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A single-band model is used to study the elec tronic s true ture of disordered binary alloys. Func-
tional-derivative techniques are used to generate an expansion for the electron self-energy that
is free of all "multiple-occupancy" corrections. This analysis reveals that the relevant small
parameter for the coherent-potential approximation (CPA) is Z ~, where Z is the number of
nearest neighbors. In addition to being exact to first order in the concentration x and third or-
der in the impurity potential P, the CPA retains just those contributions of higher order in x
and 5 that are independent of Z ~. Various methods have been suggested to calculate correc-
tions to the CPA due to two-atom clusters. While all of theseareexact to order x and 5, we
argue that a proper generalization of the CPA must also be correct to higher orders in Z ~.

The appropriate equations are derived and shown to imply the existence of satellite levels on
either side of the impurity subband. A formalism is developed to examine the departure from
the usual assumption of complete compositional disorder. To order x, the single-band Hamil-
tonian is found to imply the existence of short-range order in the alloy. The influence of this
short-range order on the density of states is discussed and is shown to modify the clustering
effects previously evaluated.

I. INTRODUCTION

This paper is concerned with the single-particle
theory of the electronic structure of disordered
binary alloys. The problem is most simply dis-
cussed in terms of a nearest-neighbor tight-bind-
ing-model Hamiltonian. ' This model has the
simplifying feature that the disordered potential is
cell localized and may therefore be decomposed
into a sum of contributions from each site. In a
Wannier basis these contributions are simply the
energy levels e and e of the two constituents. It
is assumed that the distribution of these levels is
completely random. A principal advantage of this
model lies in the fact that there are available a
number of exact results concerning the localization
of the energy spectrum and the values of the lead-
ing moments of the density of states. ' These exact
results have been used to compare several common
theories based on a "single-site" decoupling of the

equations of motion. Following this course several
authors' have concluded that the coherent-potential
approximation (CPA) of Soven and others provides
the best possible single-site description of the alloy.
Within the appropriate limits, the CPA exhibits di-
lute alloy, virtual crystal, and well-separated-im-
purity-band behavior. '

The coherent-potential (CP) concept has generally
been developed within the framework of a multiple-
scattering description of disordered systems. '
In this approach the propagation of the electron is
regarded as a succession of elementary atomic
scatterings which are then averaged over all con-
figurations of the alloy. The essential feature of
the CPA is that the individual scatterers are viewed
as being embedded in an effective medium whose
choice is open and can be made self-consistently.
This physical condition corresponding to this choice
is simply that if the part of the medium belonging
to a given site is removed and replaced by the true
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atomic potential then on the average there should
be no further scattering. The effective medium de-
termined by this condition is equivalent to the
electron self-energy in the CPA.

While the usual derivations' ' of the CPA are
both physica1. ly appealing and mathematically con-
cise, nevertheless several fairly obvious questions
remain unanswered. In particular, what are the
small parameters (of the theory) and in terms of
these parameters, what are the leading corrections
to the CPA? More specifically, is it possible to
identify a parameter such that the CPA represents
the first term in a systematic perturbation expan-
sion based on this parameter?

In addition, one may question the assumed lack
of short-range order in the alloy. If the model
Hamiltonian is treated carefully, there will exist
correlations in the positions of the atomic scatterers.
Physically, this short-range order reflects an
attempt of the ions to adopt a configuration of min-
imum free energy when the alloy is annealled in
thermal equilibrium. At what level of approxima-
tion must these correlation effects be taken into
account if we are to obtain a consistent description
of the electronic structure of the alloy?

Within the context of the tight-binding model the
entire behavior of the Hamiltonian is specified in
terms of just two parameters, x and 6, respectively,
characterizing the concentration of impurities and
the strength of their potentials. Since the CPA has
been shown to interpolate between the virtual-crys-
tal and split-band limits, it is clearly not an ap-
proximation based on weak impurity scattering.
Nor is the CPA simply a low-density approximation.
For, while it is true that the CPA is exact to only
first order in g, it nevertheless gives better re-
sults than several other methods that are also ac-
curate to order x.

Statements about the expansion parameter of the
theory may be made most precisely in terms of
the moments of the electronic density of states.
The essential point is that in addition to x and 5,
the moments depend on the hidden geometrical
parameter Z ', where Z is the number of nearest
neighbors. ' Z ' governs the size of the corrections
to the CPA moments and is, in fact, the relevant
expansion parameter of the thoery. In addition to
the terms of order ~, the CPA includes all con-
tributions of order x~, x3, ~ ~ ~, and higher power of
5 that are independent of Z '. It is precisely these
terms that allow the CPA to predict so many mo-
ments exactly. More important, the parameter Z '
scales down the corrections to the CPA. Accordingly,
the errors in the CPA moments are 0 (x'/Z') rather
than simply O(x ).

To establish the connection between the CPA and
the parameters g and Z ', procedures based on
arbitrary decouplings of the equations of motion

must be replaced by systematic perturbation theory.
In Sec. II, the functional derivative techniques of
Martin and Schwinger' are used to derive a compact
diagrammatic representation for the electron self-
energy V. The principal advantage of the functional
derivative method lies in the fact that it automati-
cally includes the "multiple-occupancy corrections"
that complicated previous diagrammatic expansion. ' 7

The perturbation series expresses the various
contributions to the self-energy in terms of x, 5,
and the Wannier matrix elements G(n, n ) of the self-
consistently determined Green's function. The lat-
ter quantities introduce the explicit dependence of
V upon the energy z. Indeed, examination of the
asymptotic behavior (as z- ~) of G (n, n ) allows us
to immediately classify each diagram according to
which moments of the self-energy it will contribute.
These considerations also lead to an appreciation
of the importance of the parameter Z '. Different
matrix elements of G are asymptotically related
to different powers of z and Z '. For example,
as z —~ the diagonal matrix element G(n, n) —z '.

/

By contrast if n and n are nearest neighbors,
G(n, n ) —Z 'z . It is then shown that the CPA
incorporates every diagram that involves only
the diagonal part of Q. These are the most signif-
icant contributions in the sense that they lead
to exact agreement for the leading moments of V

(i. e. , they exhaust the lowest-order sum rules).
In addition, the errors in the higher CPA moments
are small and are, in fact, no greater than xz/Z .
To illustrate these formal considerations, we pre-
sent numerical results based on three different
low-density approximations. Of the three methods,
only the CPA provides an adequate description of
the electronic density of states over the entire
range of impurity strengths.

It must be emphasized that Z ' is a relevant
small parameter only for the eloments of the self-
energy and density of states. In particular, this
parameter does not allow us to make any specific
statements about the validity of the CPA at a given
energy within its allowed spectrum or at the band
edges. Statements about moments provide geces-
Sgyy conditions for an approximation to be accurate
but they are by no means sufficient.

Having established that the parameter Z pro-
vides a criterion for distinguishing between dif-
ferent methods all of which are exact to the same
order in x, the CPA may be extended (Sec. III)
to higher orders in x and Z . At the next level,
these results provide the best possible treatment
of two-atom clusters just as the C PA was the best
treatment of one-atom (i. e. , single-site) clusters.
The most obvious consequence of these pair clusters
is the appearance of satellite levels on either side
of the impurity subband. These levels may be in-
terpreted as the bonding and antibonding states of



PAIR EFFECTS IN SUBSTITUTIONAL ALLOYS. I. . . 385

a two-atom "molecule" imbedded in an effective
medium. This point of view will be considered in
more detail in the second paper of this series where
equivalent results will be derived from multiple-
scattering theory.

The questions involving short-range order are
discussed briefly in Sec. pf. To be consistent
in the treatment of pair effects, one must take
account of the fact that to order x~ there exist in-
duced correlations in the positions of the atomic
constituents. When the formalism is generalized
to include atomic correlations, it is found that to
O(x ) the short-range order introduces no new

qualitative features but does lead to a modification
of the size of the clustering effects calculated in
Sec. III.

It should be emphasized that this discussion of
short-range order is limited to the tight-binding
localized perturbation model and is included only
for the sake of completeness. All effects related
to the self-consistent choice of potentials (for ex-
ample, charge transfer and the deformation of the
unit cell) have been neglected. These effects are
expected to contribute to the atomic correlations
in a more fundamental way than they do to the
electronic structure.

II. PERTURBATION THEORY AND SINGLE-SITE
APPROXIMATION

A. Formulation of Problem

Consider the alloy to be described in the tight-
binding representation. A single orbital tn) is
associated with each site n. In second-quantized
form the one-electron Hamiltonian is

num

(2. 2)

The second line defines the separation of H into a
diagonal part D and an off-diagonal part 8'. The
diagonal elements e„may be regarded as random
atomic levels which assume one of two possible
values e or e~ depending on whether an atom
of type A or B occupies the site n. The re-
spective concentrations of A and B atoms are x
and y =—i —x, both varying from 0 to 1. The hop-
ping integrals h„are assumed to be independent of
the alloy configuration. The operator lV may there-
fore be interpreted as the Hamiltonian of the pure
crystal for which e = e = 0.

If we assume that only hopping between nearest
neighbors is important, the matrix elements of
S' in the Bloch representation are

(2. 3)

(2. 4)

s(h) describes the h dependence of the band energy,
Z is the number of nearest neighbors, and zo—= Zh
is one-half the bandwidth. In a simple-cubic crys-
tal with lattice constant a, s(h) takes the form

(2. 5)s(h) = —3 (cosh„a+ cosh,a+ cosh, a)

It is convenient to redefine e and e in terms of
~ and to fix the zero of energy such that

(2. 8)

The second of these equations defines the dimen-
sionless impurity strength 5. The energy u) simply
scales the entire Hamiltonian and will be set equal
to unity. The model Hamiltonian is then completely
specified by the three parameters x, &, and h= Z '.

Assuming that the Hamiltonian (2. 1) is valid at
finite temperatures, the statistical properties of
the alloy are described by the density matrix

p=e -&(H-g )( g&3zs)/Tr-[s-()(s-u, N -g N )]

s-8(s ())iL) E ~-„l 6~ N&/

Tr [s-()(s-( 4 4& E gl-)&-)I. N&] (2 7)

Here p, & and p are the chemical potentials of the
two types of atoms, N=N +N is the total number
of electrons, and the trace extends over both the
electron and configurational variables. The en-
semble average of any observable A, to be denoted
by &A) is defined as

where u= —P(((( —u )/25 and lg) is the unique
ground state of the electron variables. The trace
in (2. 8) is over the possible values 0, 8, of e„, the
configuration-independent characteristics of H hav-
ing been incorporated into ig). The value u is
fixed by the requirement

(2. 9)

There are several techniques in terms of which
one may develop a perturbative expansion for the
one-electron properties of the alloy. Adopting the

The density matrix (2. 7) allows the 4 and B atoms
to adjust their positions in order to minimize the
total free energy of the al.loy. Indeed, it will be
seen in Sec. IV that Eqs. (2. 1) and (2. 7) imply
the exis'ence of short-range order in the arrange-
ment of the atomic constituents. In this and Sec.
III, the effects of short-range order will be ne-
gl.ected. This approximation is exact if the alloy
is quenched after being annealed at infinite temper-
ature. At zero temperature, the density matrix
for the random alloy is given by the factorized
form

p = lg) f [exp(u )~„e„)]/Tr[exp(u 5~„e„)]]&gl (2. 8)
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functional-derivative approach of Martin and
Schwinger, '4 we allow the par" meter u in (2. 8) to
vary from site to site

p= ~g)( [exp(L'„u„e„))/Tr [exp('~„u„e„)]j(g~ .
(2. 10)

The site dependence of u„ is simply a formal de-
vice, at the end of any calculation all the u„will
be set equal as in (2. 8) and (2. 9). Various quan-
tities of interest may now be derived by differen-
tiation with respect to u„. For example, the con-
nected correlation functions, describing fluctua-
tions in the disordered potentials, are defined as

B. Perturbation Theory

To derive an equation of motion for G(n, n,) we
combine (2. 14) with the time derivative of (2. 13):

(n, n )=a(t t)t-)„„,+q(t t)-q (n',
. dG d(t)(n)

= 5(n —n ) —g h„G(m, n ) —t(e„T[y(n), (t)'(n')])

=~(n-n')- Q h„„G(m, n')
gl

C(n„n„~ ~ ~, n, ) =
~ —(e„)G(n, n )—i t)G(n, n ) t2. 15)

gu e ~ e gu
ln Tr[exp(~&„u„&„)] . (2. 11) The second step follows from the Heisenberg equa-

tion
The first few of these functions are

C(n„n, ) = (e, ~,) —(e,) &e ),
C(n„n„n, ) = &e,e,e,) —&e,) (e,e,)

—(ep)(eyes) —(eg)(egep)+ 2(eg)(eg)(es),

etc. In the random alloy C(n, ~ n, ) is site diagonal
and may be written as

(2. 12)

where c'"(x) is a. polynomial in x of degree I, the
first few of which are given in Table I. These
polynomials are identical to the random-variable
cumulants discussed by Leath, ' Yonezawa, and
Kubo. '6 From Eqs. (2. 11) and (2. 12) it is not dif-
ficult to show that the cumulants may be derived
from the generating relation

d'
c'"(x)=, ln[xe'+ (1 —x)]dt

Within the one-electron approximation, all the
macroscopic properties of interest are determined
from the Green's function

G (n, n ) = i (T [(t(n), g~(n') ])

= tn(t t') &C(n) y'(n -)) —tn(t - t) (C'(n )C(n)),

(2. 13)
where

d(t) (n) =((H, ((n)]= —i a„((n) ~ Z a„('(m)) .
mgn

It terms of the Fourier transform

G(n, n
~
z) = 1 e "' ' ' G(n, n ) d(t —t ),

(2. 15) becomes

~..= (z —&~.))«n, n'Iz)

G '(n, n') = z t)„„,—h„„, —V (n, n ), (2. 17)

where

V(n, n )
—= (e„)t)„„.+ ' G '(m, n ) . (2. 18)

&u„

Bather than work directly with the propagator G
it is more convenient to derive a perturbation

Iseries for the self-energy operator V(n, n ). Com-
bining Eq. (2. 18) with the identity

t) V(m, n')
=G n, m

u&

—Q h„„G(m, n
~

z) — ', (2. 18)
mgn &u„

Suppressing the explicit z dependence and adopt-
ing the convention of implied summation over all
internal indices, Eq. (2. 18) may be rewritten as

In these equations n is a. combined time-site in-
dex [i.e. , (t)(n ) = (t)„. (t )] and T denotes the usual
fermion time ordering. We conclude this sub-
section by observing that G satisfies the identity

t (e„T [q(n), y'(n')]) =(e„) G(n, n')+
~u„

(2. 14)

TABLE I. Random variable &emu. &»ts.

(f)

c"'=xy
c'3 =xy(y-x)
c'~i =xy(]. —6xy)c'"=xy(y —z) (& —&»y)
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FIG. 1. Diagrams representing the first four terms in
Eq. (2. 24).

we obtain the closed functional equation

V{n, ~ ) = (z„) {&„„,+ G(n, m)
{'

V&( mn )
5u„

{2.19)

Equation (2. 19), the central result of this sub-
section, can be used to generate a systematic ex-

I
pansion for V(n, n ). To lowest order we have

V(n, n')=(z„) t&„„. , (2. 20)

the usual "virtual-crystal" approximation. Sub-
sequent terms in the perturbation series are de-
rived by simple iteration of (2. 19). For ex-
ample, substitution of (2. 20) into the second term
on the right-hand side of (2. 19) yields

V(n, n') = (e„) t&„~+G(n, m) (t&(z )/t&u„) {& „

= (z„) 6„„,+ G(n, n ) C„"'t&„„.

= [xt&+ xy {&
' G (n, n) ] &„„.. (2. 21)

t&G(m, m)/t&u„= G(m, m) (5 V(m, n)/{&u„) G(n, m)

=G(m, u) C„'z'G(u, m). (2. 23)

Combining (2. 23) and (2. 22), we obtain the next
approximation to the self-energy:

V(n, n ) = [(e„)+ C„'G(n, n) + G (n, n) C~" G (n, n)] t&„„,

,G (pg, u') C„'!'G(n,'n) O'„"G{n,n').

This result provides an adequate description of
the electronic properties of the alloy in the weak-
coupling limit «&1, but is incapable of predict-
ing the transition to a split-band regime as & in-
creases.

If & may no longer be regarded as a small param-
eter then the interaction of (2. 19) must be carried to
completion. The parameters x and Z ' can then
be used to establish criteria for the selective
summation of various terms to all orders in 6. The
essential details are illustrated by the evaluation
of the next contribution to V(n, n ). Substituting
(2. 21) into (2. 19) we obtain

V(n, n') = (~„) t&„„,+ G (n, m) (t&/5u„)

x [(z.)+ Cg' G(m, m) ] t.„,

= (z„){&„„.+ G(n, m) [Cp& t&„„+C"' G(m, m) t& „

+ C~~&(t&G(m, m)/t&u„)] {& „.. (2. 22)

To evaluate the last term in the square bracket of
(2. 22) we recall

V( I) (e ) g g p(P& z (P+&&-
P=0

(2. 26)

Accordingly, the sequence of numbers A'„~'. furnish
a criteria in terms of which we can distinguish be-
tween various approximate calculations of V(n, n ).

The z (and Z) dependence of V(n, n ) enters the
perturbation theory through the factors of G(n, n )
The leading contributions as z- ~ are

G(n, n') =(n~ (z- W- V)-'~n'),

G(n, n') -z '
(n = n ),

G(n, n ) -z Z ' (n, n nearest neighbors).

(2. 27a)

(2. 27b)

(2. 27c)

In the last step we have used the fa.ct that (&~ IV~ + )
= a= Z-'.

The last term in this equation provides the lead-
ing contribution to the off-diagonal part of V(n, n ).
Formally, these off-diagonal terms arise when
{&/t&u„acts on matrix elements of G.

It is convenient to represent the various con-
tributions to V{n, n ) diagramatically. To each
factor C'„" we assign a cross with / dashed vertical
lines emanating from it. The cross represents
the cumulant c'" (x) and the dashed lines are simply
factors of 5. The matrix elements G(n, n ) will be
depicted as solid horizontal lines, the ends of which
are connected to potential (dashed) lines associated
with C„'" and C'„' ', The diagrams representing the
four terms in (2. 24) are shown in Fig. 1. It
should be noted that the last term is at least O(xz)
because it involves two factors of c'3'. By con-
trast, the first three terms are all O(x).

The remaining terms in the perturbation series
are generated by further iteration of (2. 19).
Results up to sixth order in 6 are summarized in

Fig. 2. The three columns in this figure contain
diagrams of order x, x, and x', respectively. Be-
cause each cross represents the cumulant c'"(x)
rather than simply a factor of x, our diagrams
automatically include the "multiple-occupancy"
corrections that enter other formulations of per-
turbation theory. ' ' The connection between multi-
ple occupancy and cumulants has been discussed
by Yonezowa. ' A principal advantage of the func-
tional-derivative technique is that the cumulants
emerge naturally, rather than via the complicated
regrouping of terms discussed by Yonezawa.

In addition to the concentration x, the diagrams
in Fig. 2 may be classified according to their de-
pendence on the parameter Z '. This connection
is made most directly in terms of the moments
of V(n, n ):

h.'„~„'. = J E~ Imv{n, n ) dE. (2. 25)

For small P, A'~„'. may be evaluated exactly from
the asymptotic expansion
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FIG. 2. Self-energy diagrams through sixth order in P.

If n and n are separated by more than the near-
est-neighbor distance, G(n, n ) is asymptotically
higher order in g end Z '. The exact coefficients
depend on the specific type of crystal lattice.

Several conclusions follow immediately from
Eqs. (2. 2V). First, in a given row of Fig. 2 the
off-diagonal matrix elements of V(n, n ) are seen
to affect only the higher moments of V, because
they involve at least three powers of G(n, n ). In
addition, because of the factors of Z ' in (2. 27c),
their contribution is considerably smaller than
that of the diagrams in the first column (all of
which are independent of Z), Finally, we note
that the diagrams in the nth (n& I) column of Fig.
2 are all O(x") but, in general, contain various
powers of Z '. Consider, for example, the two
diagrams shown in Fig. 3. If n and n. coincide,
the first diagram involves only G(n, n) and is in-
dependent of Z. If n is one of the nearest neigh-
bors of n, the net contribution from the Z diagrams
of type (a) is O(Z ~ Z ')=O(Z ~). The second dia-
gram in Fig. 3 requires an internal sum over m,
and the contributions from different shells of neigh-
bors are of varying orders in Z '. In both (a) and

(b), the contributions of more distant neighbors
are no greater than O(Z '), but the specific results
depend on the type of lattice. These considera-
tions illustrate that the dependence of a given dia-
gram on Z ' is a function of the number of dis-
tinct sites involved and of the distances between
them.

Having classified the various contributions to
V(n, n ) according to the parameters x, 5, and Z ',
we can now consider different partial summations

of the perturbation series. The simplest of these
is derived by approximating c"'(x) -x and sum-
ming the first column in Fig. 2. V(n, n )-=V 5„„.is
then given by

x&V- = xt, (2. 28)

where

(2. 29)

and t is the usual scattering operator for the po-
tential &. A somewhat better approximation is
obtained by replacing c' "(x) by xy"-":

x& xt
1-y&E 1+ xtE

I
I i

I ~'y' 8 Gnn'
4 3

(b)
I
l I

I I

I I
I /

x~y~(y-x) 85 ~ G„~ 8„„~
lTt

FIG. 3. Typical diagrams from the second column of
Fig. 2. All such diagrams include contributions that are
independent of Z ~. This contribution arises when n' =n
in (a) and (b), respectively.

In both (2. 28) and (2. 30), j'(g) is related to the true
propagator G and must therefore be calculated self-
consistently in terms of V. In terms of the unper-
turbed propagator G'0'= (z —W) ', the relation be-
tween E(z) and V is simply
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FIG. 4. Two contributions from the second and third
columns of Fig. 2 that are retained by the CPA. When
all sites are equal, the diagrams involve only G(g, n).
Accordingly, (a) and (b) contribute to the third and fifth
moments of V', respectively.

differential equations whose solution is the CPA
formula (2. 32). The algebra required to verify this
statement is presented in Appendix A.

The two classes of diagrams that enter the CPA
can also be interpreted in terms of the "self-con-
tained" cumulant formalism of Yonezawa. ' Indeed,
the self-contained cumulants Q" '(x) are defined so
that they already include the single-site contribution
from the second, third, . . . columns of Fig. 2. Ac-
cordingly in Ref. 5 the CPA is given directly as the
sum of diagrams that are topologically identical to
those in the first column but with c "(x) replaced
by 0'"(x):

E(z)=(n~[z —V- W]-'~n&=Z'»(z-V). (2. 31)

Equations (2. 28) and (2. 30) are appropriate fordilute
alloys with moderate impurity strengths. If how-
ever & is large enough to produce a separate im-
purity subband, these equations have important de-
ficiencies. In particular, it will be seen that the
shape of the minority subband is given incorrectly
by these approximations.

Recently, several authors' ' have proposed a new

method, the coherent-potential approximation
(CPA), for the calculation of V. This approach
l.eads to excellent agreement with exact results for
the moments of the self-energy and el.ectronic den-
sity of states. As in (2. 28) and (2. 30) the CP self-
energy is site diagonal. The defining equation is

x~
1 —(& —V)E (2. 32)

V= (e)+ F dv
dQ

(2. 33a)

together with the subsidiary condition

dI'
z dV

dQ dQ
(2. 33b)

generates precisely the diagrams we have just de-
scribed. Equations (2. 33) are a system of ordinary

In terms of the diagrams in Fig. 2, the CPA com-
bines two principal contributions. First, all the
diagrams in the first column are summed exactly
(the cumulants are not approximated). Next, from
the other columns we include the subset of crossed
diagrams that have all their site indices equal.
Two examples of this reduction are shown in Fig.
4. These two classes of diagrams comprise a com-
plete solution of the alloy problem within the "sin-
gle-site approximation, " i. e. , neglecting only con-
tributions to V associated with off-diagonal matrix
elements of G(n, n ). Perhaps the most elegant way
to demonstrate that these diagrams are indeed
equivalent to the { PA is to notice that iteration
of the "single-site" version of (2. 19)

Yonezm a's statement that in a proper s ingle- s ite
theory the bare cumulants c'"(x) must be replaced
by Q" '(z) is then equivalent to our inclusion of selected
contributions from the further col.umns of Fig. 2.

In view of this discussion it is clear why the CPA
is the best of all "low-density" approximations.
The CPA is exact to O(x) [as are (2. 28) and (2. 30)]
but in addition includes the most important contri-
butions of order x~, x', . . . , etc. The subset of
diagrams retained from the further columns of Fig.
2 are precisely those that contribute to the leading
moments of V. Note, for example, that the diagonal
part of the first diagram in Fig. 4 is O(x /z ) while
the Z off-diagonal parts are each O(x~/Z'z'). The
term included by the CPA contributes to the third
moment of V while the neglected part influences
only the sixth moment. In addition, because of the
factors of Z, the errors in the higher moments are
of order x~/Z2 rather than just x2.

These considerations illustrate the importance
of the parameter Z ' in allowing us to distinguish
between various approximations all of which are ex-
act to the same order in x. While it is true that
the CPA is a, low-density (small-concentration)
approximation, it is nevertheless a better approx-
imation than (2. 28) or (2. 30) because it is also
exact to O(Z '). To illustrate these conclusions we
have performed numerical calculations based on
three different low-density approximations. The
three methods are the non-self consistent [i.e. ,
+(~) -& '(z)] version of (2. 30), a self-consistent
treatment of (2. 30), and the CPA [the differences
between (2. 30) and (2. 28) are not great enough to
warrant separate discussion of the latter equation].
In each case E'o'(z) was assumed to correspond to
simple-cubic lattice with nearest-neighbor hopping.
The relevant computational deta, ils have been dis-
cussed by Soven and VKE and need not be repeated
here.

The results for the electronic density of states
are shown in Fig. 5. Both the first approximation,
usually referred to as the average-t-matrix approx-
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8 =.75

GE- t-MATRIX APPROXIMATION

ENT- POTENTIAL APPROXIMATION

x =.15

= E

FIG. 5. (a) Comparison of density of states as calcu-
lated in the average g-matrix and coherent-potential ap-
proximations. (b) Density of states obtained by the self-
consistent solution of (2. 30).

imation '~ ~ (ATA) and the CPA are seen to exhibit
the development of increasing 6 of the band shape
from the virtual-crystal regime, through a stage
in which the band is distorted at its upper edge, and
finally to a stage in which it splits into independent
subbands. By contrast, the self-consistent version
of (2. 30) is incapable of describing the transition to
a split-band limit. The appearance of the true prop-
agator E(z) in (2. 30) implies that all the internal
propagation takes place in a medium that already
has some impurity character. The interaction of
the impurity potentials is therefore overestimated
and the minority "subband" is too broad.

A more detailed study of Fig. 5(a) shows that
while the locations and weights of the subbands are
given correctly by both methods, the CPA describes
their shape more correctly. In particular, the
height and width of the CPA minority band both vary
as vx while in the ATA they vary as 1 and x, respec-
tively. This difference is a reflection of the fact
that four subband moments are given exactly by the
CPA while only two are exact in the ATA.

To conclude, we emphasize that the main formal
distinction between the three methods discussed
above is their treatment of the parameter Z-'. The
ability of the CPA to describe the shape of the mi-
nority subband correctly is a direct consequence of
the fact that it satisfies higher moments exactly.
This is true because the CPA is the only approx-

imation that sums up all diagrams that refer to
only a single site, i. e. , all diagrams that are inde-
pendent of Z '. It will be seen in Sec. III that these
considerations are important in establishing the
proper generalization of the CPA to higher orders
in x and 6.

III. PAIR CORRECTIONS TO CPA

The techniques developed in Sec. II will now be
used to examine the effects of two atom clusters.
Various methods" have been proposed to deal
with this problem. While all of these are exact to
order x, they are not necessarily systematic in
their treatment of the parameter Z '. The equa-
tions to be derived in this section are correct to
second order in x and third order in Z '. These
equations are then a proper generalization of the
CPA in the sense that corrections to them are
Q(x3/Z4) rather than O(x ).

In Sec. II, the connection between the CPA and
the diagrammatic expansion of the self-energy was
ficilitated by the reduction of (2, 19) to the single-
site ordinary differential equation (2. 33a). In the
more general case no such formal device is avail-
able and we must return to the exact functional
equation for V(n, n ) Equ.ation (2. 19) can be re-
arranged so that the CPA emerges as the lowest-
order approximation rather than as a partial summa-
tion of the complete series. Once this is done,
simple interation will generate the appropriate
two-site equations.

To begin, we write (2. 19) in the form

V(n, n ) = (e „)5„„,+ G {n,n ) [ V(n, rn) G(m, m)]
n

x G-&(m, n') - G(n, n) V(n, m)

x G(m, rn) 5V(rn, n )/5u„. (3. 1)

Equations (2. 14) and (2. 18)allow the second term on
the right-hand side to be rewritten as

(~/~u„) [V(n, m) G(m, m)]

= i (6/&u„) (e „- T [P(n), g (m) ])

= —(e„) V(n, m) G(m, m)+i(e„e„- T[g(n), g (m)]).
(3. 2)

Now if n and n coincide, so that (&„e„-)-(e„)= g&„),
we have

i(&'„T[&(n), g (m) ])= i5(&„T[g(n), g (m)])

= &V(n, m) G(m, m), (3.3)

while for n gn the generalization of (2. 14) is

i(e„e„-T [y (n), gt(m)]) = (e„-) &G(n, m)/&u„
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+ (e „}V(n, m) G(m, m)+ 6 G(n, m)/6u„6u„-,

(S.4)

Combining these equations we obtain the useful
identity

f (g„g„T[&(& (n), &(&t(m) ] ) = [6V(n, m) G(m, m) ] 6„„-

+ [(e„-)6G(n, m)/6u„+(e„) V(n, m) G(m, m)
I

part of V(n, n ) is given by

V"' (n, n) = p„-.' g [G(n, n) 6V"&(n, n)/6u„
nPn

—G(n, n) Vi '(n, n) G(n, n) 6V„' '/6u„]

Q (q „q -„)
' &„-„6'V„"'/6u„6u-„

n4n

62 G(n, m)/6u„6u„](1 -—6„-„). (3. 5) nun
(3. 11)

Substitution of (3. 5) into (3. 2) and then into (3. 1)
leads to an alternate version of the exact-func-
tional equation for V(n, n ). After some straight
forward but rather tedious algebra, this equation
may be put in the form

V'(n, n ) = Via'6„„, + y„' g [G(n, n) 6V(n, n )/6u„

—G(n, n) V(n, n) G(n, m) 6V(m, n )/6u„], (3.6)

where

where terms of order x /Z4 have been neglected.
Equations (3.9) and (S. 11) provide corrections to
the CPA that are of order x /Z and x /Z, re-
spectively. These are in fact the only contribu-
tions to V(n, n ) through third order in Z i. There
are however further terms of second order in x
which must be taken into account in a complete
two-site theory. The remaining x terms are ob-
tained by successive iteration of Eq. (3. 8). For
example, the next contribution to V(n, n ) is

and

V„o' =(e„)[1+V(n, n) G(n, n)] I„'

p„= 1 —(6 —(e„)—V(n, n)) G(n, n).

(3.7a)

(3.7b)

V ' '(n, n ') = [p ' G(n, n ) 6 V "'(n, n I) /6u„] (1 —6 }

Z (y„q„-&-'r„.— a'v"'(n, n&/I! „II@)il„,,.
ngn

I'„„,= G(n, n ) G(n, n) (1 —6„„.). (3. 10)

Similarly, the first correction to the diagonal

It should be noted that the lowest approximation to
(3.6) namely V(n, n }- V'„"6„„is equivalent to the
CP equation (2. 32). Because of the exclusions in
the summation, the last term in (3.6) generates the
corrections to the CPA that depend on the off-
diagonal. matrix elements of G. The simplest of
these corrections, those associated with two atom
clusters are of order x /Za and xa/Zs. Equation
(3.6} allows us to treat these pair effects exactly.

To begin, we note that the last term in (3.6) in-
volves two powers of V and is at least of order
x . This term need be retained only when n, = m
=n and its contribution is O(xs/Z~). Equation
(3.6) may then be replaced by

V(n, n ) = Vi & 6„„.+ p „' P [G (n, n) 6 V(n, n ) /6u„
nPn

—G(n, n) V(n, n) G(n, n) (6V(n, n)/&u„) 6„„.]. (3. 8)

Approximating V(n, n ) - V'„0'6„„. on the right-hand
side of this equation, the leading contribution to
the off-diagonal part of the seU energy is simply

V"'(n, n )= p 'G(n, n') 6V„', '/6u„.

The derivative of V„'. ' with respect to u„ is evalu-
ated in Appendix B. The resulting expression for
V"'(n, n') is

V' '(n, n ) = G(n, n ) F 'C„'C„.' (&(&„p„.), (3.9)

where

= [G(n, n ) 1'„„,C'„3'C„""(P„(»„,) '](1 —6„„)

As these terms are of higher order in Z ', the cor-
relation functions need only be treated exactly to
order x . Approximating the cumulents c'"(x)
for ~ o4 by

c'"(x)- xy (y —x)"-", (S. 12)

the final expression for the two-site self-energy
may be written as

V(n, n ) = V„' ' 6„„.+ V"'(n, n )+ V' '(n& n )+ ~ ~ ~

2 2g4 I Ixy & G(n n)&„g (1 )= V„6„„+ 1 ( )2~2' nn'

x~y 2(y —x) &'1 ~-

where we define

6 = 6y ' = 6 [ 1 —(y 6 —V(n, n)} G (n, n) ] '.
Equations (S. 13}and (3. 14) are the principal for-

mal results of this subsection. In addition to the
diagrams of the second column in Fig. 2 (which
are included to orders x~ and Z ~), these equations
also retain contributions of order x "/Za and x "/Z~

(n = 3, 4, ~ ~ ~ ) associated with diagrams in the further
columns that involve only two independent sites.
For example, if the first and second sites coincide„
then the contribution from the third-order diagram
in Fig. 6 is included in Eq. (3. 13). As indicated in
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FIG. 6. A reduced third-order diagram whose contri-
bution is retained by the two-site equations (3. 13).

the figure, this type of restricted diagram influ-
ences the eighth moment of V(n, n ) and their net
contribution (the second site may be any one of the
Z neighbors of the first site) is O(Zx'/Z')
= O(x /Z ). By contrast, when all three sites are
distinct this diagram contributes to the tenth
moment and is O(x'/Z'). The present situation is
then completely analogous to that encountered in
Sec. II in connection with Fig. 4.

Tbe derivation of the pair equations (3. 13) re-
quires the approximation (3. 12). The behavior of
the bare cumulants c"'(x) for large l, as described
by Yonezawa, ' would seem to indicate that (3. 12) is
actually a rather poor approximation. However,
in analogy with the single-site theory, the fact that
Eqs. (3. 13) retain all two-site contributions from
the third, fourth, . . . columns of Fig. 2 'mplies
that the relevant quantities are the self-contained
cumulants Q'"(x) rather than the c'"(x). Compari-
son of Figs. 6 and 10 of Ref. 5 reveals that
xy(y —x) '~' is likely to be much better approxima-
tion to Q "(x) than it is to c'"(x). Equations (3. 12)
then, when viewed as an approximation Q'"(x), are
quite reasonable.

In order to implement Eqs. (3. 13) we must be
able to calculate the matrix elements G(n, n ).
These quantities are readily available if the self-
energy is site diagonal and the operator W cor-
responds to the simpI. e-cubic cosine-band model
of Wolfram and Callaway. Unfortunately, it is
not possible to extend that procedure to the more
general self-energy in (3. 13) unless the off-diagonal
elements are restricted to nearest neighbors.
Within this approximation, the Bloch representa-
tion of the self-energy is simply

To illustrate the effects of nearest-neighbor im-
purity pairs the formalism of this section has been
used to calculate corrections to the CP density of
states. The new qualitative feature associated with
the pair clusters is the appearance of satellite
levels on either side of the minority band in the
dilute split-band limit (i. e. , x & 0. 10 and 6 & l. 0).
Physically, these levels are associated with the
bonding and antibonding states of a two-atom mole-
cule embedded in the effective medium. Thispoint
of view will be discussed in more detail in the sec-
ond paper of this series. It will be shown there
that Eqs. (3. 13) are, in fact, equivalent to the
requir ement~4

where

t~~'(n, m) = (v„+ v )[1 —G(v„+ v )] ~

t'~'(n, m) is the scattering operator for a pair of
atoms located at the sites n and rn. Equation
(3. 17) is the obvious generalization of the CP equa-
tion (t„)=0.

The minority subband density of states obtained
from the pair (CP-2) Eqs. (3. 13) and tbe single-
site (CP-1) coherent potential Eq. (2. 32) are com-
pared in Fig, 7, This figure illustrates the be-
havior of the satellite levels as a function of in-
creasing concentration at a fixed value of 6. In
the dilute limit the satellite levels are split off
from the central part of tbe impurity band. In
addition, the pair theory predicts that the central
portion is somewhat higher and narrower than the
original CPA result. This modification is neces-
sary as both theories are expected to give the same
value for the third moment (i. e. , moment of inertia)

V(k) = v(z)+ v, (z),(k),

where v(z)= V(n, n) and v, (z)=ZV(n, n ) (n, n near-
est neighbors. The matrix elements G(n, n ) are
then given by X =.050

X =,075

i (,&
(z —v)

(1 —v, ) (1 —v, )
(3. 16)

Equation (3. 16) replaces the single-site result
G(n, n )=(n1 '

G(z0—v) 1n ). Combining Eq. (3.16)
and (3. 13) we obtain a system of two coupled equa-
tions to be solved self-consistently for V and G.

;n.
I I

X =.025

X =.010
11,

1.2 1.4 1.6 1.8 2,0

————CP-1
CP-2

FIG. 7. Minority-band density of states as calculated
from the single site (dash line) and pair (solid line) coher-
ent-potential theories. The value of g is 1.5.
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1.6

x =.01

8=15
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of x and 6 introduced by the replacement t-~. It
is precisely these added contributions that allow the
CP-2 to provide an improved treatment of the
higher moments.

IV. SHORT-RANGE-ORDER EFFECTS

-1.5-

FIG. 8. Comparison of self-energy V(n, n) in the minority
band energy range.

of the subband density of states. Similar behavior
is exhibited by the diagonal part of the self-energy.
Figure 8 compares the CP-1 and CP-2 results
for V(n, n) in the energy range of the minority band.
As the concentration of impurities is raised and the
likelihood of hopping between them increased, the
central part of the subband broadens and eventually
merges with the satellite levels. The height and
width of the satellite levels are seen to increase
with concentration whiI. e their location is relatively
unaff ected.

Aside from these details of fine structure, the
CP-2 equations lead to improved agreement with
the exact moments of the density of states. The
CP-1 gives the first eight moments of p(E) ex-
actly with corrections to the higher moments of
order Z, while the CP-2 gives at least twelve
moments exactly with corrections that are O(Z ').
Alternatively, it may be said that the CP-1 mo-
ments are exact to order x and retain all contribu-
tions of higher order in x and 5 tha, t are indepen-
dent of Z '. Similarly the CP-2 moments are exact
to order x and include all higher contributions
through third order in Z '. Formally these im-
portant contributions of higher order in x and 6

enter the CP-2 equations via the factors of ~ in
(3.13). Previous discussions of pair clustering
have usually been based on a partial summation
of the terms in the first two columns of Fig. 2.
Approximating c~ "(x)-x and summing this sub-
class of diagrams we obtain the result of Yonezawa
and Matsubara~ [their Eq. (3. 15)]

2 4 IV(2&, x «(n, n)1'.. (, 5 )g2Z nn'

X2t'r„2„-
(3. iS)

t 2p fltt

where f -=5(l —5G(n, n))
' as in (2. 28). In the dilute

limit (x«1, y - I), Eqs. (3. 13) and (3. 18) are
structurally identical except for the higher powers

In this section we outline a procedure for calcu-
lating the correlations in the positions of the con-
stituent atoms and for estimating their influence on
the electron self-energy. It must be emphasized
that these short-range-order effects are due en-
tirely to the coupling of the ions implied by the
Hamiltonian (2. 1) and the density matrix (2. 7).

We assume that the alloy has been annealed in
thermal equilibrium at some elevated temperature
T„not greater than the melting temperature.
Adopting an imaginary time formalism, the elec-
tron field $„(T) is taken to depend on the real param-
eter r in the interval 0 &7' & p, = (kT,) ' In an. in-
teraction representation the evolution in r of g„(w)
is governed by the equation

= [&, 4.(~)l=-+ h..4(~)7'
m~n

(4. 1)

Introducing the computational variables v„, all of
which will be set equal to & at the end of the calcu-
lation, we rewrite the definition (2. 2) as

D(r) = g„g„(~)v„o„g„«), (4. 2)

where o„=e„/&. The appropriate generalizations
of (2. 7), (2. 13), and (2. 19) a,re

p = exp(- p, W+Q„u„o„)T[ exp(- f 'D(7)d7')]/
0

and

-=p-,' g G(n, n'~ ~,)e
PN a

V(n, n'~ ~~) = v„(o„)&„„.+ v„G (n, m
~

o'~)

(4 4)

x 5V(m, n
~
&~)/5u„. (4. 5)

The complex frequencies &~ in the last part of
(4. 4) are defined as &~= pJ(2p+ 1)i. As before, the
final value of the parameters u„ is chosen so that

(o„&„., = x. (4. 5)

In addition to the quantities described by Eqs. (4. 3)
to (4. 5), it is convenient to introduce the auxiliary
function

S(u, &) = Tr [exp(- P,W+ g„u„o„)T

Tr ]exp( —P, W~+„u„o„)T[exp(- f 'D(7') dT)]),
0

(4 3)
G(n, n') = —Tr [pg„(~)g„'.(r ')]
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the leading terms in 5 are retained

Iteration of Eq. (4. 5) yields a system of dia-
grams that are formally identical to those in Fig.
2. The new feature of the present calculation is
the fact that the correlation functions

(4. 13a)

C (nq, . . . , n, )
—=[5 lnS(u, 5)/5u„. ~ . , 6u, ] 5' (4. 8)

a,re no longer diagonal. In particular, the leading
effects of short-range order are contained in the
off-diagonal part of C(n, n ) A.perturbative calcu-
lation of C(n, n ) is carried our most easily in terms
of the inverse matrix P(n, n ):

1 1
~~ & 2-&p) + 1

where A(n, n i &) is the usual spectral density and

satisf ies

(4. 9)

If P(n, n ) is small, the correlation between the
sites ~ and ~ is given by

C(n, n') =
& o„o„,&

—&o„&&a„,&

= (& v„ ) —&o„&') 5„„,

+(&o„& -&o„&') p(n, n ) (&o„,& —&o„,&'), (4. 10)

and the enhanced probability that n is occupied by

an atom of type A given that e is so occupied is sim-
ply xy'Q(n, n )

To derive a functional equation for P(n, n ) we

begin with the differential form of (4. 7)

5 lnS (u, 6) =- &o„&5u„—P, & ,g~(n) ((n) ) 5v„~

Since &o„&= 0 lnS/5u„, both S and Q may be viewed
as functionals of &o'„& and v„. Accordingly, the
I egendre transform of (4. 11) is

5(lnS(&o&, 5)- Z„u„&o„&)

Because this relation is exact, the cross derivatives
of the coefficients on the right-hand side are equal.
Differentiating the implied equation with respect to
&o„.&, we obtain

6&(n, n') ~ „,,+

5v „6&cr„&5&v„.&

—0 Gm, rn ~ . 4. 12
&u

Because typical values of kT, are much smaller
than the relevant electron energies, A(n, n. i &) may
be replaced by its zero-temperature limit. It
should be noted that the appearance of the Fermi
factors in (4. 13) implies that the actual value of

P(n, n ) depends on the (previously irrelevant)
electron density. If, for example, the chemical
potential p, ~ lies between the host and impurity
subbands, Q is O(e ' ' ') and is vanishingly small.
This conclusion is expected to be independent of
the approximations used to derive (4. 13) from the
exact equation (4. 12). In the event that p, ~ lies in
a region of finite density of states the integrals in

(4. 13) are well behaved and the resulting expression
for P(n, n ) is no greater than O(52/Z ).

Having derived an approximate expression for
P(n, n ), it is now possible to include the effects of
short-range order in a calculation of the electron
self-energy. In particular, the off-diagonal char-
acter of C(n„~ ~ ~, n, ) implies that there are correc-
tions of order x to each of the diagrams in the first
column of Fig. 2. Combining Eqs. (4. 8) and (4. 13),
the higher cumulants may be approximated as

In the first term we understa, nd that formally

Equation (4. 12) provides a formal solution for
P(n, n ) in terms of the propagator G. Substituting
the CPA expressions for 6, we have a result for
P(n, n ) thai is exact to first order in x and Z ~.

It remains to perform the frequency sum and inte-
grate with respect to the multidimensional variable

A simple expression is available only if just

l=3 k=l+j.

The correction of order x~ to the lth diagram is ob-
tained by multiplying (4. 15) by G(n»n3)G(n~, n4), . . . ,
G(n„nz) and summing onnB-n, . After some re-
arrangement, this addition to the self-energy may
be written as



PAIR E F FEC TS IN SUBSTITUTIONAL ALLOYS. I. . .

(
xaboG(n, n )Q(n, n ) &

x & P(n, m)I'„
(1 —IIE}' —ll'I' . '"'}

(1 —tlE} o —5E}'—5'I )

x t G(n, n } o}z,)G(n, n lo}z,)G(n, n ) + xotoG(n,
mlles~)G(n,

mio}~)1„

(4. 16)

This result is seen to be structurally similar to
the naive x~ corrections discussed at the end of
Sec. III, the only difference being that two of the
factors of G in the numerators of (4. 16) are energy
independent. To order x, the existence of short-
range order in the alloy serves to enhance the ef-
fects of two-atom clusters. The appearance of t
in Eq. (4. 16) rather than 4 is an indication of the
fact that our approximation (4. 13) is not exact to
any order in the parameter Z . Any errors in
the calculation of }t} appear only in the numerator
of (4. 16). Zero-temperature values of G may be
used in (4. 16) at the expense of errors on the order
of kT,/5.
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APPENDIX 8: EVALUATION OF 5V /5u ~
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APPENDIX A: CPA AS SOLUTION OF ORDINARY
DIFFERENTIAL EQUATION

The CP equation may be rewritten as

5V„'o} (&,)[V„' '5G(n, n)/5u„. + G(n, n)5 „V' o/}5 „u, ]
6u„, I - (6-(e„)- V„"')G(n, n)

(e) [1+V'„"G(n, n)]
[1—(6-(e '- V(o&)G(n n)] n)

x 5G(n, n)/5u„, —(5V„}/&u„.)G(n, n)]. (B2)

This equation expresses 5V„' '/5u„. in terms of
6G(n, n)/5u„. The latter quantity serves to intro-
duce the off-diagonal matrix elements of G. Re-
calling that the self-energy V„' ' is site-diagonal we
have

(e)+ VF5 y5VF
1+ VF 1+ VF

xy ~2E' (I+ VF) [I - (6- V)F]
(Al)

5G(n, n)/&u„, = G(n, m) (6V„'o}/5u„.)G(m, n) (B3)

=G(n, n ) (5V„'. }/&u„. ) G (n, n)

+ G(n, n) (6 V„'"/6u„.) G (n, n) . (B4)

To verify that (2. 32) is indeed a solution of Eqs.
(2. 33), we differentiate the former equation with
respect to u:

dV xy62 (e)
du 1 —(5 —V)F [1 —(& —V)F ]

In the second line only those contributions that are
of second order in the off-diagonal part of G have
been retained. Substitution of (B4) into (B2) yields

5V„'" (e„)[1+V„"'G(n, n)](5 —V"')
5u„, [1 —(5 —(e) —V„' ') G(n, n)] 5u„.

x [(~—V)F —1]F
dg

=xy& I
&u„.

(B6)

gy5 dV
1 —(& —V)F du

xy&

(1+VF) [1 —(0 —V)F] (A2)

where we have made use of the relation & —V„~ '

=y5[1+ V„'o'G(n, n)] ' and the definition I'„„.=—G(n, n )
x G(n', n).

Equation (85) expresses 5V„'/5u„. in terms of
I'„„, and the diagonal derivative &V„'.o}/&u„.. Ne-



L. SC HWAB 7 Z AND E. SIGGIA

gleeting off-diagonal. contributions, the latter quan-
tity is given by

«„',"/«„. = x&6'/I l —(6-(~„.&-~„'.")G(~', ~')]

Combining (B6) and (86), we obtain the final ex-
pression

6V„' '/«„, = x'y &'61'„„,

in agreement with (3.9) and (3. 10).
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