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Utilizing the Korringa-Kohn-Rostoker method, we present straightforward procedures for
efficiently parametrizing experimental Fermi-surface data. Useful techniques, derived from
standard least-squares methods, are generated for fitting areas, cyclotron effective masses,
and pressure derivatives of areas, using as adjustable parameters, phase shifts, energy de-
rivatives of phase shifts, and lattice-constant derivatives of phase shifts, respectively. We

apply these techniques to recent noble-metal Fermi-surface data and demonstrate that the
quality of fit for the above quantities is highly insensitive to the assumed value of the energy
parameter used in the formalism.

I. INTRODUCTION

It has recently been suggested by Segal and Ham'
and demonstrated by Leea~ and Cooke, Davis, and
Wood~ and the present authorse that the anisotropy
of de Haas-van Alphen (dHvA) data may be ac-
curately parametrized utilizing as adjustable
parameters energy-independent partial-wave-scat-
tering phase shifts. The energy-dependent form
of the phase shifts, q, (E), characterize the scat-
tering of electrons due to the "muffin-tin" poten-
tial used in the augmented-plane-wave (APW)7
and Korringa-Kohn-Rostoker (KKR)~'9 methods of
calculating electronic dispersion curves.

The advantages of this method are several-fold,
but most important is the rapid convergence of the
formalism to allow accurate characterization of
the data in terms of a few parameters. For exam-
ple, copper data may be quite accurately fitted using
only three phase shifts corresponding to s, p, and
d angular-momentum states. This compares with
the seven nonphysical parameters used in the Fou-
rier-series techniques' ' for the noble metals. For
highly distorted surfaces, either Fourier-series
techniques'2 '4 or, if it is a closed centrosymmetric
surface, a series of symmetrized spherical har-
monics, " require many coefficients to describe the
anisotropy of a single sheet. Conceivably, a multi-
ple- sheet Fermi surf ace can be parametr ized using
a single set of three or four g, 's; we shall present
in a later paper results for fits for such metals, in-

eluding the effects of spin-orbit coupling.
The energy used to characterize the Fermi sur-

face in this formalism is measured relative to the
value of the constant potential in the interatomic
region, i. e., E=E~ —V»~, where E„is the Fermi
energy and V~» is the constant potential. Workers
have observed a nonunique relationship between the
phase shifts and the value of E that give reasonable
fits to dHvA data. Preliminary numerical studies
suggested that a family of phase shifts versus E
could be generated which give accurate fits to dHvA

data over a large range of E. Recent attempts to
resolve this ambiguity have been made'by Andersen'
and by Heine and Lee. " In Sec. III, we give strong
numerical evidence to support the contention that
the quality of fit to dHvA data is intrinsically E in-
dependent and that any E dependence is due to the
effects of truncating the order of the secular matrix,
i. e. , the lack convergence of the formalism result-
ing from the use of a finite number of phase shifts.

In Sec. II, we describe general techniques, using
the KKR formalism, for rapidly determining param-
eters from a given set of experimental data. InSecs.
III-V we describe specific procedures for calculating
theoretical quantities, either using a first-principles
potential or as functions of adjustable parameters.
In each section we present the results of the applica-
tion of the parametrization schemes to recent
data for the noble metals. Finally, in Sec. VI,
we present a summary and conclusions, while in
the Appendix, we describe straightforward pro-
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cedures for determining parameter uncertainties.

II. GENERAL TECHNIQUES

Although what we describe here has been applied
using the KKH formalism, the techniques are equal-
ly applicable to the AP% method. In either case,
one is faced with determining the root E(k) of the
determinant of the secular matrix, which for the
KKR case is given by9

deti MI = det id, ,„, , (k, E, a)

+VER„. 5 „,cori, (E, a)i =0, (l)

where E is the energy relative to the muffin-tin
zero, i. e. , a = WE is the electronic wave number
in the interatomic region. In subsequent discus-
sions, we will refer to E as the energy parameter.
The A, , 's are "structure constants"9"8 which
are functions only of E, 0 vector k, and lattice
constant a, while the effects of the muffin-tin po-
tential are introduced separately through the partial-
+ave-scattering phase shifts g„which are func-
tions onl. y of E and a, The method usually used in
determining the relationship between E and k is to
vary E on some fine grid for a fixed k and graphi-
cally determine the value of E which gives a root.
However, if we diagonalize the secular matrix M,
then its determinant is simply the product of the
eigenvalues II,X"). %hereas the energy dependence
of tile determinant 18 that of a. polynomial of the
order of the dimensionality of the secular matrix,
the eigenvalues are very smooth functions of the
energy parameter; thus, it is better to deal with
the appropriate eigenvalue rather than the deter-
minant.

For a fixed value of R, an eigenvalue near zero,
say the jth, may be expanded in a Taylor series
and the correction to the energy necessary to give
a zero eigenvalue predicted by using the Newton-
Raphson'9 technique giving

This process is then iterated until the predicted cor-
rection is less than some predetermined value.
Similarly, this same procedure may be used in
tracing constant E contours. The predicted correc-
tion to the k vector is given by

&u„= —~'"(k)/(&, ~'*'). , „- 6,
where &k„ is the component of the correction along the
unit vector A and g is a collection of g, 's. The orbit-
tracing procedure has been given elsewhere, ' '
Since the behavior of &c" near a root is quite lin-
ear, the convergence is very fast, eliminating the
need for higher-order terms in the Taylor expan-
sion.

Since M is a Hermitian matrix, analytic deriva-

tives for the above procedures may be easily ob-
tained using the Hellman-Feynman theorem. 3 '3'

The appropriate derivatives are then given by

yCI)
Ci)

where F"is the eigenvector corresponding to the
eigenvalue ~"), i. e. , M ~ 7'"=&'"V'". Itis tobe
noted that the components of 0''" can be used to
determine the ratios of the coefficients of the KKR
basis functions.

The structure constants are calculated using
techniques similar to those used by Davis. 33 Their
derivatives with respect to E and k are performed
analytically. The convergence of the resulting
sums are comparable to the structure-constant
sums except nea, r a free-el. ectron singularity, in
which case, the singularity is squared, thus the
same values of the Ewald parameter used in evalu-
ating the structure constants may be used through-
out. In general, these sums were carried out to
six significant figures.

Orbit tracing is facilitated by the fact that the
numerical ordering of eigenvalues for a given k
corresponds to the numerical ordering of energy
levels, i. e. , if Xc") corresponds to level n of a
numerically increasing set of energy levels, then
A.
""corresponds to level n+ 1. Thus, in calcu-

lating orbit properties of a given sheet, one need
only consider the behavior of a Xc" of constant in-
dex j for all orbits on that sheet. The computer
codes are designed to compute only the jth eigen-
value and eigenvector. ~~ For second derivatives
with respect to the same or different variables,
equationssimilar to those of second-order-per-
turbation theory 0 can be developed; however, these
require all eigenvectors and eigenvalues of Kf.
This technique can be used to calcul, ate the elements
of the effective mass tensor.

For partial derivatives with respect to other
variables taken at constant ~ ", one uses the standard
rules for differentiating implicit functions. For
example, the velocity is given by

and the derivative of k with respect to g is given
by

Q „tf)

[n. (Y,X&"), , „-]. (7)
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Likewise, the partial derivative of k with respect
to lattice constant is given by

where k„ is the component of k along a specified
unit vector n.

We emphasize again that these same procedures
may be utilized for the APW technique and offer
computational advantages over other suggested
methods, ~4 mainly because only one eigenvalue
and eigenvector are needed at any one point in
the computation. The APW matrix dimensions
(& 30& 30) are, however, considerably greater
than the 9 & 9 usually needed for the KKR for-
malism.

The procedure outlined above allows consider-
able automation of both first-principles band cal-
culations and Fermi-surface data f itting. Orbit
tracing, cyclotron-mass calculations, volume in-
tegrations, and electronic-specific-heat calcu-
lations canbe carried out efficiently without ap-
proximating derivatives by finite-difference tech-
niques or without resorting to interpolation
schemes. It also offers derivative information
for use in the various interpolation schemes if
density-of-states calculations are needed for
general energies.

The experimental and calculated quantities in
the following discussion are denoted by Q

~ and
Qc(n), respectively, where n is a general vector
in a parameter space. Since adjusting parameters
until the Q (o.) most nearly equal the Q in the
least-squares sense gives the most unbiased esti-
mate of the parameters, regardless of the statisti-
cal distribution of the Q, we shall adopt the usual
mean-square deviation as a measure of the quality
of fit. Thus, the quality-of-fit functional is given
by

ima) through terms linear in the correction-vec-
tor components and thus predict the vector in
parameter space which satisfies the condition set
forth in Eq. (10). This gives

T ~ 6&+X=0,
where

(13)

and

(14)

In the case that the Q are linear functions of 5,
no iterations are required and one gets the above
equations with Bp set equal to zero. In either case,
we can solve for the unknown 6n or n by solving
a set of linear equations. More general techniques
for finding minima of nonlinear functions are avail-
able3'; however, we find that this simple approa. ch
suffices for two reasons. First, we are dealing
with few parameters. The matrix T becomes pro-
gressively more "ill conditioned" 6 as we add more
parameters and approaches a Hilbert matrix in

behavior, becoming quite singular and computa-
tionally difficult to handle with as few as five or
six parameters. Second, we have found that the
elements of T are positive definite, a result of
the fact that the derivatives of a given area with
respect to g, all have the same sign regardless
of E. For nonlinear dependence of Q~, we are,
in effect, approximating the second-derivative
matrix by Eq. (12); thus, we can successfully de-
termine a minimum in Eq. (9).

Constraints may be conveniently added to Eq.
(11) using the usual Lagrangian-multiplier tech-
nique, giving

where N is the number of data points and 8; are
weighting factors, usually taken to be inversely
proportional to the experimental mean-square per-
centage deviation of the Q ~~. For what follows, we
shall assume equal weighting and set 8', = 1 for all
data points.

For determination of the minima in Eq. (9), we
determine what values of & give a null derivative.
Thus, a minimum is determined by the condition

(15)

where the parameters are constrained to give

f (5) =0, and where A is to be determined, de-
pending upon the specific constraint. For non-
linear dependences of Q

~ on 5, Eq. (15) is to be
iterated until the predicted D@ is less than some
prescribed value. For the case of linear depen-
dence, 65 is replaced by 5 in Eq. (15) and only
one calculation is necessary.

III. AREAS

For iterative calculations, where the Q ~'s are
nonlinear functions of &, we wish to expand Q, in
a Taylor series about 5o (some point nearthemin-

As discussed in Secs. I and II, areas and their
derivatives may be conveniently calculated using
the KKR method directly and using Simpsons-rule
numerical integration. The calculated area corre-
sponding to the jth experimental area is given by
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A&c(a, E(a), g (a, E(a)) = 2 f j'p ~(8) d8,

and its derivative with respect to fj is given by

j!(»"'/8n). .~ „
(16) where I g»l & —,'n and where p» is the number of in-

ternal nodes in the solution to the radial Schrodinger
equation.

In an analogous fashion, the Fermi volume, that
volume contained within the Fermi surface, is
given by

where k, is a vector on the Fermi surface and in
the plane of the orbit perpendicular to the magnetic
field direction used in observing the corresponding
experimental area. Here and throughout the re-
mainder of the paper we will use scaled units such
that k vectors are expressed in units of 2v/a and
energy parameters in units of (2m/a)P, with corre-
sponding units for areas and volumes. The ele-
ments of the secular matrix are then unitless
quantities and, as a result, so are the X". As
before, g represents the collection of reduced
phase shifts and is in radians. Reduced" in this
sense means that the true phase shift ~» is given
by

&» =P»&+ &»

V(a, E(a), q(a, E(a)))= —', f f j'pp&(8, p) sin8d8dp,

(18)

while derivatives of V with respect to g are given
by

dV k~(8, p) (sA"/&rj), „-„
~

~

gp .p k~ ~ (V„jI~"),p „"

(»)
Equations (16)-(19)hold for general energy-depen-
dent $'s. If we are interested in adjusting the
phase shifts as energy-independent parameters,
while constraining the Fermi volume to contain a
prescribed number of electrons, i.e. , f(jj) = U(fj)
—Vp, the Lagrangian multiplier of Eq. (15) is
then given by

(2o)

where Vp for the noble metals is 2 in units of
(2v/a), and where (&V/jig) ~ b denotes thedotprod-
uct g& (&V/jjrj&) 5& for a general vector b.

In Table I we present the results of fitting six
experimental dHvA areas for each of the noble
metals. ~' The data for copper are those of Coleridge
et al. ,

~8 while the data for silver and gold are
those of Schirber and O' Sullivan, with the ex-
ception of the turning-point areas TP&»p). These
are obtained by correcting the data of Joseph and
Thorsen for silver and Joseph et al. ' for gold.
These corrections were determined by shifting
the B(happ) areas into agreement with the nuclear-
magnetic-resonance calibrated data of Schirber
and O' Sullivan. The calculations were performed
for several different values of the energy param-
eter. All integrals were calculated using Simp-
son' s-rule numerical integration using 1 -2 grids.
At a given value of E the g»'s were varied using
the techniques described in Sec. II until the pre-
dicted change in fj was less than some predeter-
mined value. This usually resulted in values of
-10 ' —10 ' for the phase-shift derivatives of the
error functional. Volumes were calculated by
using -600 vectors in the ~« irreducible wedge of
the Brillouin zone.

In Fig. 1 we present values of the root-mean-
square (rms) percentage deviation versus assumed
values of the energy parameter for the three noble

metals using three phase shifts (l „=2). While
shallow minima exist (relative to experimental un-
certainty) for silver and gold, quite a pronounced
minimum exists for copper. These curves were
obtained without invoking the volume constraint.
In Table I we present values for the volume [in
(2m/a)p units j for three energies. In all three
metals the volume exhibits a monotonic decrease
with increasing energy. With the exception of
silver, the volume passes through the correct
value of 2 near the minimum in the rms deviation
versus E curves of Fig. 1. In all cases the volume
is rather insensitive to the value of E.

The minimum for copper occurs near the value
of energy used by Cooke, Davis, and Wood' and
by Lee. The second energy for copper as listed
in Table I (Eon„) corresponds to the value used by
Cooke et al. ' By repeating the calculations using
l = 0, 1,2, and 3 (l,„=3) phase shifts we find that
the minimum corresponds to that value of the en-
ergy parameter that gives q3=0. Indeed, a pl. ot
of the type given in Fig. 1 using N phase shifts
appears to be nothing more than a measure of the
effect of the N+ 1 phase shift not included in the
calculation. The three open circles in Fig. 1 show
the rms error using l,„=3, while Table II dis-
plays values for the phase shifts and the resulting
areas. The above contention is confirmed by not-
ing the small shift of the l=0, 1, and 2 phase shifts
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upon adding an l=3 phase shift for E=Ec». Such
is not the case for E= 0. 3 or 0.9, where shifts are
considerably larger. We have not calculated the
volumes corresponding to the l,„=3 points in view
of the insensitivity of the volume to E and in view
of the agreement between inverted k vectors for

these parameter sets and those corresponding to
l,„=2 and ECDw for which ~o = 1.9995. Compari-
sons between the inverted k vectors are given in

Table III. Using a value of 1 part in 10~ for a
representative experimental uncertainty for cop-
per~ the uncertainties in the g, were calculated

TABLE I. A comparison of experimental dHvA areas for the noble metals and the corresponding values obtained by the
least-squares-fitting procedure described in the text using l =0, 1, and 2 phase shifts. The lattice constants given by
Halse (Ref. 11) were used in converting experimental data to units of (2p/a) . The orbit designations are as follows:
B, belly; R, rosette; D, dogbone; N, neck; and TP, turning point [absolute minimum in the area versus field-direction
dependence in the (110) plane). Directions normal to orbit planes are given by subscripts, except TP&iio& where the nor-
mal lies in the (110) plane at angles of 16.5, 18.1, and 22. 0 deg with respect to (100) for copper, silver, and gold,
respectively.

(4„2/a2)
~~8
x 103

3=0, 1, 2

(rad)
Vo

{sr'/a') {4~'/a')

Copper

D&iio& T~(iio)

0.30000
(O. 2555O Ry)

0.43 0.76457
0.23413

—0.02189

2.0011 1.8810 1.8238 0.77262 0.06823 0.78769 1.8706

0.690398
(0.58794 Ry)

0.90000
{0.76643 Ry)

0.094

O. 34

0.00670
0. 10073

—0. 13576

—0.27521
—0.05255
-0.22944

1.9995 1.8821

1.9984 1.8830

1.8231

1.8225

0.77231

0.77209

0.06823

0.06823

0.78781 1.8695

0.78794 1.8686

Expt. 1.88190
(19)

1.82283
(»)

0.772285
(78)

0.068231
(6.3)

0.78722
(vs)

1.86948
(19)

Silver

0.35000
(O. 2336V Ry)

0.78 0.72574
0.21324

—0.02901

2. 0002 1.8972 1.8438 0.78632 0.03575 0.80639 l. 8864

0.75000
(o.5oov3 Ry)

0.47 0.000276 1.99821 1.8996
0.02913

—0.15435

l. 8433 0.78577 0.03575 0.80662 1.8851

0.90000
(0.60088 Ry)

0.61 —0. 19526
—0.08271
—0.22279

1.9972 1.9007 1.8429 0.78553 0.03575 0.80685 1.8843

Expt. ~' 1.9002
(24)

Gold

l. 8441
(2o)

0.7859
(12)

0.03575
(4)

0.8072
0.2)

1.8865

0.55000
(0.3679 Ry)

0.95000
(O. 63551 Ry)

1.20000
(0.80275 Ry)

0, 95

1.2

O. 63942
0.21803

—0.12198

0.02827
—0.05880
—0.33099

—0.25594
—0.25926
-0.48717

2.0036 1.9331

2.0008 l.9349

1.9982 1.9362

1.7965

1.7955

1.7947

0.80085

0.80023

0.7996

0.06128

0.06128

0.06128

0.77305 l. 8809

0.77319 1.8779

0.77330 1.8749

Expt. &~ 1.9379
(24)

1.7961
(20)

0.8004
(12)

0.06129
(8)

0.7743
(»

1~ 8792

Reference 28. "Reference 29. preference 30. Reference 31.
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FIG. 1. Plot of the root-mean-
square percentage deviation of the
areas using l~~=2 for the three no-
ble metals. The vertical bars rep-
resent average experimental uncer-
tainties. The open circles repre-
sent rms deviations for l~~ =3 us-
ing the rj& listed in Table II. Note
the differing scale factors for the
three metals. The solid curves
were obtained using a grid of approx-
imately 0. 05 for the range of E
shown for each metal.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 I .0
ENERGY PARAMETER (4V/o )

I I I I 1 I I l I I I I

0 O. l 0.2 I . I I .2 1.3

using the procedure given in the Appendix. Using
these uncertainties gives values of about O. 1% for
the k-vector-magnitude uncertainty, however,
agreement between orbit radii for different Evalues
is considerably better. Note that at E= 0. 3 the
rms uncertainty in the areas approaches 5 parts
in 10', about the limit of our computational pre-
cision, and, in view of the uncertainty in the de-
termination of the lattice constant, it is approach-
ing the limit of meaningful comparison.

It is clear that constraining the volume to accom-
modate the correct number of carriers is almost
unnecessary; indeed, the small deviation from 2

could be taken as experimental verification of
charge neutrality. In the case of silver and gold,
imposing the constraint has been observed to de-
grade the quality of fit somewhat; however, in
view of the shallowness of the rms errorminimum
in comparison with the experimental uncertainty,
we have not extended parametrization to $,„=3,
awaiting data of the precision of that of copper.

The computational evidence presented so far
seems to indicate an intrinsic energy independence
of the quality of fit provided adequate convergence
is assured. We have used four parameters to fit
six pieces of experimental information. If the

TABLE II. A comparison of the calculated areas of copper for fits using l=0, 1,2, and 3 (l~=3) phase shifts. Also
given are the areas for a value of E(EcDw) near the minimum in the rms error vs E curve of Fig. 1 for fits using l~, =2.
Phase-shift uncertainties were determined by the procedure given in the Appendix. The phase shifts for l~=3 corresponc
to the open circles in Fig. 1.

E
(4'�'/a')

0.30000

XJ$

l=0, 1,2, 3
(rad)

0.68755 (680) 1.88207
0.21989 (120)

—0.01946 (22)
0.00032 (3)

B

1.82294

8&100&
(4~'la')

0.772302 0.068230

D&iio &

0.787709

(f10)

1.86950

0.690398
(EcDw)

0.690398
(EcDw)

(l =2)

0.00697 (317)
0. 10082 (124)

—0. 13580 (55)
—0.00002 (32)

0.00670
0. 10073

—0. 13576

1.88213

1.88213

1.82306

1.82305

0.772320

0.772306

0.068232

0.068231

0.787815

0.787811

1.86952

1.86949

0.90000 —0.26137 (262) 1.88213
-0.04461 (133)
—0.23333 (72)
-0.00458 (73)

1.82308 0.77233 0.068229 0.787824 1.86947

Deference 28.

l. 88190 (19) l.82283 (19) 0.772285 (78) 0.068231 (6.3) 0.787722 (78) l.86948 (19)
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TABLE III. Orbit radii in units of (2~/a). These radii are measured from the center of the orbit in a plane normal
to the direction given by the subscript of the orbit label. For copper the values of E and g& (/m~=3) used are those given
in Table II. For silver and gold E and q& (E~=2) values are given in Table I. Halse's (Hef. 11) values for the lattice
constants were used in converting experimental data to {27(/g) units. Angles are measured with respect to the (100)
direction.

B&goo&

Energy
(~oo&
(110)

&100&
10
30o

(110)

&110)
&211&

Silver

Energy
(100)

'
&110)

(zoo)
15'
30'

(110)

(110)
(211)

35.26'
In (110)

plane

0.30000
0.44984
0.55974

0.82694
0.78484
0.75081
0.74321

0.14738
0.14736

O. 17306
0.67101

0.75
0.4366
0.6004

0.8196
0.7868
0.7588
0.7530

O. 1067
0.1067

0.690398
0.44987
0.55974

0.82692
0.78483
0.75088
0.74319

0.14738
0.14737

0.17308
0.67104

0.690398 (l = 2)
0.4498V
0.55974

0.82693
O. 78483
0.75088
0.74319

0. 14738
0.14737

0, 17307
0.67102

0.95
0.4585
0.5675

0.8777
0.7973
0.7475
0.7369

0.1397
0.1396

0.90000
0.44991
0.55974

O. 82698
0.78481
0.75088
0.74316

0. 14738
0.14736

0.17305
0.67106

(O. 8753')
(o.vsv4')
{o.v49v')
(o.v358')

Reference

&001)
(1T0)

0.1804
0.6612

0.1223
0.6774

number of parameters equals the numbex' of data
points, the rms error is, of course, identical. y
zero, therefore we must be careful in evaluating
results based on increasing the number of param-
eters unless we also increase the number of in-
dependent data points to obtain a true least-squares
fit. Assuming that this criterion has been met,
we conclude that any energy dependence of the
quality of fit arises from the lack of convergence
brought about by truncating the order of the secular
matr1x.

Additional. support in favor of intrinsic energy
independence is supplied by the empirical observa-
tion of Andersen. '6 He found that a simple tx ans-
formation from the g, to the dimensionless L,
= (r/R, ) dR, /Ch f, where R, (-E, x) is the solution
to the radial Schr5dinger equation, leads to the
determination of unique information concerning

the potential. The relationship between the q, and
the L,, can be shown to be given by

( )
n„,(~r) —coty, (E)j„,(a~)
n, (~r) —cottle, (E)j, (~r)

where z is the radius and ), an«s are the spherica
Bessel and Neumann functions, respectively. It
is to be remembered that the energy dependence
of the 'g((E) is now that hrought ahout hy fitting
a set of dHvA data at different values of the Fermi
level above t/'M». Thus, the only energy depen-
dence introduced is via the structure constants
(i.e. , the free-electron propagator or Green's
function) and not that of energy-dependentscatter-
ing. By plotting the radius dependence of Eq. (21)
for different values of E and the corresponding
g, (E), one finds a, value of r, say 8„ that removes
the E dependence of I., (E). This f-dependent ra, -
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dius and corresponding LI(SI) can be used to pre-
dict the E dependence of the riI by solving Eq. (21)
for cot@,. In Fig. 2 we present the E dependence
of III as determined in this fashion. The f phase
shift for copper is plotted using the expanded
scale on the right-hand side of Fig. 2. It is to be

0.0 O.I 0.2 03 0.4 0,5 0.6 0.? 0.8 0.9 I.O
ENERGY PARAMETER (4II /a )

FIG. 2. Plot of g&(E) using Eq. (23.) and the values of
L, and S& given in Table IV. For copper the l ~=3 val-
ues were used, while l~ =2 values were used for silver
and gold. Phase shifts predicted by these curves differ
from those in Tables I and II by amounts not resolvable
on the scaled used. The Friedel sum is also plotted
(states/atom) using the same scale as for the phase shifts
(rad).

noted that rI, (E) approaches zero for values of E
not only near ECD„but also for lower values of E
where the rms deviation shown in Fig. 1 is quite
large. It is to be noted that the sensitivity of the
areas to g, at low values of E is quite high, e. g. ,
BA/Bri, at E= 0. 3 is ten times larger than at Ecn„.
It appea, rs, then, that the deviation of the rms curve
from the value at the minimum is roughly propor-
tional to some average over data points of the
quantity ri, BA/sq, .

In Table IV we present values for S, and I,, for
the three noble metals. The values of S, deter-
mined are comparable to the Wigner-Seitz radius
S„8 (the radius of the sphere of unit-cell volume).
Ideally, parametrization schemes should have the
property that the addition of more parameters not
affect the values of the parameters already deter-
mined. We have shown that in the case of the g„
adding p, shifted the g, of lower l by amounts rough-
ly proportional to the importance of g, at thatvalue
of E. We note that this shift affects the values of

S, and I., determined as shown in Table IV for
copper. Andersen" further proposed that a l-de-
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s,

0 2.38 —1.48
1 2.680 —l.211
2 2. 965 0. 820

~r

Copper Sws = 2 ~ 661
0.769
0.842
2.32

YA&I E IV. Values for Sws, 8&, L&, and o'& for the noble
metals. Atomic units are used.

formation used to determine starting values for
further iteration of q, at energies well removed
from the original values. If there is considerable
variation in the rms deviation compared to the
experimental uncertainties, then the data probably
warrant the addition of higher l values.

IV. CYCLOTRON EFFECTIVE MASSES

0 2.270
1 2.643
2 3.087
3 2.84

-1.310
—l. 182

0.459
—0.558

Copper Qs = 2.661

0.769
0.845
2.24
0.767

Silver Sws = 3 ~ 00

0 „=3)
The cyclotron effective mass, given by (1/n)

x (dA/dE), maybe calculated from the expression

m,* (p, E(a), j(a, E(a)))

(22)
0 2.66
I 3.04
2 3.34

-1.595
—1.149

0.708

0 2.580 —2. 140
1 3.015 —1.279
2 3.455 1.457

0.706
0.727
2.06

Gold Qs =3.002

0.805
0.765
1.97

where we are considering the quantity correspona-
ing to the jth experimental mass. There are two
contributions to the energy derivative of ~'" given
by

pendent free-electron wave number n, be defined
by setting

Li = —&PiA~,i(+iS~)/A (+Jr)
i. e. , those values of o.',S, such that n, (o.',S,) =0.
Values of this parameter are also given in Table
IV. It is seen that n, is less sensitive to the ad-
dition of g, than are the S, and L, .

Values of the Friedel sum rule are also plotted
in Fig. 2 for the three noble metals. These curves
all follow the general trend of passing through ap-
proximately one state per atom for values of E
= E~ —V„~~ of roughly one-third the free-electron
energy, E~~, while approaching zero for E =E~. '7'3

The values of S, and L, given in Table IV may be
used to generate the values of 7i, (E) (as was done
for Fig. 2) for use in calculating pseudopotential
matrix elements'7'3~ using the APW formalism or
the Ziman variant of the KKH technique. While
the physical and highly qualitative arguments of
Heine and Lee~7 shed some light on the origin of
the energy independence, the L, transformation
allows the determination of unique parameters
concerning the crystalline potential, although it
is not clear at this point how this information can
be used in a practical calculation involving a first-
principles muffin-tin potential. From the view-
point of inverting experimental data to obtain k
vectors, the L, transformation has considerable
utility in aiding the determination of the energy de-
pendence of the quality of fit. Fits at neighboring
values of energy canbe made in order to determine
values of S, and L, . From these values the energy
dependence of the g, can be predicted and this in-

(23)
The cyclotron mass can then be expressed direct-
ly in terms of the phase-shift energy derivatives
to give

(24)

where

Likewise, the energy derivative of the volume is
given by

dE BE -„&'g

Using the expression for the density of states n(E)
= [2/(2v)sj (dV/dE) one can compare calculated values
of dV/dE to those obtained from specific-heat mea-
surements.

In calculating bare-band cyclotron effective
masses, the (q~)e„ND may be calculated directly
from the defining expression for the phase shifts
given by Eq. (21) evaluated at R„ the muffin-tin
radius. The energy derivatives of L, (R„E) may
be readily obtained. 3 Alternatively, for the pur-
pose of parametrization, the g~ may be used as
adjustable parameters to be used in fitting cyclotron
mass and specific-heat data. In this case, the
linear dependence of the calculated mass on g~ en-
ables one to solve for the g~ that give aleast-squares
fit to the experimental masses by once solving the
linear equations defined by Eqs. (11)-(14)with @0
= 0. All quantities are to be calculated for the fixed
value of g that gives a best fit to the experimental-
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area data, and, as a result, it is a trivial process
to carry along the calculation parallel with the
area fits.

In fitting mass data, one may wish to constrain
the Ija to force agreement of d V/dE with the experi-
mental value for the density of states dVO/dE. For
this case, the Lagrangian multiplier in Eq. (15) is
given by

dP dVO dV

where

f(~"= dE ""-dE'.

In Table V we present a comparison between the
experimental cyclotron effective masses for the
noble metals and the corresponding values obtained
by the least-squares-fitting procedure. For copper,
the calculated values fall within the experimental
uncertainty of the data of Coleridge and Watts,
with the exception of the dog-bone orbit D&»0&. The
quality of fit was not improved upon going to l = 3.
Using the specific-heat data of Martin, "we calcu-
late values of dV, /dE for all three metals. In the
copper case, we apply the d Vo/dE constraint, ob-
taining values for the masses lower than the ex-
perimental values by amounts considerably greater
than the quoted experimental uncertainty. For
silver, the calculated value for dVO/dE is consider-
ably greater than the experimental value, as is the
value obtained by Halse» using a Fourier-series in-
version scheme. The data for gold were taken from
the experimental results of Bosacchi et al. '~ and
were for angular orientations not lying in symmetry
planes. The calculated values given are predicted
values for the orientations shown and are compared
with calculated values obtained by Bosacchi et al. '~

The value for d Vo/dE is 1/o lower than the exper i-
mental value as compared with the 0. B%%d lower
value obtained by Bosacchi et al. '~ using approxi-
mately the same data for fitting. The insensitivity
of the quality of fit on the assumed value of the

energy parameter is again apparent for copper
as for the area case. This insensitivity was also
observed for silver and gold. In each case, the
value of fjused is the same as that used for the
area fits. We have not invoked any assumption
concerning the "dynamical properties of quasipar-
ticle excitations of the system of interacting elec-
trons in a metal, " and yet the interpolation of the
experimental cyclotron masses, which contain
many-body effects, can be effectively carried out

using 'bare-band" quantities and the l-dependent
parameters fja. It is to be noted that the term

(8A/BE), „- is by far the dominant term, usually
contributing 75% of the total mass. Similarly,
the (SV/SE), -„term dominates the specific-heat
expression.

The inverted quantities resulting from the mass
fits are, of course, the "renormalized" velocities.
These quantities may be calculated from Eq. (6)
using Eq. (23) and the values for zjs contained in
Table V. In Table VI we compare values for VQ
with those of I ee, ' Halse, "and Bosacchi et al. ,

'
where we express V~E in free-electron units,

Note that by defining 1+ X(k) = v&(k)/v&(k),
where v& is the bare-band velocity and v& is the
corresponding renormalized value, we obtain

X(k) = ~ ~ &'ga I sE + s~ ' (jz)a~ND

(27)

where the difference between the experimental and
theoretical values of the parameters p~ is given by

I I
js ( qE)E XP T ( qE) BAND ~ (28)

This assumes that the energy derivative of the
phase shifts (zja)a„» can be calculated from some
I-dependent potential designed to give the yj that
are found in Table I for the area fits.

An alternative procedure is to define the cyclo-
ton mass" as

1+ X (k)
sAND E 0 ~ d8 ~l' (29)

where 0„""DEis given by

v" E= —(0 9") -/

and expand A(k) in a Fourier series for an open
surface, such as copper where translational sym-
metry' is required, or in a series of symmetrized
spherical harmonics for a closed surface. For
the noble metals, we use the Fourier series

X(k) = Q„C„S„(%), (so)

+ g C„M„, (21)

where the M„are given by

where the S„'s are sums of exp(zk ~ ffj) over the
lattice vectors 5z belonging to the nth star ap-
propriate to the fcc lattice. Equation (29) becomes

(
w',

) ( ~;).
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The masses are now linear functions of the new
parameters C„, while all other quantities are
evaluated at the g that gives a best fit to areas,
and the (&is)»» are calculated for the'adjusted
potential that gives the required g. This proce-

dure gives a direct means of calculating the en-
hancement factor 1+»(k).

We find that, for our purpose, the parametriza-
tion directly in terms of the (&iz)sz» is entirely
adequate for interpolating masses in the noble
metals as evidenced by the entries of Table V.
The success may be fortuitous because of the
small enhancement factor for the noble metals.
Application to other metals is, of course, needed
in order to verify the usefulness of this proce-
dure.

TABLE V. A comparison of experimental cyclotron effective masses for the noble metals and the corresponding values
obtained by the least-squares-fitting procedure described in the text. The values of the energy parameters and phase
shifts listed in Table I were used in calculating these masses. The masses used in the fit for gold were measured for
off-symmetry directions (Ref. 12), thus only predicted values are shown. Also shown are the values of dVo/dE obtained
from specific-heat data (Ref. 35).

E
(4m'/a')

7/g

l=0, 1, 2
(a2 rad/4g2)

d Vo/dE
(27(./a)

B&ioo& B&111&

Copper

R&~00&

(m*/mo)
TP(110&

0.30000

0.690398

0.690398
(constrained)

0.90000

0.90000
(constrained)

—0.9885
1.14107

—0.07617

—0.1993
0.4076

—0.01654

—0.1956
0.4082

—0.03800

—0.0551
0.2996
0.0398

—0.0533
0.3001
0.0192

Kxpt. +

6.932

6.797

6. 891

6.797

6.797
+ 0.034

1.350

1.353

l.327

1.356

1.337

1.348
+ 0.015

1.358

1.357

1.325

1.357

l.334

1.359
+ 0.006

1.305

1.308

1.282

I.310

1.292

1.305
+ 0.006

0.457

0.456

0.452

0.456

0.454

0.455
+ 0.006

1.274

1.274

1.253

1.274

I.259

1.290
+ 0.006

I.332

1.327

1.299

1.322

1.303

l.321
0.006

0.7500

0.9500

—0.9534
0. 1827

—0.1013

Expt. gc

Halse~

0.0799
0.3478

—0.3106

5.222

4. 940
+ 0.025

5.014

5.283

5.338
+ 0.034

0.940

Q. 935
+ 0.005

0.938

I.147

Silver

0.948

Q. 94
+ 0.01

0. 940

Gold

1.060

1.072

1.08
+ 0.01

1.08

I.025

0.303

0.37
+ 0.01

0.39

0.2781

I.017

1.03
+ 0.01

1.031

0.9756

0. 929

0.93
+ 0.01

0.925

1.0300

Bosacchi eg a$. e 5. 295

~Reference 35. 'Reference 36.

1.133

cReference 37.

1.067 l.013

Reference 11.
0.2798 0.9643

'Reference 12.
1.0362
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V. AREA-PRESSURE DERIVATIVES

In calculating the effects of hydrostatic pres-
sure upon the electronic energy bands of a metal, '
we need to know the total change in the Fermi en-
ergy produced by a change in the lattice constant.
Since the Fermi volume must remain invariant
under a change of a, the total derivative of V with
respect to a must vanish [remembering that V is
in units of ( 2)/)a)']. lf we consider the volume V
= P'(E(a), q(a, E(a))) and calculate the total deriva-
tive dE/da using Eq. (25), we get

If we consider the deformation of a point on the
Fermi surface under the constraint that the new
k still satisfy the secular equation at the new en-
ergy, where A") = &")(E(a), )I(a, E(a))), we obtain,
using Eq. (8),

Bp, -(By«)/BE)
& &(dE/da)+ (BX")/Bq), -„~ [(8q/Ba)s+ (Bq/BE), (dE/da)]

~a ) (i) k, . (0,~«)). , „-
(33)

Note that the dimensionless ~"' does not explicitly
depend upon a.

In complete analogy with previous methods of
calculating derivatives of the area with respect
to E and g, we can also calculate the area deriva-
tive with respect to lattice constant dA, /da= f~~'4,
x (dk, /da) de. Using Eq. (33), we get

dA, A, , dE 8A ~

(34)

The experimental values for dA, /da may be ob-
tained by using the compressibility y= (- I/V, )
x (dy, /dp), where p', is the sample volume; we then

get

1 BA)E 3 1 dA 2
A. ~ ea ay A. dp a (35)

where the term 2/a accounts for the scaled units
of A„(1/A) (dA/dP) is the experimental logarithmic
pressure derivative and p is the pressure. The
quantity BAs(/Ba is a measure of the rate of area
distortion relative to the Brillouin zone and is zero
for the free-el. ectron case.

In calculating dA, /da from "first-principles" po-
tentials, the quantities (8)I/Ba)s may be calculated
by using the Mattheiss4' procedure by constructing
the muffin-tin potential for several different lattice
constants. The phase shifts at each lattice constant
can be calculated using Eq. (21) and (8j/Ba) s de-
termined. If the Fermi volume has been determined
at zero pressure, then the quantity dE/da can be
calculated, since every quantity in Eq. (32) is
known. The area derivatives with respect to lat-
tice constant are then given by Eq. (34).

Alternatively, the ri, =-(Bf/Ba)~ can be used as
adjustable parameters. To facilitate the param-
etrization, we note that families of q, versus the

TABLE VI. Fermi velocities in free-electron units
for those values of E, q, and gz listed in Tables I and V.
Velocities from the inversions of Halse (Ref. 11), Lee
(Ref. 3), and Bosacchi et aE. (Ref. 12) are also given for
comparison.

0.30000
0.690398
0.90000

Lee
Halse"

0.75000

Halse"

Angle from (100) in (100) zone
0' 15' 30' 45 VNECK

Copper

0.698 0.772 0.744 0.720 0.413
0.687 0.776 0.744 0.714 0.413
0.680 0.779 0.744 0.709 0.413

0.704 0.762 0.722 0.706 0.413
0.66 0.78 0.74 0.70 0.41

Silver

1.002 1.106 1.075 1.036 0.366

0.97 1.11 l.09 1.05 0.35

Gold

0.90000 0.726 l. 027 0.905
Halse" 0.80 1.01 0.89
Bosacchi et al. ~ 0.798 1.033 0.876

~Reference 3 . "Reference 11.

0.811 0.643
0.85 0.62
0.827

Reference 12.

energy parameter E, such as in Fig. 2, can be
made for a given strain state of the crystal. If
me maintain a fixed energy, say Eo, while strain-
ing the crystal, then the vertical displacement of
a given g, curve along the E, line is given by
Bq, (Eo) = (Bq,/Ba)s Ba. The corresponding change in
the area is then &A= (BA/Bg), ~ ~ (Bq/Ba)s Ba.
Thus, if we take advantage of the insensitivity of
the quality of fit (assuming that it still holds for
the strained state), then the dE/da term can be set
equal to zero. Since E is in units of (2))/a)~, ttus
is equivalent to free-electron scaling, which when
inserted into Eq. (32) gives the constraint
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TABLE VII. A comparison of the experimental logarithmic pressure derivatives of Schirber and O' Sullivan (Ref. 29)
and the corresponding values obtained by the least-squares-fitting procedure described in the text. Also shown are
values obtained by the inversion technique of Bosacchi et al. (Ref. 14). The values of E and q used are those given in
Table I. Values for the compressibility were taken from Ref. 42 for copper and Ref. 43 for silver and gold.

E
(4m'/a')

aq,'
l=0, 1, 2

(rad)
B&11i& R&top&

(d lnA jdp in 10 4 kbar ~)

Copper

TP (]go

0.30000

0.690398

0.90000

0.7500

0.1096
—0.3704

0.0514

0.1049
—0.4242

0. 2036

0.1348
—0.4119

0.2710

expt. k

Bosacchi et al.

0.5775
—0.6029

0.2914

expt.

Bosacchi et al. "

4. 57

4. 57

4. 57

4. 60
+ 0. 2

4. 60

5. 59

5.6
+ 0.2

5.61

4. 26

4. 28

4. 25
+ 0. 2

4. 27

Silver

5. 18

5.1
0.2

5.34

4.61

4. 63

4. 30
+ 0.3

4.31

5.31

5.2
+ 0.3

5.27

16.8

16.4

16.3

18+ 2

18.97

61.2

50
+ 10

59.8

4.06

4. 07

4. 08

4. 0
+ 0. 2

4.01

4. 76

4.4
+ 0.3

4.4

4. 49

4.49

5. 52

Reference 29. "Reference 12.

The Lagrangian multiplier is then given by

&V
q ~V

&
~V

In Table VII, we give a comparison between cal-
culated logarithmic pressure derivatives of the
area obtained by adjusting the r), and the experi-
mental data of Schirber and O' Sullivan. ~9 Again,
the quality of fit is highly insensitive to the assumed
value of the energy parameter.

For the case of gold, we note that the inversion
technique fails for X&»» area derivatives in partic-
ular. This failure can arise from two possible
sources; either the lack of convergence as a result
of using only three phase shifts or the failure to
include spin-orbit effects. The latter is probably
the most reasonable, since the nonrelativistic
first-principles calculations of Schirber and O Sul-
livan using l = 3 also fa.iled for gold. We shall re-
port, in a later paper, the results for gold, including
the effects of spin-orbit splitting„

It is implicit in the above analysis that we are
limited to parametrizing linear dependences of
the areas upon lattice constant. Using Eq. (33) and
the fact that dE/da= 0, we can calculate the anisot-

ropy of the 0 vector distortion in this linear ap-
proximation. In Table VIII we present values for
(a/k) dk/da (evaluated at zero pressure) for a limited
number of k vectors in the (100) zone, as well as for
the neck. These values do not include the effect of
free-electron scaling. Due to the poor quality of
fit for gold, we have not presented values for this
metal. We compare our values for copper with
values obtained from the work of Davis, Faulkner,
and Joy. ' These approximate values were obtained
by using their tables of k vectors versus lattice con-
stant for the three values of the lattice constant that
they used in their work.

VI. SUMMARY AND CONCLUSIONS

In the previous sections we have demonstrated
that derivative information may be readily extracted
directly from the elements of the secular matrix.
We have also shown how this information canbe used
to give efficient algorithms for parametrizing ex-
perimental Fermi-surface data, using phase shifts
and their derivatives. The quality of fit resulting
from these parametrizations has been shown to be
highly insensitive to the assumed value of the en-
ergy parameter while still satisfying various con-
straints.
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TABLE VIII. Value for (a/k) dk/da using values of the
parameters q~' given in Table VI. These values do not
include the effect of free-elect;ron scaling.

(4~'/a')
Angle from (100) in the (100) zone
0' 15' 30' 45' Neck

Copper

0.30000 —0.250 —0.005 + 0.152 +0. 195 —2. 58
0.690398 —0.251 —0.009 + 0, 146 +0.190 —2. 50
0.90000 -0.250 -0.005 +0.145 +0.191 —2.47
Davis et al. -0.300 +0.223 -2.12

Silver

dependent "pseudopotential" that gives the proper
scattering phase shifts to fit experimental Fermi-
surface areas, the proper energy derivatives of
the phase shifts to fit cyclotron-mass data and the
proper lattice-constant derivatives of the phase
shifts to fit experimental area-pressure-derivative
data. The rather limited objective of providing
a consistent framework for the complete charac-
terization and inversion of Fermi-surface data
has been reached. How the resulting parameters
can be used to improve our knowledge of the crys-
talline potential is yet unclear.

0.75000 —0.242 +0.034 +0.236 0.295 —8.97 ACKNOWLEDGMENTS

Using the high-precision'dHvA data of Coleridge
et al. ~8 for copper, we have presented the results
of careful and accurate numerical studies that
suggest that the independence of the quality of fit
upon the position of the Fermi level above V~~
is based on an intrinsic mathematical property of
the formalism. It can be concluded that any ener-
gy dependence observed in the rms deviation of the
areas versus E is due to truncation of the secular
matrix.

It has also been shown that cyclotron-effective-
mass anisotropy can be characterized by using the
energy derivatives of the phase shifts as adjustable
parameters. The values of these parameters that
give a best fit to the masses were shown to give
values of the density of states at the Fermi energy
that are in reasonable agreement with experimental
values obtained from specific-heat measurements,
with the exception of silver where high-precision
cyclotron-mass data are not available.

Extending this parametrization philosophy to the
area-pressure derivatives has been shown to be
straightforward, using the lattice-constant deriva-
tives of the phase shifts as adjustable parameters.
Using the derivative information available, it was
shown that the rate of change of energy necessary
to maintain a constant Fermi volume under a change
of lattice constant can be easily calculated. First-
principles calculations of the effects of hydrostatic
pressure on the Fermi surface can be very easily
done without the need for interpolation schemes
or finite-difference techniques.

The failure of the nonrelativistic interpolation
scheme to a,ccount for the area-pressure derivatives
in gold is, we believe, rather gratifying in view
if the failure of the nonrelativistic first-principles
calculation of Schirber and O' Sullivan. ~9 Allowing
complete freedom of the dg, /da to account for the
experimental data allows one to separate the effects
of the potential from the effects of, say, adding
spin- orbit coupling.

It is now clear that it is possible to define an l-

APPENDIX

Estimates of parameter uncertainty are easily
calculated using quantities already determined in
the fitting procedures described in the text. If
we assume that the errors incurred in the mea-
surement process are independent, then the rms
uncertainty in parameter n, is given by

a- i/8
grms

SQ& (Al)

where &
' is the experimental uncertainty associ-

atedwiththe Q&e. Estimates of Bn, /BQs may be de-
termined by requiring the derivative of the quality-
of-fit functional of Eq. (9) to remain zero under
small changes in the experimental quanties. We
then get the set of linear equations:

85R+T ~ =0, (A2)

where

(Q E)N Qt Qg
85 BQ

(AS)

and

(A4)

For linear dependence of the Q, on o., these equa-
tions are exact. For nonlinear dependence, we
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have neglected the term 8 Q, /(()o', ()o,'&), i. e. , we
have approximated the second-derivative matrix
by(AS).

Once we have the 6', ', we can estimate the un-
certainties in the inverted quantities. The rms
uncertainty in the 4 vector, for example, is given
by

2 1/2
pm@ p ()rms

k eg 8g e (A5)

Similarly, uncertainties in the other invertedquan-
tities can be easily calculated if we assume that
the parameters are truly independent (zero co-
variance).
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