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J4 3d

f(330)/f(411) = l. 013 + 0. 007

t2g = 76%

t2, = 72Vp

TABLE III. Percentages of 3d electrons having t2~ or
z~ symmetry.

measured population in the bcc metals iron and

vanadium, ' and in contrast with nickel where, as
one mould expect, no marked asphericity effects
are present.
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Theorem on the Magnetoconductivity of Metals
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Under rather general assumptions it can be proved that the conductivity of a metal is mono-
tonically nonincreasing with magnetic field. In the proof given it is assumed that the electron
motion can be described by a fermion Boltzmann equation with- arbitrary multiple band struc-
ture and an arbitrary law of scattering. However, the magnetic field is to enter only through
the Lorentz force term. Exceptions to the theorem are known; they arise probably because
the magnetic field influences the scattering process.

A remark by Plppald thRt the mRgnetoreslstRnce
can be proved positive under very general assumptions
has led the author to investigate this question. The
result of this investigation is the following much
stronger theorem:

If the magnetic field acts on electrons in a band
or band system only through its contribution to
the I orentz force, and if the behavior of the elec-
t ons is adequately described by a Boltzmann equa-
tion, then the electrical conductivity of a metal is

a monotonical/y nonincreasing function of the mag
nitude of H. Conductivity is here defi ned as the
number uith uhich E is to be multiplied to get the
power dissijation per unit volume. The statement
~s restricted to the Ohmic range.

We shall outline the proof for a single band
and indicate at the end its generalization to band
systems. We take the behavior of the electrons
to be controlled by an equation of the following
form:

sf(k) e ~ i. &W(k) ~ &f(k)
~ t A Sc ~k &k
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+ R(k, k')P(k) [I-f(k')le'""'-f(k') [I-f(k)]e'""[dk' = 0.

W(k) fd (k) —
@

~ fdie +
4

R(k, P)

x W(k')(f(l f') e —f—'(1-f) e v ] dkdk' = 0 .

(2)

The equation shows the power output going partly
into an increase of the energy of the electrons,
partly into the relaxation mechanism where it be-
comes all "heat, " by assumption. The second line
is thus one term in the total entropy producti, on.
There is a second contribution from the electron
system itself which reads

Se V

k~
[-f lnf- (1 f) ln (1 -f)] d -k,

1 dS, V
' sf f

ks dt 4v' &f 1 f-

Here R(k, k') is the rate of scatteringinto unit volume
of k space;, it is positive and symmetric in its
two arguments. The representation of the relaxa-
tion processes used here is reasonably general.
By including with every process its inverse, the
Fermi distribution is automatically the stationary
solution in the absence of an E field, and, in addi-
tion, normalization is automatically preserved in
time. Admittedly, the equation is somewhat sche-
matic about the relaxation mechanism; it is hoped
that the form is sufficiently general to represent
adequately a variety of such mechanisms.

The first step consists in calculating the entropy
production resulting from (1). This means, in-
cidentally, proving an H theorem for it. First we
get the energy balance by multiplying with the
energy-band function W(k) and integrating:

Inserting &f//&t from (1), we get for this contribu-
tion

x [f(1 f') e-~ f'(1-f) e~ -]dk dk . (8)

To get the total entropy production we add the sec-
ond line of (1), multiplied by 13V/4v', to this ex-
pression. We find

R(k, k')
8

x (»[f(1-f') e"]—»[f'(I-f) e" ]]

x(f(1 f') e~ --f'(1 f) e~ jd-k dk' . (4)

An H theorem is thus proved because the two curly
brackets have the same sign.

We now come to the specific transformation
necessary to prove the theorem stated above. ' Since
it appears to be valid only in the Ohmic range, we

treat E as a perturbation, but not H. Such a treat-
ment is not contradictory, because the equilibrium
distribution is a solution of (1) for all H, as long
as E is zero. We also restrict our attention from
now on to stationary solutions of (1). We take the
Fermi level as the zero of energy and write f in

the form

f(k)=1(e'""'+1) "+g(k) .

g(k) must be thought of as proportional to E. If
we substitute this into (1) and retain only linear
terms in E, we get

aW e ~W &g—Pe E- - 4@cosh &PW — ~- H ~

~k Pl C

~1

+
1 q~ qq (+cosh ~ pW —4g cosh 2 pW )dk = 0 . (6)(I+e-'~) (I+e-'~'

Similarly, the entropy production (4) reduces to a
quadratic expression in E:

dS 2V R(k k')
ks dt 'v'

I I
(1+e 6~) (1+e ~~

)

x(gcosll g pW-g cosll 2 pW ) dk dk . (7)

To get the behavior of the system as a function
of the magnetic field we differentiate both (6) and

)

(7) with respect to it. We define

or, more precisely,

1 8g
II

The derivative of (7) reads

(8a)

(8b)
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dH k~ dt

4V ' R(k k')
7(B (I+ e Blv) (I ye Blv

)

x(g cosh —,
'

pW -g ' coshB & pW' )

x (h cosh'-,' pW - I(' cosh'-,' pW' )dk (fp (9)

and of (6) reads

R(k, k')
(1+e B

) (1+e B
)

x(&cosh —'pW —I('cosh BpW')dk' = 0. (10)

We now extract a pseudo-H-theorem from (10) and
link this result with the field derivative of the
entropy production. Multiply with h cosh 2 PW and
integrate. The second term disappears:

e g
~

B( BW dg
h cosh —,pW x - d((@c H &k ~k

R(k, k')
(1 e -B(v) (1 e Blv-')

x (I( cosh'B pW —h' cosh —,
' pW')B(fk (fg'

The left-hand side above allows an interesting
transformation. It is of the form

where cp is a function of W. Because of the struc-
ture of the cross product this can be integrated by
parts ong and k without touching y: The second
derivatives of y cancel. We have therefore the
alternative form

e g B, &W dh

h'e H g cosh~&~ Pg x dk
k

R(k, k')
l (1+e B

) (1+e ').

x (h coshB-,'PW —h' cosh —,'PW') dk(fk' . (ll)

Now we multiply (10) with g cosh —,'PW and integrate.
The first term now disappears, and we are left
with

Ie I Sk &k „„I (1+e B )(1+e B
)

x (g cosh —,pW —g' cosh —,pW'} (I( cosh —,pW-I( cosh'-, pW')dk dk' .

In this formula, the right-hand side appears in (9), the left-hand side in (11). Putting this together, we

find, using (8a),

(I 1 dS 4VH "~~' R(k, %') df B, sf'
3 B(v B(vI cosh —,pW — cosh —,pW

' dk (fK

4

(12)

This is the desired result. Entropy production
here is at constant E and, incidentally, df/sH is
proportional to E. So the left-hand side is shown
to be proportional to E and. negative. This means
a conductivity which is monotonically nonincreasing
with H. Incidentally when the magnetoconductivity
tends to be constant, Eq. (12) contains a statement
on the functional form of the distribution function.

The extension of the proof given to band systems
is automatic. Wherever k appears, a band index
must appear also, and wherever k is integrated
over, there is also a sum over a band index; in-
terchange of k and k' must be accompanied by in-
terchange of the band indices. The relaxation rate
becomes a function R„„.(k, 0'); it is still symmetric
provided the band indices are interchanged simul-
taneously with the wave vectors. The end result
will be

dH k~ dt

4VH
"

R„,„.(k, k')
BB

~ (1 B (V~(f)
) (1 -BIVg'((('l)

, x cosh B pW„(k)
'f. (R)

cosh & PW„.(k') (fk dk' . (l3)

The previous conclusions are not modified by this
more general result.

There are indications in the literature that the
statement just proved does not hold for certain
metals containing paramagnetic impurities. The
cause for this failure is almost certainly that the
scattering is dependent on the magnetic field. This
renders the given proof invalid.
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The total pseudopotential in a metal can be expressed in many ways as a sum of atomic
pseudopotentials. One way involves the usual "linear-screening" potential and another a "mini-
mum-perturbation" potential. These different types of pseudopotential can be constructed by
fitting experimental Fermi-surface data in terms of phase shifts within the formalism of the
augmented-plane-wave method of hand-structure calculation. An investigation is made of the
effect of choosing different values of the "Fermi energy parameter" which defines the mean
interstitial potential relative to the absolute Fermi level. Pseudopotential form factors calcu-
lated from the empirical phase shifts are presented for the alkali metals and copper.

I. INTRODUCTION

There has been a trend in recent years' ' to ex-
press the band structures of nearly free-electron
solids in terms of scattering phase shifts g, . This
approach seems to be more effective than others
when d-band effects are important, even in the al-
kali metals. ' In particular, the Fermi surfaces of
the alkali metals' and copper have been fitted in
this way by using the formalism of the augmented-
plane-wave (APW) method of band-structure calcu-
lation. The phase shifts describe the interaction
of a conduction electron with the atom concerned,
and, in order make use of this information to de-
scribe the electron-phonon interaction and a variety
of physical properties, one needs to deduce the ap-
propriate pseudopotential. The term pseudopoten-
tial is used here in its current wide sense, 7' and
includes, for example, the APW form factor and the
Korringa-Kohn-Rostoker-Ziman (IGCRZ) expres-
sion.

However, it is necessary to resolve one ambiguity
first. ' ' In fitting Fermi surfaces within the
APW formalism, one has to choose a value of the
Fermi energy parameter E~, which is the measure
of the Fermi energy relative to the muffin-tin con-
stant. It is not a fitting parameter in the usual
sense, because for any chosen Er (within wide lim-
its) one can obtain a corresponding set of phase
shifts that reproduces the measured Fermi surface.
The first purpose of this paper is to explore the

effect of changing the EF parameter and what it
corresponds to physically. Secondly, we present
phase-shift pseudopotentials for the alkali metals
and copper. The calculation of various physical
properties and comparison with other pseudopoten-
tials is deferred to the following paper.

The nonuniqueness of E& can be looked at from a
physical point of view. Suppose one is given the
total potential (or pseudopotential) V(r) in a crystal.
It can be expressed as a sum of atomic potentials
zr(r -R,) associated with the sites R in an infinite
variety of ways (Fig. 1), and from Poisson's equa-
tion one can associate with each g a corresponding
distribution of conduction electrons. In pseudopoten-
tial calculations the electrical neutrality is usually
treated by linear-screening theory with overlapping
charge clouds. ' But this is not the only way to
allocate the conduction electrons. Other formula-
tions have appeared occasionally "6and we think
that there is a need to relate these to one another
and also to the screening method. Thus by way of
an extended introduction we try to classify these ap-
proaches in Sec. II. In particular, what we have
called" the minimum-perturbation pseudopotential
is stated more precisely than usual.

II. DEFINITION OF VARIOUS PSEUDOPOTENTIALS

We consider a system of N identical atoms at
arbitrary positions R in a volume NQ with periodic
boundary conditions applied at the surface of the
box. The total pseudopotential V(r) is expressed in


