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Relaxation-Time Representation and Dingle-Robinson Temperature Inversion
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We extend our previous Fourier-series-representation schemes to include the representa-
tion of the relaxation time over the Fermi surface and to perform the inversion of the Dingle-
Robinson temperature data. The scheme is applied to recent results of Miller, Poulsen, and
Springford on Au: Cu alloys.

The anisotropy of the relaxation time over the
Fermi surface, suggested by Ziman' to explain
the results of transport experiments, may be
studied experimentally in several ways. In rel-
atively pure materials, techniques exist for de-
termining local relaxation times r(k) at points k
of the surface. 2'3 Other methods, like cyclotron
resonance4 and de Haas-van Alphen' (dHvA) ex-
periments, give only an orbitally averaged relaxa-
tion time ~. In dHvA work it is customary to in-
troduce the Dingle-Robinson temperature T~ de-
fined by

2mb~
D'

The problem therefore arises of inverting these
data to obtain the local values r(k).

Until recently, even for the noble metals and
their alloys, only two or three values of 1/ /were'
reported '7 '~; the appearance of the preliminary
data of Lowndes et a/. , "which sampled the Fermi
surface in a more complete way, stimulated in-
terest in inversion procedures. '3' The aim of this
paper is to extend our Fourier-series schemes" '7

by presenting a representation of 'r(k) over the
Fermi surface and developing and applying a sim-
ple inversion scheme for Dingle-Robinson tem-
perature data. The method has already been dis-

1 1 1
T „, r(R) (2)

To our knowledge this relation has never been fully
justified but is commonly used in discussing orbit-
al relaxation times with different scattering pro-
cesses. ' ' Kinetic-theory arguments suggest that
it may be valid only in the limit r/T»1. We may
write Eq. (2) as a line integral (1/T) g [1/&(k)] d&~/

A~, where k, is the component of the Fermi mo-
mentum in the plane of the orbit (measured from
some convenient center). Using the Lorentz-force

cussed, "but at that time it was concluded that at
least one or two more experimental data were
necessary for a meaningful inversion; these data
have now appeared. " Our scheme is similar to
the procedure used by Miller et al. " to analyze
their results; in view of its compactness and since
it may be carried out at practically no extra cost
during the inversion of dHvA-area data described
in Ref. 17 (from now on referred to as 1), we think
it is worthwhile to make it more generally avail-
able.

As an ansatz it is natural. to define the reciprocal
of the orbital relaxation time 7 as a time average
of the reciprocal of the local relaxation time &(k)
over a cyclotron period T= 2vm*c/eH. Thus we
have
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TABLE I. Coefficients C~ and C& of the I ermi-radii
and I"ermi-velocities, representation and coefficients f&
found for the relaxation-time representation.

1.000 000
4. 028360

—1.340 230
-2.400300
—0.233 042
—0.618918

0.118184
0.198816

0. 0000
0. 0000

—82. 458 60
-70. 84850
—16.89150
-14.724 80

12.108 80
6.95852

f(5)
—0.772 585
—0.242 849
—0, 486 967
—0.412 455
-0.085 914

f (6)

22. 0525
10.2821
7. 7038
4. 8954
1, 9234
0.9151

equation of motion

0, = (eH/Kc) v,

and

(3)

(4)

we obtain

d8 k~2

2wm,* &(k) v ~ k, ' (5)

;-) = ~fy
e' ' = + fPg(k) .

Using Eq. (7), Eq. (6) becomes
h2g 2

g Crfg
~ k

— Ss(k)S, (k)de.
mm] )) ~ k~ ~ &F

(8)

where the subscript i refers to the ith orbit. Us-
ing Eqs. (29), (30), and (31) of I, Eq. (5) becomes
(in Rydberg-Bohr atomic units)

I 1 k2~„Q C, (~ g 'g S,(k) de.

(6)
On the other hand, exploiting the symmetry prop-
erties of r(k), we can write [note that we find it
convenient to expand I/r(k) rather than r(k) "]

together with the integrals (8) of I, and the set of

j coefficients X& for any orbit i follows very direct-
ly. Once these are known, Eq. (11) is used to de-
termine the coefficients f&

which minimize the func-
tion

1 g (I/r; —1/&i)
N, , I /v'(

where the I/sf are the experimental results for a
set of N orbits. [The minimization procedure,
which results in a strictly linear set of equations,
is completely analogous to the determination of
the C&'s from the values of m&*, in Ref. 1, Eqs.
(33)-(39).] The set of f~ so obtained is a represen-
tation of the relaxation time, since it allows one to
obtain 1/v for any orbit, through Eq. (11), and

r(k) at any point, through Eq. (7).
It may also be noted that, if one has a set of

local relaxation times like those of Ref. 3, the f &

may be determined even more directly by using
Eq. (7); the data of Koch and Doezema, P however,
do not seem at present to sample the Fermi sur-
face of copper in a sufficiently complete way to
warrant such an attempt. We shall therefore limit
ourselves to the application of our scheme to the
new data" for the case of Au: Cu. Besides the I/r'
for the main five orbits [BfQp Bug Ngfg R, and

D; the notation is the same as in I] we have used
the I/v' relative to the belly orbit at 20' from
[001] and to the neck orbit at 7. 5' from [111]in
the (110) plane. (These data are the same as those
used by Miller ef af. " in their analysis. ) If they
had been avail. able, data relative to the belly at
22 from [001] in the (110) plane and to the belly
at 16.2' from [001] in the (100) plane would have
been preferable since for them the factor E (de-
rivative of the area with respect to the angle" ),
which comes in the correction applied to the experi-
mental value because of the effect caused by orien-
tational inhomogeneity of the sample, ' vanishes.

Table I lists the coefficients C& and C& which we
have used to represent the Fermi surface of gold,

Defining now
/+2$2

M), ——— ~ ~ - S~(k) S,(k) de (9)

TAB LE II. Experimental Dingle-Hobinson temperatures
(K) used in the fit and corresponding valu'es calculated with
the f~ coefficients of Table I.

and

X~ —-QM~, C, (10)
Orbit

Experimental Tz
(Ref. 18)

Calculated Tz
f(5) f(6)

Eq. (8) assumes the simple form

Now the coefficients C', have been obtained in I and
therefore also the m,* are known [Eq. (33) of I];
the integral in (9) may be evaluated conveniently

Bazoo

Bao

&coo

D~~o

N«,
N7. 5'

Error (%)

2. 58
2. 10
2. 30
2. 33
1.90
1.26
l. 32

2. 6134
2. 0386
2. 5394
2. 1112
1, 8928
1.3012
1.3191

5.57

2. 5799
2. 0998
2. 3006
2, 3297
1.9002
1.2817
1.2976

0.91
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FIG; 1. Angular dependence of
7{/) for the (100) and (110) planes in

, the two representations [dashed curve,
f (5); continuous curve, f{6)I.

6-TERM FIT

———5-TERM FIT

|Ioo]
I 5'

I

30'
[I Io]

I
5' 60'

I

7 50

and the coefficients f&
obtained with the above in-

version by using five and six coefficients [f(5) and

f(6) representations, respectively]. Table II shows
the experimental Dingle-Robinson temperatures"
used in the fits and the corresponding values cal-
culated with the above two sets of f, coefficients;
the global error, defined as in (12), is 5. 57% for
f(5) and 0. 91% for f (6). The angular dependence
of v'(k) in the (100) and (110) planes is reported in
Fig. 1 [dashed curve for f (5) and continuous curve
for f (6)]; it may be noted that the small wiggles

near [100]would probably disappear by adding more
experimental data, whereas the over-all anisotropy
is real. The results are in reasonable agreement with
those of Ref. 18, Fig. 5, which are shown as cross-
es in our figure.
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