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The electronic properties of the alkali metals are interpreted by using augmented-plane-wave
(APW) pseudopotentials derived from phase-shift analyses of experimental Fermi-surface data.
The APW-pseudopotential form factors are found to be consistent with the results of local-
pseudopotential interpretations of the experimental data, and with the energy gaps predicted by
model-potential and band-structure calculations. lt is shown that the matrix elements of the
electron-phonon. interaction can be deduced from the empirical phase shifts. The result is a
form factor for electron-phonon coupling that is very similar to the APW form factor derived
from the secular equation. The form factors for electron-phonon coupling are used to estimate
the electrical resistivities and electron-phonon mass enhancements of the alkali metals. The
trend of resistivities within the alkali-metal series is predicted correctly, and the renormal-
izationfactors are generally consistent with the experimental data, although the strength of the
electron-phonon interaction in sodium is significantly overestimated, apparently because the
experimental Fermi-surface data yield no information about V200 and higher pseudopotential
coefficients.

I. INTRODUCTION

Experimental studies have yielded precise mea-
surements of the anisotropies of the nearly spheri-
cal Fermi surfaces of the alkali metals, and the
results have been analyzed by pseudopotential poten-
tials based on the augmented -plane-wave (APW)
method of band- structure calculation to deter mine the
partial-wavephase shifts that describe the elec-
tron-ion interaction in these metals. '

Pseudopotential methods are frequently used to
interpret Fermi-surface data and to correlate them
with the other electronic properties of metals.
Qne associates with each lattice site in the metal
a weak effective potential (the pseudopotential),
which is expressed in terms of suitable param-
eters. The Schrodinger equation is solved for
the shapes of surfaces of constant energy in k
space, and the parameters of the pseudopotential
are adjusted to bring the computed surfaces into
agreement with the experimental data. The ad-
vantage of replacing the strong ionic potential by
a weak pseudopotential is that atomiclike oscilla-
tions in the wave functions are eliminated, and one
can obtain rapidly convergent solutions of the
Schrodinger equation by expanding each pseudo
wave function as a series of plane waves, which
leads to a secular equation of the form

det f[(k+ g) —E(k) j 5p,.+ I'(k+ g, k+ g'))= 0 . (1)

In general, the pseudopotential I"(k, k') defined
in this way is nonlocal, that is, it depends on ener-
gy and on angular momentum. We shall find it
convenient to characterize the nonlocal pseudopo-
tential by its form factor 1 (q), which is defined
as the matrix element for scattering on the free-
electron Fermi sphere when q ~ 2k&, and for back
scattering from a state on the sphere when q & 2kF.

Recent calculations have shown that, except
perhaps for sodium, the Fermi-surface distor-
tions of the alkali metals cannot be explained in
detail unless the nonlocality of the pseudopotential
is taken into account. Two different methods
based on band theory have been used to construct
nonlocal pseudopotential for the alkali metals.
Pne of these, in which the matrix elements are
derived from the orthogonalized plane wave (GPW)
secular determinant, has been used to calculate
pseudopotential form factors from first principles,
but has not been used to interpret Fermi-surface
data. The other, the phase-shift method based on
the APW secular determinant, has been used to
analyze experimental Fermi-surface data for all
of the alkali metals. '

The AP%' pseudopotential is often written in the
form

~ Z(2( ()P(cas();; )j ((R)j,(
'

))()u(', /, ),),, (2.)
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where 8, is the radius of the muffin-tin sphere, and

(u, /u, )s, is the logarithmic derivative of the radial
wave function of energy E and angular momentum
l, evaluated at x=8, . The radial wave function is
conveniently expressed in terms of partial-wave
phase shifts q& by writing

ug(R ) =j /(KB ) —tan'q y (KIt ),
where

In a phase-shift analysis one adjusts the phase
shifts q, and the Fermi energy parameter E~ that
appear in the APW (or Korringa-Kohn-Rostoker)
secular equation in order to bring the shape of the
surface of constant energy

E(k) —Qp

into agreement with the experimental Fermi-surface
data. Even though the APW secular equation de-
pends on I A» only for k and % differing by a re-
ciprocal-lattice vector, the functional form (2)
gives a representation of the pseudopotential for
all wave vectors. In the preceding paper' it was
shown that a set of APW pseudopotentials can be
constructed in. this way, the particular pseudopo-
tential obtained depending on the choice of the Fer-
mz energy parameter E F . Two pseudopotentials
of special interest were discussed, the minimum-
perturbation pseudopotential, whose form factor
satisf ies

lim &up(q)=0,

and the pseudo-atom pseudopotential, for which

»m l'x A(e)= —( s &Fo),

where Ezo is the Fermi. energy for free electrons.
The former corresponds to a model of the metal
in which the ionic potentials associated with each
atomic cell is regarded as neutralized by the charge
distribution within that cell. The latter corresponds
to a superposition of long-range overlapping ionic
potentials, each screened by an extended distribu-
tion of conduction charge.

In the present paper we discuss what is known
experimentally and theoretically about the electronic
properties of the alkali metals in terms of phase-
shift pseudopotentials. In Sec. II we compare the
APW form factors with local-pseudopotential in-
terpretations of Fermi-surface data, and with the
predictions of model potential and first-principles
band-structure calculations. Our results are in
agreement with calculations which predict that the
P-like state N&. lies below the 8-like state N& in
lithium and sodium, but that this ordering is re-
versed in the heavier alklali metals. In Sec. III
we calculate the matrix elements of the electron-

phonon interaction, expressing them as form fac-
tors determined by the APW phase shifts. We
emphasize that the phase shifts of the pseudoatom
pseudopotential, rather than those of the minimum-
perturbation pseudopotential, must be used to cal-
culate the electron-phonon interaction. The elec-
tron-phonon form factors are very similar to, but
not identical with, the APW pseudo-atom form
factors discussed above. This similarity is the
APW analog of an identity theorem for OP%-based
pseudopotentials that has been proved by Sham.
In Sec. IV we use the electron-phonon form factors
to calculate the phonon. contribution to the electri-
cal resistivities of the alkali metals at room tem-
perature, and the renormalization of the energy
bands at the Fermi surface caused by the electron-
phonon interaction. We find good qualitative agree-
ment with the experimental data, expecially in the
heavier alkali metals, although our pseudopotential
calculation seems to overestimate the electron-
phonon interaction in sodium. Finally, in Sec. V
we summarize the results and conclusions of this
work.

II. BAND-STRUCTURE PROPERTIES

In this section we compare the APW-pseudopo-
tential form factors with the results of local-
pseudopotential interpretations of experimental
Fermi-surface data, and with model-potential and
first-principles band-structure calculations. A
qualitative comparison between the pseudo-atom
form factors and model-potential form factors by
Animalu and Heine, and Shaw, and OP%-pseudo-
potential form factors by Harrison, has been pre-
sented in a preliminary report of this work, and
will not be repeated here.

Analysis of Fermi-surface data has shown that
only for sodium, and perhaps lithium, is a local
pseudopotential an adequate model of the electron-
ion interaction. Values of the local-pseudopoten-
tial coefficients for these metals have beenderived
by Cohen and Heine, and by Lee, ' from Fermi-
surface data. The results are reproduced in Table
I, where they are compared with the corresponding
back-scattering matrix elements of the APW
pseudopotentials. The agreement for lithium is
satisfactory, although the numerical values of the
coefficients cannot be determined very accurately .
because of uncertainties in the experimental data.
The results for sodium show that the back-scatter-
ing matrix elements derived from the APW pseudo-
potentials are significantly smaller than those de-
rived from local pseudopotential analysis of Fer-
mi-surface data. It seems that, even for sodium,
nonlocality of the pseudopotential must be taken
into account if accurate pseudopotential coefficients
are required. The shape of the Fermi surface of
sodium is dominated by the V»0 pseudopotential
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TABLE I. Comparison of back-scattering matrix ele-
ments of the APW form factors with pseudopotential coef-
ficients derived from local-pseudopotential analysis of
experimental Fermi-surface data. Energies in rydbergs.

TABLE III. First-principles calculations of the energy
level splitting (jVi-Ni) in the alkali metals, and compari-
son with the back-scattering matrix elements of the APW
pseudopotentials. Energies are in rydbergs. The quan-
tum defect method is abbreviated QDM.

Ll Na

Local J V«0 t

Local '

f V2pp f

VPA
iip

VP
200

VMP

VMP
200

APW

APW

APW

APW

0.11 (Ref. 2) 0.0165(7) (Ref. 10)
0 (Ref. 2) «0. 022 (Ref. 10)

+0.102(39)

+0.087 (80)

+0.108(39)

+ 0.064(80)

+0.009

+0.015

+0.013

—0.008

TABLE II. Back-scattering matrix elements Viip and V2pp

for the alkali metals (rydbergs).

coefficient, and the value of V2pp is determined
only within wide limits by the experimental data.
Correspondingly, the V&pp coefficients of the APW-
pseudopotential form factors for sodium are not
well determined by fitting the Fermi-surface data,
and consequently the APW form factors for sodium
are probably less accurate than those of the heavier
alkali metals.

Various estimates of the back-scattering matrix
elements V»p and V»p in the alkali metals are set
out in Table II. The results of Cohen and Heine"
were deduced from the sP splitting of the atomic
spectra. The values of V»p calculated from the
model-potential form factor of Animalu and Heine
include second- and higher-order corrections that
were taken from earlier calculations by Heine and
Abarenkov. ' These corrections turn out to be
quite important in the heavier alkali metals. No

such correction has been applied to the coefficients

Li K

OPW 0.233 0.053b —0.034 -0 043

2V 0 204

2 VMP 0.216

Reference 13
'Reference 14
'Reference 15
Reference 16

'Reference 17

0.018 —0.011 —0.022 —0.032

0.025 —0.010 —0.027 —0.039

Reference 18
Reference 19

"Reference 20
Reference 21

derived from Shaw's optimized model potential.
Also in Table II we present values of V»p and V2pp

calculated from the APW pseudo-atom and mini-
mum-perturbation form factors. These two form
factors are in good agreement with one another in
the structure region, and the agreement with the
predictions of Cohen and Heine" is remarkable.
The matrix elements are large and positive in
lithium, and become increasingly negative in the
heavier alkali metals, apparently changing sign
between sodium and potassium. As we shall see,
this trend is consistent also with the results of
first-principles band-structure calculations.

In the two-band approximation, the energy level
splitting at N (the center of the rhombohedral face
of the Brillouin zone of a bcc structure) is given
by

QDM 0.219 0.017 —0.032 —0.057e —0.085e

A PW 0.125 0.029 —0.027 ~ —0.054" —0.069"

A PW 0 201' 0 041& 0 009& 0 025' 0 052

(a) (c)
Present work
(d) (e)

(N~ —Ny ~ )= 2Vuo ~ (6)

Li 0.076 0.100
Na 0.010 0.022
K —0.004 —0.002
Rb —0.013 —0.008
Cs —0.016 —0.018

V»p

0.072 0. 102(39)
0.018 0.009
0.004 -0.005

-0.011
-0.016

&200

0. 108(39)
0.013

—0.005
—0.013
—0.019

Li
Na
K
Rb
Cs

0.063
0.009

—0.005
—0.008
-0.010

0.060 0.087(80)
0.014 0.015

-0.002 -0.017
-0.018
-0, 020

0.064(80)
-0.008
—0.015
—0.018
—0.023

Reference 11.
"Ref. 7 (but including higher-order corrections estimated

from Ref. 12).
'Reference 8.
APW-pseudo-atom form factor.

'APW-minimum-perturbation form factor.

where gyp is the local-pseudopotential coefficient.
In sodium, V»p deduced from various band gaps
is known to vary rather slowly with energy, and the
energy level splitting at N should be close to twice
the coefficient V»p deduced from the Fermi-sur-
face distortions. Even though the local-pseudo-
potential approximation is inadequate to describe
the band structures of the heavier alkali metals,
the energy level splitting at N is expected to be
related to the back-scattering matrix element of
a nonlocal pseudopotential, approximately as in
Eg. (6). Recent estimates of the level splitting in
the alkali metals' ' are set out in Table III. The
results of the various first-principles calculations
vary somewhat among themselves, but are in quali-
tative agreement with the APVY-pseudopotential
analyses. In particular, they are consistent with
our conclusion that the P-like state N&. is lower
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than the s-like state N, in Li and Na, whereas this
.ordering is reversed in K, Rb, and Cs.

It is convenient to express the APW pseudopo-
tential in the form appropriate for scattering
from a weak potential

I"»w(k, k'
) = — Q (2 I+ 1)P, (cos8)tan8, ,APW y y g

(7)
where 5, is an "effective" phase shift. Using well-
known identities we can express Eq. (2) in the form
of Eq. (7), with the result

tan8, = —k~R, [j ', (u', /u, —j, /j, )

+ zR, (E —k„) (j, j—„qj, ,) j, (8)

where the spherical Bessel functions j, have the
argument k~R, . In deriving Eq. (8) we have as-
sumed that k and k" both lie on the free-electron
sphere of radius k~. The radial wave function u,
is to be evaluated at the muffin-tin radius; it can
be expressed in terms of the APW phase shifts
q, by Eq. (3). In the special case z=kz, which
corresponds to the minimum-perturbation pseudo-
potential, Eq. (8) reduces to

tan8, = tang, (j,/u, ) .

The pseudo-atom phase shifts calculated from
Eq. (8) can be compared with the pseudo-atom
phase shifts discussed by Meyer, Nestor, and
Young, as presented in Table IV. The discrep-
ancies are greatest for lithium and cesium. Our
pseudo-atom phase shifts for lithium are subject
to substantial uncertainties because of uncertainties
in the experimental data. Meyer et al. suggest
that their calculated phase shifts for cesium may
be rather unreliable because of a breakdown of
the small-core approximation. In general, how-
ever, our results confirm their prediction of the
trend of the pseudo-atom phase shifts within the
alkali metal series.

III. ELECTRON-PHONON INTERACTION

In order to calculate the electron-phonon matrix
element T(%, k'), we need to know how the total
potential in the crystal is altered when a single
atom is displaced. This difficult problem has
been discussed by many authors; we note particu-
larly a recent discussion from an APW point of
view by Sinha. Our point of view on this problem
is very simple. We accept the argument from
many-body perturbation theory that each atom
carries with it rigidly an effective screened po-
tential that is the same as the effective screened
potential that determines the energy bands. The
problem then remains that for APW purposes, this
potential has been cut into muffins, each of which
contains not only the screened potential of the cen-

tral atom, but also the tails of the potentials of
near neighbors. Rather than attempt to invert from
the muffin potentials to the actual screened poten-
tials, we shall simple assume that the muffin po-
tential has been chosen in such a way as to approxi-
mate most nearly the actual screened potential.
This is accomplished in practice by working with
the pseudo-atom phase shifts.

Within this framework, we are left with the task
of calculating the matrix element of the displaced
muff in potentials:

8
(& &0'), (ll)9+

s

where the functions gg are evaluated just inside the
muffin sphere. We define the electron-phonon-in-
teraction pseudopotential I's~(k', k) by

f(k, k')=i(k' —k) I' (k', k) (12)

and proceed to express I'Ep in terms of the APW
phase shifts g, .

Let us consider the contribution of a single har-
monic component of g to the integral (11). We write

lm, l'm'
c*,,~(k' ) c,~(k)1(l'm', lm), (13)

TABLE IV. Comparison between pseudo-atom phase
shifts (in radians) calculated by Meyer et al. and phase
shifts 6& calculated from the APW-pseudo-atom form
factors [Eq. (8)].

Li

Cs

0.242
0.558 (120)

0.582
O. 616(2)

0.535
o.494(1)

O. 574
0.525 (6)

0.445
O. 535(21)

0.417
O. 329(46)

0.284
0.246(1)

0.212
O. 241(1)

0.191
O. 223(3)

0.122
o.198(7)

0.015
—O. O16(31)

0.026
o.o22(1)

0.078
o.o59(1)

0.083
0.062(2)

0.149
o.o74(5)

~Reference 22. "Present work.

where V is a single muffin potential and the states
I k) or g„- are APW states of the form exp(i k r)
outside the muffin-tin sphere, and smoothly matched
eigenfunctions of energy E inside. Golibersuch
(and others earlier ) have shown that, by using
only the assumption that Ik) and Ik') have the same
energy, Eq. (10) can be written as an integral over
the surface of the muffin-tin sphere
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where we have defined

-=ger (k)qi (r),

4~.(r) =u~(r) Fi.(~),

e, (k)=4''F, (k) [j,(k~ R,)/u, ( R,) ],

(14a)

(14b)

(14c)

Finally, using the free-electron-sphere approxi-
mation k= k =kF. the result for the electron-phonon
for m factor (12) is

FE P (k, k '
) = —(4v/~ r ~) ~ (6j l +1 /u l u

3+ 1 )
l

x (tan7i, —tang&, &) Z (2n+ l)P„(cos8)

l 'm' lttt

The Wigner-Eckart theorem gives selection rules
for the matrix element (15), namely, Kl = +I and
Am = 0. (The former selection rule is the basis
of a paper by Hopfield. ) Furthermore, we can
express all the integrals in terms of the m = 0 in-
tegrals. The result is that (15) becomes

~.1(k, 1 ') = («)'i~ (AA, i/urus. i)I.(I)
l

xg ([(1+1)'—m']'~'/(I+ I)) [F*... (5) F, (k')

—Fi*, (&) Fr.i. (&')] (15)

The notation I,(l) is shorthand for z I(I+ I, 0; I, 0)
as defined in Eg. (15). Making successive appli-
cations of the recursion relation

(I+ 1) —m

(2l+ 1) (2 I+ 3)

g2 2
~

1/2

l~m 2) y 2) y
l 1m

and the addition theorem for spherical harmonics,
we obtain

z I(k, k') = 4'(cos8t —cos8I.)Z (j(j(,g/u, u„g)
l

x I,(l) {[(2I+1) (2l+ 3)]'~'/(I+ I)}
x Q (2u+ l ) P~ (cos8tt, ) (18)

Using standard techniques ' to evaluate the angu-
lar integral I,(l), we find

J,(l) = 1[(2I+ 1) (2I+ 3)]'~'/(I+ I)] f,(l)
(Rs/~) [(uk+1 ul ul+1uE)

—(I/R, ) (u,.iuI-u'„iu, )+ (I/R,')u, u„i] .

(19)
Using Eq. (3) and the recursion relations and
Wronskians for spherical Bessel functions, Chui
has succeeded in reducing (19) still further (de-
tails are given in the Appendix). His result is

J,(l)= (I/O) (tang, —tang„, ) .

and the integral is defined, with no loss of generali-
ty, by taking only the z component

A 9
z I(l'm', lm)= —' 'dO P,, —

y, )4

(21)
where the argument of the spherical Bessel. func-
tions is kFR, . It is convenient to write this ex-
pression in the form

FEp(k, k') = —(4m/kz 0)Z (2 I+ l)P, (cos8) tant,

(22)
By manipulating (21), we find

tan), = — ' " tang,~ l2 l+1

QlQl 1

OO

tan ri „. (23)
~ l+ 1 +It +tt+1 tt-1

Our expressions (22) and (23) for the form factor
of the electron-phonon interaction cannot be re-
duced to those given earlier [(7)and (8)] for the form
factor of the APW pseudopotential. However, we
have evaluated the two form factors numerically,
using the APW phase shifts obtained by analyzing
the Fermi-surface data for each of the alkali
metals. In each case we have adjusted the Fermi
energy parameter to set llm p I"(q) = —(3Epo) as
discussed by Lee and Heine. ' Our results are
given in Figs. (1) and (2), and the corresponding
phase shifts $, are given in Table V. The APW
form factors are a very good approximation to the
electron-phonon form factors in all the alkali
metals, although there are small discrepancies for
K, Rb, and Cs in the region @=2k„.

It is not accidental that I"~p and I'»„are very

0.15—

0.1

0.0

—-0.0
CJ

—0.1

—0.20

—0.25

I'IG. 1& The solid line is the APW-pseudo-atom form
factor for lithium. The squares represent the electron-
phonon form factor calculated from the same values of

ql, whereas the circles give the electron-phonon form
factors calculated from a set of gl's chosen to make the

q =0 limit equal to —~EFO.
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similarity of I'Ep and I"ppw arises from the fact
that a single APW is a good approximate eigen-
function for an alkali metal.

I

1.5

IV. CALCULATION OF X AND p

In this section we present calculations of the
electron-phonon mass-enhancement parameter X

and the phonon resistivity p from the electron-
phonon form factor I'»(q) defined in Sec. III.

Rigorous formulas for X and p are

-0.05

SODIUM

—0.10

x=N(0) (( lM», l'/s~;))
p= (»&. T/h. ")« IM.-~ I'("-v')'

(24)—0.15

I

2.5
0-

x N- (N;+ 1)h w~))/&v„), (25)

where MpI-, . is the matrix element for scattering
from a state k to a state k', both on the Fermi
surface (FS) by phonons of frequency cu; (where q
is the momentum transfer k' —k reduced to the
first Brillouin zone). A summation over all
allowed phonon modes is implied in all our equa-
tions. The density of states at the Fermi energy
N(0) should not be renormalized by the electron-
phonon interaction; n is the carrier density, N;
is the Bose distribution function, and v, = V„&ah
is the velocity associated with the electron state
k. The () indicate that the term inside is to be
averaged over the FS according to the rule

—0.05
POTASS IUM

2.5

—0.05
RUB IDIUM

fF s &dg&gl vl
'

fFsdSIlvf, l

' (26)&A„") =
q/2kF

I

I

1.5

CESIUM-0.05

-0.10—

FIG. 2. Form factors for the alkali metals. Lithium
is illustrated separately in Fig. 1. The solid line is the
APW form factor and the circles are the EI' form factor,
as in Fig. 1.

similar. Sham demonstrated that the matrix
element T(%, %') of Eq. (10) is invariant under the
replacement of real wave functions by OPW pseudo
wave functions, and the real potential by the OPW
pseudopotential, provided that the states I k) and
ik') are exact eigenstates of the same energy.
Sham' s arguments have been generalized by Aus-
tin, Heine, and Sham and by one of the authors '
to include a broad class of pseudopotentials, in-
cluding, in principle, the APW pseudopotential.
Thus I &p and I'&p& would have been identical if the
single APW states used in constructing the form
factors had been exact eigenstates. The close

M„q, ——i (h/2M(u~) ~
e~ (k' —k) I'zp(k' —k),

(27)
where M is the ionic mass and &, is the phonon
polarization vector. The calculation of ~ and p
is now straightforward, provided that the phonon
dispersion relations and polarizations are known.

[The double brackets in Eqs. (24) and (25) imply
that both states k and k are so averaged. ] Equation
(24) is exact in perturbation theory ' to order
(m/M)'i, the square root of the electron-to-ion
mass ratio. Equation (25) assumes that pho-
nons are in equilibrium, and results from a varia-
tional trial function~ y-„= const&& v„~ E for the devia-
tion of the electron distribution from equilibrium
in the presence of a field E. Calculations of both A.

and p based on Eq. (24) and (25) have appeared fre-
quently. For a detail of the present method and a
review of much of the previous work on A., see Allen
and Cohen. ' For calculations of p see, for exam-
ple, Dynes and Carbotte. "

For the alkali metals it is a very good approxi-
mation to take the Fermi surfaces as spherical
and the wave functions on the Fermi surfaces as
single APW's. In this approximation, the matrix
element reduces to
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TABLE V. Phase shifts $& that enter in the expression
[Eq. (22) j for the form factor of the electron-phonon inter-
action.

Li
Na
K
Rb
Cs

40

O. 544(12O)
0.615 (2)
0.511(1)
O. 536(6)
O. 534(2O)

0.339(50)
O. 246(1)
O. 228(1)
O. 213(3)
0.205(10)

—o. o18(3o)
O. O22(1)
0.063 (I)
0.066(2)
o.o71(5)

The dispersion relations for all the alkali metals
except Cs have been measured along symmetry
directions by inelastic neutron scattering. The
most accurate procedure is to calculate &, and &,

from a model dynamical matrix adjusted to fit
the experimental data. However, experience
has shown that , can be replaced by a spherically
averaged frequency tu( Iq I ) without significantly
reducing the (necessarily limited) accuracy of
calculations of X and p. We therefore have used
a spherical model for &, , constructed by averag-
ing (1/~, ) as obtained from data along symmetry
directions, or for cesium, from Ho's ' pseudo-
potential calculation. The polarizations &, are
assumed to be either pure longitudinal or pure
transverse. There is no coupling via transverse
phonons unless k' —k lies outside the first Brillouin
zone (Umklapp process. )

The density of states N(0) and the Fermi veloci-
ty v F are approximated by free-electron values.
Band-structure effects in the alkali metals increase
N(0) to a value Ne(0)=meN(0), where ms is a
dimensionless measure of the band mass at the
Fermi level relative to the free electron mass.
Correspondingly v ~ is reduced to a value v F/me .
We have set m~ equal to unity because the band

masses of the alkali metals are at present unknown.

One method of estimating m ~ is to divide the pho-
non renormalized density of states determined
from the low-temperature electronic-specif ic-heat
coefficient y, by the phonon-enhancement factor
1+ ~. However, we are not sufficiently confident
of current information about X and y to follow this
approach. Ham's' first-principle calculations
of m ~ have been accepted for many years and are
probably as reliable as any; however, they are
not completely consistent with what is known
about y and ~. The available evidence suggests
that for Na, K, and perhaps Rb, the value of m&
is close to unity, whereas for Li and Cs, m ~ is
somewhat larger. When more reliable values of
m& are available our results for X and p can be
corrected by multiplying by factors of m~ and m~,
respectively.

Our results have also been influenced by our
setting m~= 1 in that the form factors themselves

have been constructed to approach -N(0) ' as q
approaches zero. If we had instead used the (un-
known) band density of states -Ns(0) ~, this would
have altered the shape of I'(q), multiplying it by
a factor ~~' at q= 0 but by a factor much closer to
unity in the region q= 2)|,'~. The values of X and p
are more sensitive to q near 2k~ then q near zero,
so this alteration of I'(q) is likely to reduce X and

p by a factor closer to unity than m ~, but probably
still signif icant.

In Table VI we present our values of X using both
the form factors I'gp~ and +Ep ' the values ob-
tained from I"»„are included to illustrate the
sensitivity of X to small changes in I' in the region
near q = 2k~. Also collected in the same table are
values of X calculated by several other authors. '
These other calculations differ from ours both in
the choice of the pseudopotential form factors and
in the parametrization of the phonon spectra. To
illustrate the effect of the latter, we also show
values of X that we have calculated using our model
of the phonon spectra, but using the form factors
of the original authors. These results demonstrate
that our model tends to yield slightly larger values
of X.

Animalu et al.

Janakc
Robinsond
Allen and Cohen'
Schneider et al.
Present calculationg
Present calculation
Present calculation

HA

HA

HA

ss
ss
APW
EP

0.08

0.38
0.39
0.24
0.28
0.57
0.62

0.13
0. 15"
0. 13
0. 11
0. 15
0.18
0.23
0.39
0.38

0.15 0.17 0. 13

0.12
0.11
0.14
0.12
0.17
0.15
0.18

0. 12
0.14
0.11
0.16
0. 18
0.21

0.11
0.12
0.10
0.13
0.19
0.21

Reference 39. These numbers are obtained from theo-
retical dispersion curves, not adjusted to experiment;
pure longitudinal and transverse polarization is assumed.
The theoretical u(q) for Li is too high, which explains the
small value found for g.

Same as a except experimental dispersion curves were
used.

'Reference 40. Spherical dispersion curves were used
as in the present calculation; two OPW matrix elements
were also tried, and agreed with the one OPW results.

Reference 41. Phonon spectra were obtained from a
force-constant fit to the neutron data.

Reference 34. The method is the same as in the
present calculation.

Reference 42. Phonon spectra were calculated from a
pseudopotential constructed to agree with neutron data.
The same pseudopotential is used to calculate p,.

The present method, but using the form factors of f.

TABLE VI. Various calculations of g for alkali metals
are summarized here; in all cases the numbers have
been rescaled to a free-electron choice of N(0). The
abbreviation HA is for the Heine-Abarenkov model poten-
tial (Ref. 12); SS is for the Schneider-Stoll empirical
potential fit to phonon data (Ref. 38); APW and EP are
for the form factors T'Apw and I'Ep defined in this paper.

Potential Li Na K Rb Cs



5 PHASE- SHIF T PSE UDOPOTE NTIALS. . . 3855

TABLE VII. Mass enhancement g and resistivity p
calculated from I"gp.

p(295 K)
pQ cm
(theor. )

p(295 K)
pO cm

(expt. ) ~

Li
Na
K
Rb
Cs

0.62
0.38
0.18
0.21
0.21

11.8
10.5
9.0

16.3
23.5

9.3
4. 8
7.2

12.5
20.0

'The experimental values of p are taken from G. T.
Meaden, Electrical Resistivities of Metal's (I'lenum, New
York, 1965).

In Table VII we present the values of X and p
calculated from the form factors I"~p. Except for
sodium, the resistivities are in satisfactory agree-
ment with the experimental results. The trend
within the alkali series is given correctly, but
the absolute resistivities are overestimated by a
nearly uniform 20%, which is comparable with the
uncertainty ascribable to our parametrization of
the phonon spectra. However, the sodium results
are anomalously large by about a factor of 2, and
this must be ascribed to an error in the form fac-
tor I'&p. As emphasized above, the form factor
for sodium is perhaps the least accurate of all
the alkali metals in the important region q = 2k~
because the shape of the Fermi surface gives no
information about V,oo and higher pseudopotential
coefficients.

Our calculations provide further support to the
suggestion ' that in lithium X is quite large.
Since m& is probably quite a bit larger than unity,
it seems likely that our calculated value (X= 0. 62)
is too large. However, it is hard to escape the
conclusion that X for lithium should be larger than
for the other alkali metals.

One must then reconcile this with the experi-
mental observation that lithium remains nonsuper-
conducting down to temperatures in the millidegree
range. The simplest hypothesis is that the Cou-
lomb repulsion p* (see McMillan's paper for the
relationship between superconductivity and X and
p*) is anomalously large. However, a large value
of m& would only partially explain a large value
of p, *. Another possibility is that lithium has a
significant exchange enhancement, which might
explain both the large liquid-lithium spin suscep-
ti»»ty ' and the absence of superconductivity.
It would be most helpful in resolving the puzzles in
lithium if the specific-heat coefficient y were re-
measured and the band density of states recomput-
ed. For the latter purpose, optical data would be
very helpful.

V. CONCLUSIONS

We have shown that the APW pseudopotential form
factors derived from experimental Fermi-surface
data and presented in the preceding paper' are
consistent with what is known about the energy-
band structures of the alkali metals. We have
described a model of the electron-phonon interac-
tion based on the displacement of rigid pseudo-
atom pseudopotentials. This approach leads to
generally satisfactory results for the electron-
phonon renormalizations and phonon resistivities
of the alkali metals, although it overestimates
the electron-phonon interaction in sodium.

The phase-shift pseudopotentials serve to corre-
late what is known about the Fermi surfaces, band
structures, and electron-phonon interaction in the
alkali metals. For these metals the analysis is
relatively simple because the Fermi surfaces are
very nearly spherical and lie entirely within the
first Brillouin zone. Nevertheless, the method
described here can be applied directly to corre-
late the electronic properties of other nontransi-
tion metals, and may well prove capable of gen-
eralization to apply also to the noble and transition
metals.

Note added in Proof. More recent calculations
suggest that the discrepancies for Na result from
convergence difficulties in fitting the Fermi-surface
data. "
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APPENDIX

The following is Chui's method for deriving
Eq. (20). Consider the expression

Q, (a, b) =—[(a", b...—a', b', ,~)

—(l/x) (a', b „,—a, b,',&)+ (l/x )a, b „&],(Al)

where a, and b, are functions of x and the primes
denote differentiation with respect to x (rather
than x as previously). When a and b are both set
equal to the radial function u [as in Eq. (3)], then

Q, equals J,(l) as given in Eq. (19) to within con-
stant factors. We wish to prove that

Q, (u, u) = (1/x ) (tang, —tang, +&),

which then allows Eq. (20) to be deduced from Eq.
(19). We can expand Q, (u, u) in terms of Bessel
functions j, and y,



3856 P. B. ALLEN AND M. J. G. LEE

Q, (u, u) = Q, (j,j ) —tanR, Q, (y, j)
—tann~. i Qr(j, y)

+ tang, tan'g. ..Q, (y, y) . (A3)

We now drive an expression for Q, (a, b) that is
valid provided a, and b, satisfy the recursion
relations

'l 1
Q, (a, b)= —[a, , b, ,] — [a. .. b „,]

l+1 E
+

2& l [a„,, b„,]+, gb„, (A6)

where the brackets denote a Wronskian. We use
(A5) to reduce a, and a, & in (A6), which gives

23+1 ' 2l+1

2l 1 '' x ' 2/ 1

(A4)

(A5)

Qi(&, b)= [&/+1 bi+11 (A7)

The Wronskians of spherical Bessel functions are

These recursion relations are in fact satisfied byj, and y, but not hy u, . We use relation (A4) to
reduce a", and a', in the first term in Eq. (Al).
The result can be expressed as

and

(A8)

and (A2) follows immediately from (A3) and (A8).
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Electron-Phonon Coupling and Pseudopotentials: The Mass Enhancements of the
Noble Metals
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The first-principles form factors of Harrison and Moriarty (HM) and the empirical form
factors of Fong and Cohen (FC) are investigated as a starting point for calculations of electron-
phonon (EP) coupling in noble metals. A compact representation of Harrison's pseudopotential
method for transition metals is presented. A theorem by Sham on the use of orthogonalized-
plane-wave-based pseudopotentials for EP matrix elements is expressed in operator language
and generalized to include a wide class of pseudopotentials, including Harrison s. With the
underlying principles justified, single-plane-wave calculations of the EP mass enhancement
and resistivity are presented. The FC form factors give results that are more nearly con-
sistent with experimental knowledge than the HM form factors. The discrepancy is traced to
the sign and magnitude of the d-wave interaction.

I. INTRODUCTION

There has been much recent interest in the
effect of electron-phonon (EP) interactions on the
electronic properties of the noble metals. Because
the Fermi-surface (FS) states contain relatively
little d character, it is tempting to use for the
noble metals the approximations that have been so
successful for the nontransition metals.

As a theoretical step in this direction, Harrison5
has extended the orthogonalized-plane-wave (OPW)
approach of Phillips and Kleinman (PK), giving an
energy- and angular -momentum-dependent pseudo-
potential with an / = 2 resonance in the region of the
d bands. From Harrison's formulation Moriartyv
has calculated first-principles values of the form
factor appropriate to scattering on the Fermi sur-
face. We shall refer to these as the Harrison-
Moriarty (HM) form factors. They differ from
nontransition-metal form factors in having a hump
due to the repulsive interaction above the l = 2 reso-
nance.

As an empirical step in the same direction, Fong
and Cohen have succeeded in adjusting a nonlocal
model potential that reproduces experimental fea-
tures of the band structure of copper, using a
secular equation of 140 plane waves. Their model
potential consisted of a local potential similar in
shape and magnitude to nontransition-metal form
factors, and a nonlocal d-wave term that is large
in the region of the g bands, but very small for

scattering between plane waves of wave vector
equal to k~. This d-wave term is attractive
throughout phase space for elastic scattering, so
the form factor looks rather different from that of
HM. Preliminary results of similar calculations
for silver and gold have been supplied. The re-
sulting form factors will be referred to as Fong-
Cohen (FC) form factors.

The principal advantage of a pseudopotential
formulation of energy bands is the possibility of
using the pseudopotential to calculate other prop-
erties of the metal [such as electron-phonon (EP)
coupling] in low order per-turbation theory. In
this paper, such a calculation is attempted in the
lowest order of approximation by using single plane
waves as pseudo wave functions and neglecting the
distortion of the Fermi surface from a sphere.
Section III presents values of the mass enhance-
ment X and resistivity p that are determined by EP
scattering on the Fermi surface. This type of
calculation has been shown to be quite successful
for nontransition metals. The application of these
techniques to noble metals raises several questions.
First is the question of whether in principle a
pseudopotential that determines band structures is
directly applicable to the EP problem. This ques-
tion is explored in detail in Sec. II, where compact
formulations are presented in operator language
of Harrison's pseudopotential scheme and of Sham's
theorem 0 on the use of pseudopotentials for EP
coupling. The question is answered in the affirma-


