . (14)

III. GREEN'S FUNCTION AND HAMILTONIAN

%e define the one-particle, retarded Green's
function for the system as"

Gf, ,",.(t —t ') = ((A„.,(t); A„...(t ')))
= —i8(t —t')( IAk, (t), Aki. ..(t ')]), (l5)

&= &Od+&Ond ~

where

5 k~P~~~
Kpd lim 3g ~ ~ Vks Vqs 2 COfsCOqs

6~0 ks qs '

(7) where 8(t) is the Heavyside step function having the
property 8(t) = 1 if t & 0 and 8(t) = 0 if t & 0. The one-
particle correlation function (A„"...(t ')Ak, (t)) can be
written

F„-... „-,(t, t')=(A„-...(t )A„-,(t))

and

~8

dte-" d/tFk, ;,.(i+i@/t) (8)
40

=f «dk. .k. (~)e'""", (16)

where Jk, k ...(td) is the spectral-density function.
The relationship between the spectral-density func-
tion and the Green's function is

6 0 kss' ggsgsg
SOS Sg /sf

ts sa /. 8

x ' dte "
i d&Fkss. „- s s (t+iK&),

&0 sst 0

(9)

with

F„-,„-,.(t) = (a„k,(0)ak, (0)ak", .(t) a;, (t) )

and

(10)

(abed) = (ab) (cd) +(ac) (bd)+(ad) (bc) . (12)

In Eqs. (8) 2nd (9) only correlation functions with
different time arguments contribute to the conduc-
tivity. Using the above decoupling scheme, expres-
sions (10) and (ll) become

F„-„,;,,, (t) =(A„-,(O)B „(O)A;, (t)B,'...,(t)) . (11)

The first term in Eq. (7) describes the contribution
of the diagonal part of the thermal flux to the ther-
mal conductivity, and the second term corresponds
to the nondiagonal contribution.

Equations (8) and (9) show that the evaluation of
the thermal conductivity involves the calculation of
the correlation functions (10) and (ll). This can
be evaluated by several techniques. Here we use
the double-time-Green's-function technique as
illustrated by Zubarev. The method of thermo-
dynamic Green's functions has recently been proved
to be very useful in the evaluation of correlation
functions and the discussion of various solid-state
phenomena. The complexity of the problem is con-
siderably simplified if the two-particle correlation
function is decoupled according to the scheme

Z

clos ke t(sM) = 22& tGks 2 ~ st (td + i'2) Gks k tsn(ts/ iE)]

(17)
Gk, k...(td) being the Fourier transform of the one-
particle Green's function.

For the Hamiltonian, we consider a Bravais
crystal containing N atoms, each of mass M. The
potential energy can be expanded in terms of the
atomic displacements from their equilibrium posi-
tions. Retaining cubic and quartic terms in the ex-
pansion of potential energy and expressing the
atomic displacements and momentum vectors in
terms of the phonon creation (a„.,) and annihilation
(ak, ) operators in the usual manner, the Hamiltoniat.
of an anharmonic crystal in the second-quantized
form can be written

H =Z Ktdks(aksaks+ —,')
ks

~1 22 33

+ Z Z Z Z b V'2'(kts„kks2, %2s„kdsd)
k &sg k 2S2 k3S3 k4S4

Here the coefficients V' ' and V' ' are the Fourier
transforms of the third- and fourth-order atomic
force constants. They are completely symmetric
in the indices ks and are given by'

(3) 1 1, /2

V (kist~ kkss k2s2) 6&22/2%t/2 / st/2ik s~k s~k s&11 22 33
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x (f&(klsl, k38@ k383)&(kl+k3+k3) (19)

V (klSlp k38@ k383p k484)

where &„.is the Kronecker delta. By taking the
Fourier transform and using the decoupling scheme
(12), we obtain

(~ —~fs)Gas, ss ~ (~) = 5fsg6ss
(1}

x P(k181, k383, k383, k484)

x &{kl+k3+ k3+ k4) (20)

Q(klsl, k383, k383) =Z M3~jg e(k181) 'e(k383)e(k383)
$3)3k

with

kiS1 kaSS

+12 Z Z Z V' '(k181, k383, k383, -kS)
kfsf k~S2 kss3

x ¹„...Gf...,;,,(~), (25)

x exp[i(kl ~ Rl +k3 Rl +k3 ~ Rs)], (21)

$( 181~ k3 e k38$ k484) = Q 3

x e(k181)e(k383)e(k,83)e(k484)

xexp[i(kl Rl+k3 Rl+k3 R„+k4 R,)], (22)

where P,» and P,», are the third- and fourth-order
force constants of the crystal and &(k) = 1 if k= 0
or a reciprocal-lattice vector, and zero otherwise.

The correlation functions appearing in Eels. (13)
and (14) are the integral over the Fourier trans-
forms of their respective Green's functions. To
evaluate them we introduce the following one-parti-
cle Green's functions:

I"I,','.,f..3„". ( ) = «Af...(f)Af„,(f);;. (f'')»

=E(klsl, k38e a&)

1 1& 38$ 7181)Gf s,4s'(&) &

(26)
where

QPf + (d~
F(k,s„ky„~)= 6(&,+fi3)

{d —&~, + ~,)
+ 6(N3 —Nl)

(0f —(da

(0 —((dl —(d3)

f N QP

+ 6(¹1+Ni3)
i 3 3

—
3

( ru —((u, + (u3) ~ —((u, —(u3)
2

(27)

with

GP,'„-,.(f-f')=«af, (t); ag, .(t')»,

G3~,",4...(t f') = &&Af,—(t); Ag, „(t'))&,

G;".'„-,.;(f- f ') = «EJ, (f); S~...(f')&&,

Gf"„',„;(f- f ) =«Af.(f); II&,.;(f')» .

(23c)

The equation of motion for the Green's function
(23a) is

N3= &A„3,3BI @).
(26)

G(l & (&) %a ss
s,ss 211[~ ~1s Mss(~)]

(29)

If we substitute Eci. (26) in Eg. (25), we finally
obtain for the one-particle Green's function

i@„—,G.,~. (f-f')=~6(i-f')&[sf.(f), ~;"(f')l&

«[.;.«), Wf)]; ".«')»,
which for the Hamiltonian (16) becomes

Grcs gs'(f f ) 5(f f )5RI'5ss'+ ~f Gf stls'(sf
~ d (g)

+3K Z V '(k181, k383, —kS)
kfSf k&S

X«A~;s, (f)Af3.3(f); ~ .(f ')&&

s

+ 4 Z Z 2 V (klsly k383 y k383y ks)
kfSf k2SP k3$3

x «Af...(f)A3„3(f)A33.3(f); s4. ~ (f)» (24)

M(~)=3 g Q
~

V"'(k,s„k38„-kS)~'
kf Sf kpS3

X. E(klsl k383 &)

p 12 g V&"(k,s„-k,8„%8, -%8)NI,„,. (30)
kf sf

M-„, (&u) gives the effect of perturbation on the self-
energy of one particle. Explicit expression for
M;, (&u} can be obtained by writing

M;,{~+ie}=&f, (~) —ii";,(~).
The real part of M-„,(&u+ ie) represents the change
in the value of the frequency of kth mode in the
sth branch, while the imaginary part gives half-
width of the response function. From Eqs. (30)
and (31), we finally obtain
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h.„,((())=18(P p g
~

V' '(k, s„kasa, —ks)~
k1$1 Qs2

(81+ (d2X ' N1+N2 2
CO —~e1 y 4)2~

ductivity is given by

ice PK«—- lim
O g Ql v1s vins ( 1s&44

0 ks qs'

and

(d1 —()t) 2+ (N3 —Ng) 3 ( )3

+12 g V '(k)s» —k)s»ks, —ks)N1»,
k1 s1

(32)i

1 2
4 w4)0

ghto1 gh~

(s'""&-1) (s'""3-1)(~,- ~3)(~, —~3- «)

(1) (1)
x [G), ~ ((d) + if) —G )", g ((()) —ie}]

1"1 ((u) =18)Te((d) 5 Z
I

V(3)(-ks, k)s( kasa) I'
k1s1 k2s2

x [(N, +N)( +~3) 6(&-(~+~3)')

+ (N, - N, )(~) - ~3) 6(&- (~) - ~3)')],
(33)

in which . (P stands for principal part and

e (~) = 1 for (() & 0

= —1 for ~&0.

With this result Eq, (29) reduces to

(1) . (&&x [G ~,, -„,((u3+ ie) —G,,. ;,(&u3 ic-) ] . (38}

Interchanging , and 2 and using the relation

((d& —(03 —je) —((()& —(()3 + if) = 2)l'i 5((4)( —(da),

(39)
Eq. (38) reduces to

—h n'k~P2 2

Z„=
O

lim Z Zv;, v;, . ~„.,~;;
ks its'

8 ttfl(d

()3&a 1)2

G
()

( )
k46

2v[(d-e;, (~)+i&-„,((d)] ' (34) (1) (1)
x [G f,„-,.(&+ ie) —G1„;q(& —ie)]

where &;,((d) =e-„,+&-„,(~) is the perturbed fre-
quency of the 4th mode.

Similarly, if we proceed with the equation of
motion of Green'sfunctions (23b)-(23d), and follow
the procedure as used above, we obtain

~ks~k-g ~ss1

7([& —)i (ks)+ 2i~f,I"„,((u)] '

G
(3)

( }
Its k-4( s' s)

)([&u' — )73(k s)+ 2i~-„,.I' ,1, ( (d)]
'

(36)

(4) (, ~ 6k+( 6ss(
)([~'- r/3!(ks) + 2i~ „-,&-„,(~) ] '

(37)

where

(ks) = (4) k;+ 2(L)k, d )„((L)).
Having formulated the Green's functions, we can

obtain the spectral-density function by using the
relation (17), and the correlation function from
Eq. (16).

IV. THERMAL CONDUCTIVITY

We evaluate separately the diagonal and non-
diagonal contributions to the thermal conductivity.
Substituting the values of the correlation functions
occurring in Eq. (13) with the help of (16), (17},
and (34) and performing the integration over i and
A. , the diagonal contribution to the thermal con-

(1) (1)x [Gg,, 3,(~+ ie) —Gg,. -„,(~ —is)] . (40)

Substituting the value of G "'((()) from Eq. (34), we
obtain

ks

I ll
+ond +ond + +ond u (43)

where

1-.,(~)
(s'""-1)' f[~-e;.(~)]'+1'-„,(~)]' '

(41)
For small values of Fg, (~), the integrand in Eq.
(41) is peaked a.round ~= e-„, and the integration
gives the thermal conductivity as

g2 p p2 e &&etwas ]
3Q ~ ks fs (s ~3sfs —1)3 21'

(42)

Equation (42) gives the familiar expression for the
relaxation time of kinetic theory for thermal con-
ductivity as obtained by the Boltzmann transport
equation and discussed by Carruthers2 and Kle-
mens. 3

The nondiagonal contribution to the thermal con-
ductivity can be obtained in the similar way. Us-
ing Eqs. (14), (16), and (17) in (9), X„,can be
written as
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Sk~P p
1 2Q -~ ~

~
~4s yC/sgsj ks I(s)%SS' ggsgSst

&S Sg WS~

he

(
Nu )2

X [ G'k's'g„(~+is) —G'-ks'S s ((u —fe)]

(3) (3)x [ G k,.„-,;, (&+ ie) —G-k, , ;„,(~ —ie)]. (44)

Withthehelpof Eqs. (35) and (36},Eq. (44) be-
comes

4A k~P
3 Q ~ ~ +kss' VIYys)s( ks gpss

kss If) sy sg
SAS Sj 9 Sy

8 ghu
d~

(
Sk~ I)k ~k, +j„5tk, 4s, 5ss,

I"-„.(~) I'-k~ (~) 48'ys p'
, ([ k qk(k )]8+4~) (~) y) ([(gk g 2(k 1)]k 4(gk Pk (~)} 3 fl kss' + -kss' ts -»

SOS'

(s'""-I)' ([ '-rl'(»)]'+4 '„;I'„-,( )h[ '-6'(k ')1' 4 '" I'-.( )l
'

If we use the symmetry relations

&ASS = VZSSs~ ~h = ~ fS ~

Eq. (45) can be rewritten

3 sQ;„, "'" I' I"„„(es""—1)3 1[(os —gk(ks)]k+ 4(u-„,i'kk, (&)J( [& —ri (ks')] + 4&„-~ I"„-,((o)]
'

SOS

(46}
Similarly, we have

3 sQ g„. "" ' ' 1„(e""-I) ([&u —q (ks)] +4uRI'- (&u)f([&u —q (ks')]'+4&u- I"- (&)]
'

SPS

(47)

Expressions (46) and (47) show that the nondiag-
onal contribution to the thermal conductivity comes
from modes of different polarization directions.
These equations give corrections to the Boltzmann
equation for the thermal conductivity. When the
anharmonic energy is small, one expects the diag-
onal element of the energy-flux operator to give
the major contribution to the transport of energy.
In the harmonic approximation, when the cubic and

quartic anharmonic terms are left out in the Hamil-
tonian (16), the nondiagonal part of the energy-flux
operator leads to zero contribution to the thermal
conductivity. Hardy6 has argued, based on clas-
sical treatment, that the contribution of Q„s to the

transport of energy is in general negligible in com-
parison to that of the diagonal term Q~. Express-

ing the phonon operators in Eq. (5) in terms of the
normal-mode variables qg, and p~ and treating the
latter as classical variables, expression (5) be-
comes an oscillatory function of terms whose fre-
quencies are the sum and difference of (d;, and co-„,
As a result, the average of the flux over many oscil-
lations becomes negligibly small. .
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Stress-Induced Band Gap and Related Phenomena in Gray Ti

8. J. Roman~ and A. Vf. Ewald
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The conductivity and low-field Hall coefficient of high-purity (Pl& -N~ 5 && 10~4 cm"3) and

lightly doped (2 & 10 ~AD ~ 2 & 10 ~ cm" ) z-type gray tin subjected to oriented uniaxial com-
pressions have been measured between 1.4 and 100'K. Stress (X) exceeding 3 & 10 dyn/cm2

wae achieved in both [001] and [111]orientations. Density-of-states expressions are developed
to account for the severe band anisotropies imposed by the strain in the normally degenerate
I'8 conduction and valence bands, and these are employed to determine the band splittings at
k=0 from the Hall coefficient of the high-purity samples above 15'K. Shear deformation po-
tentials of b = —2.3+ 0.5 eV and d = -4.1 eV are obtained by this procedure. The Hall coeffi-
cient of three high-purity sample~ below 10'K is analyzed to find the stress-dependent impurity-
ionization energy ED (X), and from the measured ED (y) for the highest-purity sample an inde-
pendent determination of 5 =- 2.4 eV is obtained if Ez (X) is interpreted as reflecting donor-
to-conduction-band activation. However, the measured ED(x) for this samp1e is also found to
be consistent with activation from the donor ground state into a D" band. The stress depen-
dence of the impurity mobility in hvo of these samples is explained in terms of 8ladek's model
for exchange jumping between filled and unfilled impurity sites. The piezoresistance of lightly
doped samples is attributed to the increased effectiveness of ionized impurity scattering caused
by a stress enhancement of the I'8 density-of-states mass.

The salient feature of the Groves-Paul band-
structure model of gray tin is the degeneracy of
the I"8 conduction and valence bands at k = Q. Like
the degenerate valence bands in other dia.mond
structures these bands arise from atomic p or-
bitals, but because of the pla, cement of the I'~ state
below 1 8 in gray tin and their interaction via k 'p.
the curvature of the light-mass valence band is
inverted. The thermal-energy gap is then fixed
identically at zero. Since this degeneracy is ulti-
mately a consequence of the cubic symmetry of the
diamond structure, the zero gap remains unaffected
by the application of hydrostatic pressure. How-
ever, the presence of a. directed perturbation in the
lattice structure, such as a uniaxial strain, reduces
the lattice symmetry and thereby destx'oys the
degeneracy at k=0. 3' With the correct sign of the
strain, a direct gap will be created, yielding a new
small-band-gap semiconductor in which the in-
trinsic carrier density is governed by the magnitude
of the applied stress.

In this paper we report measurements of the con-

ductlvlt'r and low-field Hall coefficient R(0) of
high-purity (Ng) —N~ 5 x 10 cm ) and intermedi
ate-purity gxay-tin single crystals subjected to
[001] and [ill] uniaxial compressions at tempera-
tures between 1.4 and 100 'K. Stress removes the
degeneracy at k= 0, but because the strain-induced,
admixture of higher bands (primarily I;) depends
on the angle between k and the strain axis, the split
energy bands become anisotropic, Ther efox e,
expressions which incorporate these anisotropi. es
are developed for the carrier densities in the [001]-
and [111]-strained I"; bands. These expressions
ax'e used to evaluate the energy splitting at k = Q

and the corresponding shear deformation potentials
from the intrinsic Hall coefficient of high-purity
samples.

The development of an energy gap between the
normally degenerate conduction and valence bands
permits the establishment of energetically isolated
impurity states in material of sufficient purity.
For the highest-purity samples studied here, the
existence of these states is infex'red from the stx'uc-
ture which develops in the high-stress low-tem-
perature Hall coefficient and from the pronounced


