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The total pseudopotential in a metal can be expressed in many ways as a sum of atomic
pseudopotentials. One way involves the usual "linear-screening" potential and another a "mini-
mum-perturbation" potential. These different types of pseudopotential can be constructed by
fitting experimental Fermi-surface data in terms of phase shifts within the formalism of the
augmented-plane-wave method of hand-structure calculation. An investigation is made of the
effect of choosing different values of the "Fermi energy parameter" which defines the mean
interstitial potential relative to the absolute Fermi level. Pseudopotential form factors calcu-
lated from the empirical phase shifts are presented for the alkali metals and copper.

I. INTRODUCTION

There has been a trend in recent years' ' to ex-
press the band structures of nearly free-electron
solids in terms of scattering phase shifts g, . This
approach seems to be more effective than others
when d-band effects are important, even in the al-
kali metals. ' In particular, the Fermi surfaces of
the alkali metals' and copper have been fitted in
this way by using the formalism of the augmented-
plane-wave (APW) method of band-structure calcu-
lation. The phase shifts describe the interaction
of a conduction electron with the atom concerned,
and, in order make use of this information to de-
scribe the electron-phonon interaction and a variety
of physical properties, one needs to deduce the ap-
propriate pseudopotential. The term pseudopoten-
tial is used here in its current wide sense, 7' and
includes, for example, the APW form factor and the
Korringa-Kohn-Rostoker-Ziman (IGCRZ) expres-
sion.

However, it is necessary to resolve one ambiguity
first. ' ' In fitting Fermi surfaces within the
APW formalism, one has to choose a value of the
Fermi energy parameter E~, which is the measure
of the Fermi energy relative to the muffin-tin con-
stant. It is not a fitting parameter in the usual
sense, because for any chosen Er (within wide lim-
its) one can obtain a corresponding set of phase
shifts that reproduces the measured Fermi surface.
The first purpose of this paper is to explore the

effect of changing the EF parameter and what it
corresponds to physically. Secondly, we present
phase-shift pseudopotentials for the alkali metals
and copper. The calculation of various physical
properties and comparison with other pseudopoten-
tials is deferred to the following paper.

The nonuniqueness of E& can be looked at from a
physical point of view. Suppose one is given the
total potential (or pseudopotential) V(r) in a crystal.
It can be expressed as a sum of atomic potentials
zr(r -R,) associated with the sites R in an infinite
variety of ways (Fig. 1), and from Poisson's equa-
tion one can associate with each g a corresponding
distribution of conduction electrons. In pseudopoten-
tial calculations the electrical neutrality is usually
treated by linear-screening theory with overlapping
charge clouds. ' But this is not the only way to
allocate the conduction electrons. Other formula-
tions have appeared occasionally "6and we think
that there is a need to relate these to one another
and also to the screening method. Thus by way of
an extended introduction we try to classify these ap-
proaches in Sec. II. In particular, what we have
called" the minimum-perturbation pseudopotential
is stated more precisely than usual.

II. DEFINITION OF VARIOUS PSEUDOPOTENTIALS

We consider a system of N identical atoms at
arbitrary positions R in a volume NQ with periodic
boundary conditions applied at the surface of the
box. The total pseudopotential V(r) is expressed in
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Fii ions at arbitrary positions R . The screening re-
distribution of the electrons is calculated by per-
turbation theory, and yields' (ST stands for screen-
ing theory)

VS r(0) = 3 EFO i

where

EFO= 6 kr /2m

(2. 6)

(2. 7)

FIG. 1. Two ways of cutting up a periodic function
E(r) into a sum of atomic contributions f (shown shaded).
If one can subtract an arbitrary constant as in Eq. (2.1),
that widens the range of choices further.

the form

V(r) =A+K v(r —R )

=A +Z S(q) v(q)e"',
(2. 1)

(2. 2)

where

S(q)=N Z e '~'

v(q) = & ' Jv(~) e "'d'r .
(2 8)

(2 4)

v(0)= limv(q) .
q~P

(2.6)

As already noted in Sec. I, there are many ways
of dividing a given potentia, l V(r) of the whole sys-
tem into atomic contributions v(x). The nonunique-
ness is obvious for a crystal lattice: V(r) deter-
mines only v(q) at the reciprocal-lattice vectors
q= g (g& 0), and thus its interpolation and extrap-
olation from the smallest g towards q- 0 is entirely
at our disposal.

The most common method of constructing the
potential is to start with a free-electron gas, and
replace the positive background charge by positive

fl runs over all wave vectors allowed by the size of
the (large) box. We use the symbol v(r) for the
atomic pseudopotential in real space and v(q) for
its Fourier transform. Let each atom have z con-
duction electrons. In an infinite medium the con-
stants A and A have little physical significance.
They contain, among other terms, the exchange
and correlation contribution to the self-energy of
an electron in a uniform gas of z electrons per
volume Q. They have a significance for the work
function when there is a surface but we shall not
consider that case. For our purposes it suffices to
see that neither A nor A is ordinarily equal to v(0),
defined as

v, ,(0) = -r3EFO(z'/z) . (2. 8)

Many pseudopotentials v(q) are formulated in this
way with the limit (2. 6). When Fourier transformed
back into real space v(x), they constitute Ziman's
neutral pseudo-atoms. ' Phase shifts q, (EF) can
be calculated for v(r), which we would expect to
yield a Friedel sum

(2. 8)

with

Ls =z

because v(r) is the pseudopotential of an ion that has
attracted z screening electrons. w will not equal z
exactly since perturbation theory has been used in
v(q). The v(x) extends outside the atomic cell and
overlaps considerably with its neighbors. '4

However there is another approach to constructing
the pseudopotential which is attractively simple, but

, more limited in its usefulness. '" For this reason,
it is less well documented in the literature. Consid-
er a perfect crystal of a close-packed metal, divided
into atomic polyhedra. For simplicity of discus-
sion, we sha, ll approximate these by atomic spheres
of radius R, that are electrically neutral and hence
have zero potential outside R,. Inside we have the
ionic pseudopotential v„„together with the poten-
tial2P

v, (r) = (e/&, ) [-,
' ,'(~/&, )'j-- (2. 11)

is the free-electron Fermi energy. The limit (2.6)
derives from the screening of the ionic charge and
is otherwise independent of the nature of the pseudo-
potential. A more general formula is —[n(EF)]
where n(EF) is the density of states at the Fermi
level, and includes exchange and correlation cor-
rections and the band effective mass. But these
niceties are irrelevant to the present discussion.
The perturbation theory leading to (2.6) is valid for
a reasonably uniform density of atoms. Thus it is
an exact result'7 for the electron-phonon interaction
in the limit of a long-wavelength density fluctuation
of small amplitude. Equation (2. 6) expresses the
fact that each ion in a metal drags a neutralizing
charge —ze with it in any such fluctuation. Similar-
ly, if an additional impurity of charge z e is placed
in the metal, its pseudopotential after screening
has the limit
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from a uniform distribution of electrons (ignoring
the radial wiggles in the wave function). The latter
can be visualized conveniently as the very simple
Ashcroft form

v„,(r) = —ze/r, r &R,

=0, (2. 12)

with an empty core of radius B„but other forms
will serve as well or better. We shall refer to the
total potential as the atomic-sphere potential"

vAs(r)=v, (r)+v„,(r), r&R,

=0, y&R, . (2. 13)

When we add these up for all the atoms, we get a
good model of the total potential V(r ) in the metal,
and the constant A in (2. 1) is zero, aside from the
mean exchange and correlation hole in the electron
gas. 0 Otherwise this potential has few interesting
properties beyond its simplicity.

We need to take one step further in the spirit of
the coherent potential approximation and subtract
a constant 8 inside A, to obtain the minimum-per-
turbation potential" "(Fig. 2)

vM~(r) =v, (r)+v„,(r) B, -r &R,

=0 y&B, . (2.14)

ii ~MP~" ~

FIG. 2. The minimum-perturbation pseudopotential.
The central positive region represents the repulsive
pseudopotential of the core as in Eq. (2.12).

B is chosen so that the mean value of vM& is zero:

v (0) =(v (r)) =0, (2. iS)

where by v(0) we mean strictly the diagonal kr, k~
matrix element of v(r) and ignore the nonlocal varia-
tion with k. Adding the constant potential B inside
every atomic cell (we still ignore the difference be-
tween cell and sphere) only corresponds to a shift
-8 in the zero of energy without affecting bandgaps,
etc. Thus in Fig. 2 the horizontal line outside R,
represents the mean potential in all the other atoms.
From (2. 15) it is the energy of the bottom of the
band (in first-order perturbation theory). Thus in

v„~ we have a representation of V(r) Bwith zero-
net attractive or repulsive strength. Each cell as
set up has the correct number of g electrons and

vmp does not attract any more. Therefore we ex-

pect the corresponding Friedel sum' to be nearly
zero:

&MZ =o ~ (2. 16)

A slightly different alternative determination of B
would be to satisfy (2. 16) exactly. A third possi-
bility would be to set the forward-scattering ampli-
tude

f(0) = kz'Q, (2l +1)e'"'sing, (2. 17)

equal to zero. If we do an expansion to lowest order
in q„ then v(0), 6', and f(0) become identical, apart
from simple multiplicative constants, so that the
three conditions (2. 15), (2. 16), and (2. 17) are vir-
tually the same.

The idea of a minimum-perturbation potential has
of course occurred to other people but we think that
our prescription is more precise. Thus Meyer and
Young discuss what they term a minimal-muffin-tin
potential, which is essentially equivalent to our
minimum-perturbation potential. However, the
low-q limit of their potential satisfies V,(0) =0,
whereas our potential is constructed to set the low-

Iq limit (2. 15) exactly equal to zero. Ball~~ defines
a neutral potential corresponding to our v„s and
then obtains (2. 15) by linear-screening theory.
However we think that a weaker potential is obtained
by shifting the zero of energy as in our formulation
(2. 14). Physically it means that we take a,s our
zero-order model a free-electron gas with the bot-
tom of the band at A„s —B, and apply vmp (with mean
zero) as a fluctuation about that. At that sta, ge we

can screen the minimum-perturbation potential by
the electron gas and thus render it even weaker, as
can be calculated by linear-screening theory.

How useful is vMp'P Its minimum-perturbation
properties of course make it superficially very at-
tractive. However it cannot be used where there
are long-range density fluctuations, such as with
a low-q phonon or a liquid metal. In such situations
the mean potential and the muffin-tin constant,
i.e. , the potential midway between atoms, both
fluctuate according to —-',-E~04, where 4 is the local
dilatation, as was recognized long ago by Ziman. '
It is then essential to use a formulation with limit
(2. 6) that expresses physically that ea,ch ion drags
a neutralizing charge with it, no matter what the
structure.

The application of vM~ to pure metals is therefore
confined on theoretical grounds to reasonably close-
packed perfect crystals without thermal or other
density fluctuations. Its practical utility in such a
situation has not yet been tested widely. Ball" has
considered the band structures of sodium and lith-
ium, but only at the bottom of the band, well away
from the band gap. Shively' obtained reasonable
results (as good as most a priori calculations) for
the band gaps in aluminum. In the case of the al-
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kali metals and copper we have obtained a highly
accurate fitting of the shapes of Fermi surfaces
with sets of phase shifts satisfying (2. 15), as shown
in Sec. III. Incidentally, in all our discussion thus
far we have equated the atomic polyhedron with the
atomic sphere. In actual calculations from first
principles the non-negligible difference has to be
corrected for, as can easily be done, ' but in fitting
calculations it is all already included in the fitting
parameters. In either case, a correction must be
made when transferring pseudopotentials between
diff erent structures.

Qf course gM~ is just a precise statement of what
we neglect when we approximate a metal by a free-
electron gas. Its greatest use may lie in alloy
theory. There the value of B differs for two differ-
ent types of atom X and F so that one cannot express
it simply as a shift in the zero of energy. Instead
one must add and subtract B in ea,eh cell, yielding
the potential in the form

v~s (r) = vm~ (r) + &. (2. 18)

The first term is then negligible in a zeroth ap-
yroximation and the difference Bx -Bz in the second
term scatters the electrons as in the calculation of
Mott and Jones ' of the resistivity of alloys of the
noble metals with one another. We effectively re-
place each atom by a small piece of free-electron
gas with the bottom of the band at -B. Such a sim-
ple model of an atom is not without application. It
gives satisfactory zeroth-order values of cohesion
and atomic radius for the pure elements, "and may
yet find a greater didactic role. For most pur-
poses, however, the vs�(r) must then be applied as
a further perturbation.

We conclude that pseudopotentials with limit v(0)
effectively zero and Friedel sum P zero correspond
to the minimum-perturbation type of potential ggp.
We have set up a simple model of viz. in (2. 14), and
have shown that it is conceptually not quite the same
as the neutral atomic-sphere potential v&& (2. 13),
which is more closely related to the absolute scale
of energy. In both of these potentials, the elec-
trical neutrality is treated in a fundamentally dif-
ferent way from the usual linear-screening theory.

m. Apw FORM FACI'ORS

The measured shapes of the Fermi surfaces~ 6'24

of the alkali metals and copper have been fitted by
solving a secular equation of the AP%' type, ex-
pressed in terms of the phase shifts g, (modulo m)

of the atomic scattering potential, which are treated
as adjustable parameters. The elements of the
equation can be viewedv' as scattering matrix ele-
ments v(q) of a pseudopotential from plane-wave
state k to k =k+q:

v(e)=—vaxw(ki k')

4', ~ 8 - -i jg(lk —k IA,)0, 2m Ik -k'I
A2

+ Z(2f +i)f, (cose„-„-,)j,(f ft,)j,(u'ft, )

j~'(zr) ta—nrI( (E)y, (i r)
j,(Kr) —tang, (E)yr(~r) „.s

where A~ is the muffin-tin radius, 0 is the volume
of the primitive unit cell, E= ff g—/2m is the energy
of the electron state measured with respect to the
interstitial potential, 8 is the angle between the
wave vectors k and k, rI, (Ez) are the phase shifts
that describe the scattering of conduction electrons
by the ion cores, the primes on the spherical Bes-
sel functions denote derivatives with resyeet to x,
and the notation for the spherical Bessel functions
is that used by Abramowitz and Stegun ~ [i.e. ,
y, (0) = -~]. While only those elements with q equal
to a reciprocal-lattice vector g occur for a perfect
solid, our physical interpretation of the matrix
elements allows us to treat q as a continuous vari-
able to generate a yseudopotential "form factor"
v(q) that is applicable to a wider range of situations,
including electron-phonon coupling, etc. For pur-
poses of tabular and graphical display, we follow
the usual custom of placing Ik j =kz on the free-
electron sphere, and k+ q on the free-electron
sphere if q 2k&, or, in the direction opposite to
k, if q

~ 2'~.
The experimental data on the Fermi surfa. ees and

the numerical Inethod of fitting to them have been
reported elsewhere, as have a few of the pseudo-
yotentials. ' ' In that work, the range of the EF
yarameter was chosen more or less at random, and

it remains to select the sets of phase shifts that
correspond to the physical models discussed in
Sec. II.

With the APW and KKRZ methods it is usual,
though not necessary, to set the potential equal to
a constant (the muffin-tin constant) outside a chosen
radius 8,., and this constant forms a convenient
zero of energy for calculations. We have followed
that practi. ce in our discussion. Usually 8, is
chosen to be not greater than the radius Rz of a
sphere inscribed in the atomic polyhedron. To do
otherwise introduces several comylications when

solving a band structure from first principles, but
there is no need for this restriction in the present
context. Indeed we shall a,bandon it, at lea, st
temporarily, in order to make a connection with
tbe pseudo atom-s corresponding to (2. 6), which
overlap conslderabl. ' The matrix elements of
the APW, KKRZ, and other phase-shift formulations
correspond to well-defined pseudopotentials in
real space. e'~ For example, the KKRZ formula
ean be derived by taking plane-wave matrix ele-
ments of a model potential consisting of 0 functions
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TABLE I. Variation of best set of phase shifts and
Friedel sum 5 with radius of APW sphere for Cu. The
Fermi energy parameter is taken to be Ez=0. 180 Ry.
R~=2. 66 a.u.

(a.u. )

2.207
2.407 (R,)
2.607
2. 807
3.007
3.207
3.407

l.070
l.061
l.063
l. 116
1.035
1.012
1.122

0.1939
0.1936
0.1939
0.1938
0.1908
0.1877
0.1721

—0.0097
—0.0098
—0.0101
—0.0101
—0.0098
—0.0098
—0.0112

1.0208
1.0142
1.0149
1.0483
0.9924
0.9694
1.0074

fL

0

on the surface of a sphere of radius R„+ and there
is no mathematical reason why these should not be
allowed to overlap as do other potentials. The phase
shifts derived from Fermi-surface data for the
alkali and noble metals are remarkably insensitive
to the choice of R,. This is illustrated by tables
of phase shifts for sodium and copper for different
values of R, that have been published elsewhere. '
Phase shifts for copper over an extended range of
R,. are presented in Table I. It will be seen that
consistent results can be obtained with R, ranging
from less than Rr to R=3.4 a.u. , which is ap-
proximately the distance to the farthest corner of
the atomic polyhedron. The phase shifts were
fitted independently at each R, by the method al-
ready described, '6' and the remaining, rather
random, variation presumably arises from neglect
of higher g, and other compromises in the formal-
ism,

It should be clear from Sec. II that there is con-
siderable difficulty in relating the muffin-tin con-
stant to an absolute scale of potential. We have
not explored this question, and indeed it is probably
impossible in principle to deduce anything about the
position of the whole band on an absolute energy
scale from the shape of the Fermi surface.

iIn Sec. II we saw that the same total pseudopo-
tential V(r) can be expressed in various ways in

—0.2

—EFp

I

O. l

EF (Ry)

I

0.2

terms of atomic pseudopotentials v, each with a
different mean value v(q = 0). In a phase-shift
analysis these different pseudopotentials are gen-
erated by choosing different values for the Fermi
energy parameter E~, which measures the Fermi
energy relative to the muffin constant. ' For let
us start with zero potential everywhere and the
Fermi level equal to the free-electron value Epp
(2. I). Then turning on the pseudopotential pulls
the whole band down by an amount v (0) in first-
order perturbation theory, and the Fermi energy
with respect to the muffin constant becomes

Er = Erp+v(0), (3.2a)

so that

FIG. 3. Values of v(0) for sodium for various values
of the parameter EF. Points are from Eq. (3.1) with sets
of q, fitted to the Fermi surface with R, =RI. The line
is the theoretical relationship (3.2b).

TABLE II. Phase-shift and pseudopotential parameters for the alkali metals, all for radius Rz.

Li

Cs

EF,(Ry)

0.3492

0.2384

0.1559

0.1364

0.1165

EF(Hy)

0.0902
0.3190

0.0770
0.2370

0.0486
0.1551

0.0421
0.1346

0.0338
0.1122

0.8528
-0.1854

0.9753
—0.1449

0.6889
—0.1064

0.7636
—0.0688

0.7883
-0.0639

0.1240
0.1289

0.1013
0.0325

0.0932
0.0007

0.0812
—0.0230

0.0657
—0.0420

—0.0007
—0.0242

0.0019
0.0100

0.0062
0.0237

0.0066
0.0334

0.0070
0.0506

0
0.0002

vApw(0)

—0.2327
0.0000

—0.1589
0.0000

—0. 1039
0.0000

—0.0909
0.0000

—0.0777
0.0000

0.777
0.051

0.821
0.003

0.637
0.009

0.662
0.019

0.650
0.040
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0.2

O. I

o -o. l

-0.5

-04—
0 O. I 0.2 0.5 0.4 0.5 0.6

EF (Ry)

FIG. 4. Values of v(0) for copper for various values
of the parameter Ep fitted to the Fermi surface. Circles
are for R, =Rz=2. 407 a.u. ; squares are for R, =2.707
a, u. The theoretical relation (3.2b) is shown as the broken
line.

~(0)=Er -EFo (3.2b)

In conformity with experience, ' Ep is not a fitting
parameter in the usual sense of being optimized to
obtain the best fit to the Fermi surface. We find
that equally good results can be obtained by choos-
ing it at any value within reasonable limits, e.g. ,
0 Epo

Equation (3.2) turns out to be well obeyed for
all the alkali metals, particularly Na, as illustrated
in Fig. 3. Some values of Er and v(0) for the al-

kali metals are given in Table II. For Cu the situ-
ation is more complicated than (3.2). Figure 4
shows a plot of v(0) versus Er for two values of
A, . We find to a good approximation

(3.3)

where C is independent of EF but dependent on the
chosen E, (Fig. 4). The breakdown of (3.2) in Cu
reflects the nonlocality of the potential due to the
proximity of the d band. The degree of nonlocality
is evident from the variation of v(0) around the
Fermi surface. By v(0) we mean throughout our
tables the diagonal k, k matrix element with Ikl=kp
and this is spherically symmetric by definition.
Values of v(0) with k on the actual Fermi surface
of Cu (instead of the free-electron sphere) are
0;33 and 0. 10 Ry along the (100) and (110) direc-
tions and 0.46 Ry on the side of the neck.

However it is interesting that the relation (3.3)
is still linear in Ep. Indeed we have found that the
whole p(q) varies very nearly linearly with Ev,
which allows one to interpolate v(q) for any desired
EF from the two sets of results in Tables II and III.
The nearly linear variation arises from the fact
that E enters (3.1) linearly in the first term The.

only other E dependence is through g in the last
term within large parentheses in (3. 1), which is
just the logarithmic derivative of the wave func-
tion. In an ab initio band-structure calculation
it would be determined by the position of the Fermi
level relative to the potential inside the atom and
would not depend explicitly on the potential in the
interstitial region. We are therefore not surprised
that the term in square brackets does not vary very
much with E, and that what variation there is can
be approximated as linear.

0.4-

0.2—

K

CX

0

-02-

-0.4
~ EFo
2

0.5 ).0
q/2k F

).5

COPPER

2.0 2.5

FIG. 5. A PW-pseudopotential form
factors for copper. The broken curve
is for Ep=Ep, whereas the solid
curve corresponds to Ep= 3Ep For
copper, v(0) depends sensitively on the
muffin-tin radius (see Fig. 3). In the
calculations shown here we have set
this parameter equal to the Wigner-
Seitz radius (R,=2.6602 a.u. ) rather
than the inscribed sphere radius as in
our calculations for the alkali metals.
The other parameters were as follows
(phase shifts in radians):Ep =0.18 Ry,
gp = 1~ 059 gg = 0 1933 g2 = 0 ~ 0098&
q3=0 (solid curve), and Ep=0. 52 Ry,
gp = 0o 1133& v)g

= 0 ~ 1468& 'gg = 0o 1037&
@3=0.0009 (broken curve).



DIFFERENT TYPES OF PHASE SHIFT. . .

TABLE III. y(q) in rydbergs calculated with APW' matrix elements from both sets of parameters in Table II and with
KKH, Z matrix elements using the first set of parameters for each element in Table II. The last four rows refer to the
reciprocal-lattice vectors of the bcc structure.

Li(APE&) Li(APE&) Li(KKH, Z)

0.000
O. 100
0.200
0.300
0.400
O. 500
0.600,
0.700
O. SOD

0.900

1.000
l.100
l.200
l.$00
l.400
l.500
1.600
l.700
l. 800
1.900

2.000
2.100
2.200
2.300
2.400
2.500

l. 140
l.612
l.974
2.280

—0.232 71
—0.230 37
-0.223 23
—0.21106
—0.19345
—0.16979
—0.13936
—Q. 10121
—0.054 28

0.00.2 71

0.071 20
0.09479
0.11003
0.11652
0.11453
0.104 92
0.089 03
0.068 63
0.045 69
0.022 22

0.000 15
—0.018 86
—0.033 55
—0.043 11
—0.047 24
—Q. 046 13

0.10190
0.086 79
0.005 59

—0.041 61

0.000 OD

—0.000 54
—0.001 98
—0.003 72
—0.004 82
—0.003 90

Q. 000 76
Q. 01129
0.030 21
0.060 40

D. 105 17
0.108 34
0.107 42
0.103 27
0.093 41
O. 081 06
0.066 11
0.049 49
0.032 27
0.015 51

0.000 24
—0.012 67
—0.022 57
—0.029 04
—0.03196
—0.03149

0.108 47
0.064 19
0.003 97

—O. 028 01

-0.210 12
—0.207 88
—0.20109
-0.18947
—0.172 61
-O. 14989
—0.120 55
—0.08363
-0.03801

0.01761

0.08468
0.11312
0.13196
O. 14040
0.13849
0.127 07
0.107 69
0.08243
0.053 76
0.02423

-0.003 67
—0.027 74
—0.046 30
—0.058 23
-0.06307
—0.06106

0.12184
0.10492
0.003 23

—0.056 37

—0. 15S93
—0.15675
—0.150 28
—0.13978
—0.125 62
-0, 10838
-0.088 76
—0.067 65
—0.04606
—0, 025 20

—O. 00640
0.005 30
0.01358
0.01840
0.01999
0.018 81
0.01545
0.010 62
0.005 05

—0.000 55

—0.005 56
—0.00949
—0.01201
-0.01299
-0.01245
—0.01058

0.009 02
0.01493

—0.00436
—0.012 92

0.000 00
0.000 49
0.001 93
0.D04 19
0.007 09
0.010 36
0.013 69
0.016 68
0.018 92
0.01995

0.01932
0.01472
0.009 64
0.00448

-0.000 39
—0.004 62
—0.007 94
—0.010 17
—0.Oll 23
-0.01113

—0.D09 99
—0.008 00
—O. 005 44
—0.002 59

0.000 26
—0.002 84

0.012 73
-0.008 27
—0.010 37
—0.003 18

—0.14585'
—0. 143 73
—0. 137 56
—0. 127 27
—0.11355
—0.096 84
—0.077 85
—0.057 44
—0.036 61
—0.016 54

0.00144
0.016 37
0.027 06
0.033 25
0.035 03
0.032 82
0.027 33
0.01949
0.010 34
0.000 92

—0.007 77
—0.014 93
—0.01993
—0.022 45
—0.022 42
—0.020 02

Q. 021 16
0.026 50

—0.005 66
—0.022 15

-0.10393
—0. 10180
-0.09553
—0.085 56
—0.072 59
-0.057 59
-O. 041 82
—0.026 84
—0.01447
-0.00680

—0.006 22
—0.005 24
—0.006 08
—0.008 25
—0.01117
—0.014 25
—Q. 01693
—0.018 VV

—0.01944
—Q. 01877

-O. 01676
—0.013 55
—0.00943
—0.00478
—0.000 02

0.00442

—0.005 3S
—0.017 21
—0.01470
-O. Q05 74

O. 000 OQ

0.000 41
0.001 58
0.003 37
0.005 54
0.007 74
0.009 53
O. 01036
0.009 61
0.00653

0.000 29
-0.003 56
-0.007 22
-0.01039
-0.012 83
—0.01436
—0.014 86
—0.01433
-0.012 85
—0.010 56

—Q. 007 69
—0.00451
-0.00128

0.001 73
0.00427
0.006 16

—0.005 06
—Q. 01485.
—0.00847

0.001 15

q/2a~
0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900

1.000
1.100
l.200
1.300
1.400
1.500
1.6DO

1.700
1.800
1.900
2.000
2. 100
2.200
2.300
2.400
2.500

K(KKaZ)
—0.095 11
—0.093 02
—0.086 89
—0.077 13
—0.06445
—0.049 81
—0.03447
—Q. 01996
—0.008 10
-0.00097

—0.000 94
D. 002 16
0.002 91
0.001 63

-0.00118
—Q. 004 96
—0.009 06
—0.012 90
—0.015 96
—0, 017 82
—0.018 25
—0.017 18
—O. 01470
—0.01106
-0.006 63
—0.001 85

Hb(APW)
-0.090 93
—0.089 08
-0.083 64
—0.075 01
—0.063 83
—0.051 01
—0.037 Vl
—0.025 36
—0.015 64
—0.010 48

—0.012 OS
—0.01107
—0.01141
—0.012 69
—0.01443
—0.016 18
—0.017 51
-0.01809
—O. 017 Vl
—0.016 26
—0.013 80
—Q. 010 48
—0.006 57
—0.002 39

0.001 69
O. 005 32

H,b(APW)
0.000 00
0.000 40
0.00153
0.003 22
0.005 18
Q. 007 01
0.00817
0.008 04
0.005 84
0.000 72

—0.008 32
—0.01203
-0.01522
—0.017 63
—0.01906
-O. 01937
—0.018 56
-0.016 69
—O. 01392
—0.01049
-0.006 67
-0.002 77

0.000 90
0.00408
0, 006 54
0.008 13

H,b(KKHZ)
-0.083 14
-0.08133
-0.076 00
—0.067 56
—0.056 64
-0.04414
-0.03122
-0.01929
—0.01002
—0.005 33

-0.00741
-0.00455
—0.003 50
—0.003 99
—0.005 65
—0.008 01
=0.010 60
—0.012 94
—0.014 65
—0.01543
—0.015 13
—0.013 67
-0.01120
—0.007 92
-0.00413
-0.00018

Cs(AP%)
—0.077 67
—Q. 076 01
—0.071 16
—0.063 49
—0.053 64
—0.042 49
—0.031 18
—0.021 10
—0.013 89
—Q. 01144

—O. 015 90
—0.0.$5 77
-0.016 53
—0.017 78-Q. 01911
—O. 020 12
-0.02049
-0.019 98
-0.01848
—Q. 01600
-0.012 66
—0.008 68
—0.004 37
—O. 000 07

0.003 88
0.007 17

Cs(A PW)
0.000 00
0.000 45
0.001 73
0.003 63
0.005 79
0.007 71
0.008 75
Q. 008 12
0.004 92

—0.001 94

—0.013 67
—0.017 93
—0.02143
—0.023 87
—O. 025 04
—Q. 024 83
—0.023 26
—Q. 020 44
—0.016 60
—Q. 012 06

. -0.007 17
—. 0.002 31

0.002 16
O. 005 92
0.DQS 71
0.01041

Cs(KKRZ)
-O. 070 69
—0.069 07
-0.06432
-0.056 82
-0.047 20-D. 03634
—0.025 37
-0.015 67
—0.008 86
-0.006 84

—0.01173
—0.01000
-0.009 57
—0.01016
—0.01143
—O. 012 99
—0.01447
—0.Q15 51
—0.015 84
—0.01531
—0.01384
—0.01150
-0.00844
—0.00491
—0.001 20

0.00237
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TABLE III. (Continued)

q/2k~

1.140
1.612
1.974
2.280

0.002 73
—0.009 55
—0.018 28
—0.01188

—0.01107
—0.017 62
—0.014 52
—0.003 24

—0.01338
—0.018 29
—0.007 67

0.003 49

—0.003 93
—0.010 90
—0.01531
-0.008 64

K(KKRZ) Rb(A PW) Rb(A PW) Rb(KKR~) Cs (A I W)

—0.015 99
—0.020 48
—0.013 59
—0. 000 93

Cs (A PW)

—0.01943
—0.022 98
—0.008 44

0.005 22

Cs(KKRZ)

—0.009 69
—0.014 62
—0.014 31
—0.005 65

EF EFO (3.5)

gives a pseudopotential approximately of the mini-
mum-perturbation type with the limit (2. 15).

Our final sets of phase shifts for the alkali metals
are contained in Table II. They have been chosen
to satisfy the v(0) limits (2.6) and (2.15) exactly.
As expected, the Friedel sums (2. 10) and (2. 16)
and the Er values (3.4) and (3.5) are fulfilled ap-
proximately. The corresponding v„p„(q) are given
in Table III. While the two v(q) for an element dif-
fer substantially at low q, they are approximately
equal at large q around the reciprocal lattice vec-
tors g, as one would expect from the fact that they
give the same shape of Fermi surface. This is
also true for copper, as shown by Fig. 5. The
fractional difference between the pseudo-atom and
minimum-perturbation form factors is largest for
sodium but is comparable to the other elements in
absolute magnitude.

Finally Table III gives v(q) calculated from the
KICRZ formula for the first set of phase shifts for

The second point of interest about (3.3) and Fig.
4 is that C(R,) approaches the value Ezo expected
in (3.2b) as 8, becomes larger (.It equals 0.944E+0
at 8=3.4 a. u. ) We believe the reason to be that
the over-all potential V(r) in the metal becomes
more uniform on the gross scale as the potentials
that are equivalent ' to the APW matrix elements
overlap more. Thus the perturbation theory in-
herent in (3. 2a) is a better approximation.

From (3 ~ 2) it is clear that the choice
1

s = 3EFo

yields a v(q) corresponding approximately to the
linear-screening model of Sec. II with the limit
(2. 6) for v(0). Similarly, 6': z g(Er/EFO) (3.6)

electrons, which would extend the free-electron
band to EFO, have instead been pulled below the
Fermi level by that attractive center. To the ex-
tent that the potential can be regarded as a weak-
scattering center, this number must correspond to
the Friedel sum, as anticipated in the notation of

I.O

0.5

each element in Table II. The results differ a little
from vip. (q) and the limit (2. 6) is no longer exactly
satisfied, but for the perfect crystal the KKRZ
matrix elements must~ 28 give the same Fermi sur-
faces as the APW ones if each calculation is carried
to convergence.

While we have concentrated on (3.4) and (3.5),
corresponding to two particular pseudopotentials in
Sec. II, any other value of EF is equally legitimate
and it is interesting to derive the variation of W. ~

Figure 6 suggests that we consider the metal as an
electron gas of z(Ez/Ero)3~2 electrons per atom
forming a free electron band from the muffin con-
stant to EF. The remaining

Epp

EF

MUFFIN CONST,
I

O. I

Ep (Ry)

I

0.2

FIG. 6. Attractive potential v(~) (shaded) lowers the
Fermi level from EFp to EF.

FIG. 7. The Friedel sum of the best set, of phase
shifts for sodium as a function of the parameter Ez.
Circles are from sets of phase shifts fitted to the Fermi
surface. Curve is the theoretical expression (3.6).
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(3. 6). Figure 7 shows that for sodium Eq. (3.6) is
well obeyed for both the minimum-perturbation and

the pseudo-atom phase shifts, and that it fails only
for very small values of E&.

IV. CONCLUSIONS

Our purpose has been to discuss the relationship
between various types of pseudopotential that differ
only in the way in which electrical neutrality is
taken into account. We have described two espe-
cially important examples, the minimum-perturba-
tion and the pseudo-atom pseudopotential. The
former corresponds to a model of the metal in

which the ionic potential in each atomic cell is
totally screened by the conduction charge within
that cell. The latter corresponds to screening of

overlapping atomic potentials by extended distribu-
tions of conduction charge. We have emphasized
that, whereas any of these pseudopotentials can be
used to describe the electronic structures of metals
and alloys, only the pseudo-atom pseudopotential
can be used to describe the interaction of conduction
electrons with thermal or other density fluctuations.

We have shown how these different types of pseu-
dopotential can be constructed by appropriate choice
of the Fermi-energy parameter in a phase-shift
analysis of experimental Fermi-surface data, and
have presented minimum-perturbation and pseudo-
atom form factors for the alkali metals and copper.
An analysis of the electronic properties of the al-
kali metals in terms of phase-shift pseudopotentials
will be presented in the following paper. '
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