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The first-principles form factors of Harrison and Moriarty (HM) and the empirical form
factors of Fong and Cohen (FC) are investigated as a starting point for calculations of electron-
phonon (EP) coupling in noble metals. A compact representation of Harrison's pseudopotential
method for transition metals is presented. A theorem by Sham on the use of orthogonalized-
plane-wave-based pseudopotentials for EP matrix elements is expressed in operator language
and generalized to include a wide class of pseudopotentials, including Harrison s. With the
underlying principles justified, single-plane-wave calculations of the EP mass enhancement
and resistivity are presented. The FC form factors give results that are more nearly con-
sistent with experimental knowledge than the HM form factors. The discrepancy is traced to
the sign and magnitude of the d-wave interaction.

I. INTRODUCTION

There has been much recent interest in the
effect of electron-phonon (EP) interactions on the
electronic properties of the noble metals. Because
the Fermi-surface (FS) states contain relatively
little d character, it is tempting to use for the
noble metals the approximations that have been so
successful for the nontransition metals.

As a theoretical step in this direction, Harrison5
has extended the orthogonalized-plane-wave (OPW)
approach of Phillips and Kleinman (PK), giving an
energy- and angular -momentum-dependent pseudo-
potential with an / = 2 resonance in the region of the
d bands. From Harrison's formulation Moriartyv
has calculated first-principles values of the form
factor appropriate to scattering on the Fermi sur-
face. We shall refer to these as the Harrison-
Moriarty (HM) form factors. They differ from
nontransition-metal form factors in having a hump
due to the repulsive interaction above the l = 2 reso-
nance.

As an empirical step in the same direction, Fong
and Cohen have succeeded in adjusting a nonlocal
model potential that reproduces experimental fea-
tures of the band structure of copper, using a
secular equation of 140 plane waves. Their model
potential consisted of a local potential similar in
shape and magnitude to nontransition-metal form
factors, and a nonlocal d-wave term that is large
in the region of the g bands, but very small for

scattering between plane waves of wave vector
equal to k~. This d-wave term is attractive
throughout phase space for elastic scattering, so
the form factor looks rather different from that of
HM. Preliminary results of similar calculations
for silver and gold have been supplied. The re-
sulting form factors will be referred to as Fong-
Cohen (FC) form factors.

The principal advantage of a pseudopotential
formulation of energy bands is the possibility of
using the pseudopotential to calculate other prop-
erties of the metal [such as electron-phonon (EP)
coupling] in low order per-turbation theory. In
this paper, such a calculation is attempted in the
lowest order of approximation by using single plane
waves as pseudo wave functions and neglecting the
distortion of the Fermi surface from a sphere.
Section III presents values of the mass enhance-
ment X and resistivity p that are determined by EP
scattering on the Fermi surface. This type of
calculation has been shown to be quite successful
for nontransition metals. The application of these
techniques to noble metals raises several questions.
First is the question of whether in principle a
pseudopotential that determines band structures is
directly applicable to the EP problem. This ques-
tion is explored in detail in Sec. II, where compact
formulations are presented in operator language
of Harrison's pseudopotential scheme and of Sham's
theorem 0 on the use of pseudopotentials for EP
coupling. The question is answered in the affirma-
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where P, is the projection operator onto core states
The SchrMinger equation for g can be transformed
into a pseudo Schrodinger equation for p:

(T+ V+ V~)@=ED, (2)

where V+ V„' is the pseudopotential and V~ is given

by

V„= (E -X)P, ,

where X is the "real" Hamiltonian T+ V. For tran-
sition metals, however, this scheme is inadequate
to yield rapid convergence for the d bands. Harri-
son suggested adding a set of atomic d functions
to the basis set in order to improve convergence.
The pseudo wave function y is still defined as the
plane-wave part of g; however, Eq. (1) no longer
holds since g is not orthogonal to the atomic d
states. Harrison's analysis at this point becomes
somewhat intricate and we will not repeat it. His
conclusions, however, can be expressed rather
simply in operator language. W'e define an opera-
tor

tive, provided that the potential and the pseudopo-
tential are sufficiently localized. The second
question is whether a single plane wave is an ade-
quate pseudo wave function for the noble metals.
This is related to the third question, namely,
whether Fermi-surface distortions are crucial in
calculating X and p. Clearly p is more affected by
this assumption than X, since X depends mainly on
the average scattering matrix element, whereas

p depends strongly on the scattering angle as well.
The author thinks that Fermi-surface distortions
should not have a major effect on the average ma-
trix element, to within perhaps 50% accuracy or
better. This study is most concerned with wave
functions on the (approximately) spherical belly,
where a single plane wave ought to provide a, rea-
sonable estimate. The results obtained for X and

p from the two different pseudopotentials differ by
about a factor of 6, which lies considerably out-
side the estimated errors. Thus in Sec. IV some
tentative conclusions are drawn about the different
pseudopotential form factors.

II. THEORY OF MATRIX ELEMENT

The usual (PK) pseudopotential approach begins
by choosing as a basis set the plane waves aug-
mented by atomic core functions, in the hope of
improving convergence. The resulting wave func-
tions g can be split into the part y arising from
plane waves (called the pseudo wave function) and

the remainder, arising from core functions. But
for conduction bands, g is orthogonal to core func-
tions, so P and p are related by

P„=P(E-R„) '(E-X), (4)

g= (1 —P„)y (6)

and the pseudo Schrodinger equation is the same
as Eq. (2), with the V~ given by

V, =(E-X)P„

where in the second line, V~ is written in an
explicitly Hermitian form by using the fact that
P and R«commute. Note that V~ has a resonance
at E = E„(in practice, E„=E~), where E„ is any
eigenvalue of X„ that does not coincide with an
eigenvalue of X. We are now in a position to in-
vestigate electron-phonon coupling. The approach
is identical to that of Sham, except that by using
operator language a simpler and more general
proof is obtained. We start by reformulating rela-
tions (1) and (6) between P and y into the form

(6)

This form is valid not only for theparticularpseudo-
potentials of PK and Harrison, but more generally
for any problem in continuum physics in which we

want to know the eigenfunction g (of energy E) of
a Hamiltonian K= T+ V and we are given the eigen-
function p (of the same energy) of a Hamiltonian
T+ V+ V~. Thus in particular it applies to any
pseudopotential.

Now we are interested in the electron-phonon ma-
trix element"

I= &g'I vvl g) . (9)

We are goigg to specialize to the case of elastic
scattering (for example, the states r/r and P' are
both on the Fermi surface) The dif.ficulty comes
from the fact that v is the localized potential of a
single atom, whereas we have dealt previously with
the total crystal potential

V=K; v(r -1) .
If we were dealing with the total potential [v V in
place of vv in Eq. (9)], we could use the identity

where P is the projection operator onto core states
plus atomic d states, which are all eigenfunctions
of K„. P~ has the same effect as P, when operating
on core states since X and X,„are assumed to be
identical in the core region, and similar enough
elsewhere that

(6)

holds for the atomic d state Id). Then the wave
function and the pseudo wave function are related
by
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We can go no further unless v„ is Hermitian. This
is true for the PK and HM pseudopotentials although
not true for the more general form of Austin, Heine,
and Sham. '~ Assuming Hermiticity, the desired
theorem

I= &0'Iivlg &= &q" Iv(v+v )I y& (15)

has been proved.
We emphasize that the result (15) requires three

conditions, viz. , elastic scattering, Hermiticity

(v„.is ip/h, where p is the momentum operator)
to reduce I to a simple expression, namely, zero
for elastic scattering. Incidentally, this is consis-
tent with the deformation-potential theorem, which
states that at long wavelengths (equivalent to dis-
placing the whole crystal) the scattering must go
to zero.

The repulsive part of the pseudopotential V~ is
also a sum of localized terms:

V, =Z;v„(r-I)
(which is true for the PK and HM forms because the
projection operators are sums of projections onto
individual atoms. ) 'Ihis fact enables us to take
partial advantage of Eq. (11). Pseudo wave func-
tions y' and q are introduced by using Eq. (8) in
Eq. (9). Then expanding we get

i=&q'Ivvlq )+a+6+ ~ ~ ~, (12)

where a, b, etc. , are a series of terms that all
involve the localized product vR I q ) or (v„l'y ))*
summed over atomic sites l. We now make the
assumption that v and v„are sufficiently localized
that we may drop all terms except those in which
v and v~ occur on the same site. By the same as-
sumption we may now replace vv by vV in these
same terms, and use the identity (11). A conve-
nient way of dividing the terms a, 6, . . . , is

a=(q'l(1 —V, '(E-x) ')ICv. ,(E-x)-'v, lq &,

- b = (q
'

I v, '(E -x)-' v„x(1 —(E -x) ' v„) I q &,

(13)c= (q'Iv„'(E-x) 'xv., l q &,

-d= (q'lv, pc(E-R) v„lq ).
Note that in a and b we have kept a term containing
VR instead of g~ (which is permissible because an
over-all factor v~ multiplies it). This was done
intentionally so that the complete wave function g'
(or P) would appear on the left-hand side (right-
hand side) in a. (b). Because g appears, 3C may be
replaced by E. Finally the terms in a and 6 that
are bilinear in v„cancel, and the linear terms can
be added to c and d, which causes further cancel-
lations. The result is

a+b+c+d (q I +oy'UB ~B +oy I
'p )

of v„, and nonoverlap of v and v~. Only the last
criterion presents any problem for our case. The
size of v~ is determined by the size of the core
and atomic d functions. Thus the theorem (15) is
on slightly weaker grounds for transition metals
than for nontransition metals, where there are no
d functions near the Fermi level, and v~ is deter-
mined by the well-localized core functions. Nu-
merical estimates of the magnitude of this error
are presented in the Appendix. For copper the
error in Eq. (15) should be less than 5%.

IH. CALCULATION OF X AND p

The details of this calculation have been published
often enough before and do not warrant repeating.
The interested reader may consult the paper of
Allen and Cohen for details of the method and a
review of much of the earlier work. A few points
should be mentioned, however. In addition to the
single-plane-wave and spherical-Fermi-surface
approximations mentioned earlier, the phonon spec-
tra have been approximated by spherical symmetric
functions ro(lq!) chosen to represent closely the
data obtained from inelastic neutron scattering in
symmetry directions. The unrenormalized density
of states was determined by dividing the specific
heat mass by (1+X) in a self-consistent fashion.
This has the effect of raising the theoretical X in
the FC case for Cu, and lowering the values for
all the metals (especially Ag) in the HM case, with
respect to the value obtained with a free-electron
density of states. Thus it tends to make the theo-
retical calculations more similar than would be the
case if a constant value of N(0) had been used.

The HM pseudopotential form factors were taken
directly from Moriarty's calculation for the Harri-
son first-principles potential. The procedure for
extracting the pseudopotential matrix element for
scattering on the Fermi surface from the FC
empirical potential is unambiguous for the non-
local part of their potential, which turns out to be
small on the Fermi surface. To obtain the local
part, one must extrapolate from the known values
V(G) down to the region 0 & q & 2k~. This was done

by requiring the total potential to have the Fermi-
Thomas shape [- 4ve /(q + k, )f at small q, and
drawing a smooth curve inbetween. The form fac-
tors obtained in this way are shown in Fig. 1.

The data used in the calculation and the results
are given in Table I. Neither form factor gives
results that compare well with experimental values
of p. As mentioned earlier, p should be more
sensitive to Fermi-surface distortions than X, and
in fact distortions should have the effect of increas-
ing p by increasing the effective scattering angle
of scatterings mediated by low-q phonons. Thus
the FC form factors, whichunderestimate p, seem
more realistic than the HM form factors, which
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Comparison with the specific heat yields an average
mass enhancement X equal to 0. 08, in fair agree-
ment with the value 0. 056 calculated from the FC
form factors, but much smaller than the value
0. 34 from the HM form factors. It seems reason-
able to conclude that the HM form factors disagree
with experiment by an amount that is outside the
severe limitations of the calculation, while the FC
form factors give results that agree within these
limitations.

IV. DISCUSSION

O.f—
0
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It is interesting that the theoretical values of
X and p from the two sets of form factors deviate
from experiment in opposite directions. This fact
can be correlated with the strength of the $=-2 po-
tential in each case. For insights in this direction
it is useful to decompose the pseudopotential V~

in terms of effective phase shifts y, defined by

—0.1—
V, (q) = (2/&) V, (0)Z, (2l+1)P, (cose)y, ,
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FIG. 1. Form factors V(q) in rydbergs plotted vs q/2Az
for the noble metals. The Fong-Cohen form factors for
Ag and Au are preliminary; however, future alterations
are expected to be small for scattering on the Fermi
surface.

overestimate it.
Grimvall has used the resistivity data to derive

approximate lower bounds of O. OV, 0.05, and O. OV

for X in Cu, Ag, and Au. These lower bounds are
very close to the values computed from the FC form
factors. From the observed aQsence of supercon-
ductivity, Grimvall~ has derived approximate upper
bounds on X of 0. 24, 0. 25, and 0. 26. The values
of X obtained from the HM form factors equal or
exceed these numbers. Lee has analyzed cyclo-
tron resonance data for Cu and derived values of
X which are quite anisotropic, varying from 0. 04
to 0. 21 for various points in the belly. The iso-
tropic value 0.083 calculated from the FC form
factors is not inconsistent with Lee's results,
whereas the value 0.45 from the HM form factor
is much too large. Christensen2 has calculated
cyclotron resonance masses for Au. Comparison
with experiment yields renormalization parameters
A equal to 0. 1 and 0.13 for (100) and (111)belly
orbits, respectively, and 0. 2 for the (111)neck
orbit. Also he has calculated the density of states.

where P, is the Legendre polynomial for the scat-
tering angle 8 between initial and final plane-wave
states k and k' on the Fermi surface. Approximate
values of p, for I up to 2 are given in Table G.
In the case of the HM form factors, the values of
yz are all negative (repulsive interaction), which
arises naturally from the fact that the Fermi sur-
face lies above a d-wave resonance. The FC form
factors have positive values of y2, which arises

TABLE I. Data used in calculating g [C and 8' stand
for velocity and maximum frequency of the modes I
(longitudinal) and T (transverse)] and results of calcula-
tions.

Cu

Ag
Au

m*

1.38 2. 67
1.00 3.02
1.09 3.01

Cg
(10'~ cm/sec)

4.69b

3.17c
2.36

Cg
(10~ cm/sec)

2.40b

l.62

10(r = 295)
(p, Q cm)

(mev)

30 3
20 5
15 3

O'T

(meV)

2O. 9b

14.1
lO. 54

Pseudo potential

FC
HMN

FCe
HM'
FC
HM~

Meas

l.70

2.20f

Calc

0.42
5.03
0. 24
4. 27
O. 40
6.75

0.083
0.45
0.046
0.25
0.056
0.34
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'W. A. Kamitakaha and B. N. Brockhouse, Phys. Let-

ters 29A, 639 (1969).
dObtained by scaling from Cu; see c above for details

of a similar test for Ag.
References 8 and 9.
G. &. Meaden, E/ect&caE ResistanceofMetals (Plenum,

New York, 1965).
References 5 and 7.
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TABLE II. Approximate phase shifts y& for various form
factors, as defined by Eq. (16).

Metal Potential

CQ FC
Cu HM

0.50
0.96

0.24 O. 06 —0.345
0.52 —0.08 —0.330

Ag
Ag

FC
HM

0.43
0.74

0.26 0.07 —0.270
0.52 -0.04 -0.253

Au
Au

0.50
0.74

0.25 0.07
0.60 -0.07

-0.271
-O. 238

&„3
Jo"doe'I'~'(q) (18)

Equations (17) and (18) can be thought of as defining
&&u, /Q~ ), which is an average of the square phonon
frequency w, normalized to the ionic plasma fre-
quency O~ . The average contains the pseudopoten-
tial as a weight factor, but it is not particularly
sensitive to the details of the pseudopotential. (It
is more sensitive for monovalent metals than for
polyvalent metals, however. ) At any rate, (17)
provides an approximate way of separating out the
effect of the pseudopotential on X.

Using Eq. (16), we can derive an explicit expres-
sion for (v ) in Eq. (18) in terms of the phase shifts

partly from their choice of an attractive nonlocal
d-wave interaction, and partly from the somewhat
ad hoc (but perfectly natural) fashion in which the
local part of their potential was extrapolated to
q=0.

Theoretical scattering arguments make Harri-
son's repulsive d-wave interaction seem more
realistic than Fong and Cohen's attractive interac-
tion. However, there is no question that the re-
pulsive d-wave terms are what causes the HM form
factors to overestimate X and p. This can be
seen by using a representation for X given by
McMillan':

1.61 (v )
r, &(o,'/n~') '

where z, is the dimensionless electron-gas param-
eter (radius of the volume per electron) and &v~)

is a dimensionless average of the pseudopotential
over the Fermi surface

If we assume that the expansion (16) terminates at
a finite number of terms, then the value of (va)
must be greater than some minimum value. If only
s and p phase shifts are allowed, the minimum val-
ue is +&, obtained if yo.'p&. '3: 2. The small size of
the observed X's for noble metals implies that (v )
is not much larger than +. If we now turn on a
small y~, this will act to lower or raise (va), de-
pending on whether y~ has the same or the opposite
sign as po and p, . (If arbitrary values of 9)0, p„
and ya are allowed, there is a minimum value
(v ) 3g obtained when yo: y, :y~::6:6:3. )

Similar arguments can be applied to p, which

will scale approximately according to (v, ), which
is given by

&v„~)= (v (1 —cosg))

2 ~g (2l+1)(3l +3l —2) p

(2l —1)(2l+ 3)

—(21+2) p, y, „,+ ),q, „~) (21)
(I+ I)(I+2)

2l+3

For s and p phase shifts, (vt ) has a minimum val-
ue of,~ when yo.' (p, ::3:1; with d phase shifts as
well, the minimum is 75 when po: W1: y~:.20:15:7.
A small d-wave phase shift of the same (or opposite)
sign as po and y~ will lower (or raise) (v„).

These arguments lead to the conclusion that a
single-plane-wave scattering model for the noble
metals cannot be consistent with known information
about X and p unless the d-wave interaction at the
Fermi surface is attractive (as in the FC form
factors) or at least much less repulsive than in
the HM form factors. Possibly the latter calcula-
tion has underestimated the screening of the d-wave
interaction.
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APPENDIX

%e want to estimate the errors involved in ap-
proximating the terms a, b, . . . , in Eq. (12) by
omitting all terms v~(r -I) except the terms 1= 0
and then replacing v(r) by the sum over all sites
of v (r —1). A typical term is (in exact form)

.Z, (2I+1)V, =-.'v . (20)

(v ) = (2/v) Z, [(2l+l)y, —(2l+2)y, y, , gJ .
(IO)

Now the phase shifts y, are not all independent.
Equation (16) implies that they must satisfy the
Friedel sum rule

&k'l&f v.'(r —I)(E -~) '»(r) li &, (Al)

which we want to compare with the approximate
form

&k'I v. '(r)(E -IC) '&r ~ v(r —I) lk) (A2)

It is adequate to consider single-plane-wave ma-
trix elements instead of pseudo wave function
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matrix elements.
For the purposes of numerical comparison, let

us consider a simpler overlap integral

a=2 (k'~~„'(r)~(r+l)~k),
fx0

(As)

which we want to compare with the single-site ma-
trix element

B= (k'~v„'(r)v(r)~k) . (A4)

Finally, for simplicity consider only the special
case k'=k. We will approximate the real potential
v(r) by a screened Coulomb potential. For the re-
pulsive potential we use an unscreened Coulomb
potential, cutoff at the core radius x,. If we keep
only the nearest neighbors in the sum over sites in
(A3), the ratio of A to B is

A/B= c(e ~s'/k, g) e""c~2sinh(k, r, /2), (A5)

where c is the coordination number (12 for fcc
structure), k, is the Thomas-Fermi screening
wave vector, and g is the nearest-neighbor distance.
The ratio A/B represents the approximate fraction-
al error incurred in omitting the $40 terms from
(A1) or from (A2).

Let us evaluate (A5) for copper. If we consider
only one s electron per atom, k,g has the value

4. 61. Fong and Cohen' used for the d-wave part
of v~ a well truncated at x, = 0. 814 A. These
parameters give a fractional error A/B=4/o. For
the Harrison-Moriarty potential, a slightly larger
value of y, is appropriate. If we choose z, to be
the radius at which the atomic wave function
r I 0 a, I

' decays to 10%%uo of its maximum value, we
find from Hermann and Skillman's tables ' a value

r, =1.06 A. This yields a fractional error A/B

The expression (A5) involves many approxima-
tions, and we can argue that the errors of (4-7)%%up

are probably overestimates. For example, by
translational invariance it is clear that the error
made in dropping the 14 0 terms from (Al) exactly
cancels the error in adding them to (A2), if the
wave vectors k' and k are equal. Thus, when k'
=k the exact error is 0%%uo, not (4-7)%%uq. When k'
4k this cancellation of errors does not occur. How-

ever, (A5) will still be an overestimate, because
we can expect the contributions from the 12 differ-
ent nearest neighbors in Eci. (A3) to start adding
out of phase. The parameter c in Eq. (A5) should
decrease from 12 as k' moves away from k.

These considerations lead to the conclusion that
the "theorem" of Eq. (15) is probably valid to
better than 5% for pseudopotentials for copper.
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