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The temperature T dependence of the local magnetic moments and the static uniform spin
susceptibility X(T) in paramagnetic metals is studied using the Hubbard Hamiltonian for non-
degenerate bands. Hubbard's alloy analogy, which correctly describes both strongly inter-
acting and weakly interacting systems of electrons, is applied to determine the average local-
moment magnitude m&(T) —= IV 'p;ln;, -n&, I' and X(T). It is found that the magnetic-moment
magnitude decreases gradually with temperature and does no) undergo a phase transition to
a zero value. This is in contrast to the results of previous theories which predict a sharp
phase transition associated with a disappearance at high temperatures of the moments. The
moment magnitude which is a function of the ratio of the Coulomb repulsion energy U to the
half-bandwidth 8' and of the number of electrons per site 2n approaches the finite value
zn&(T ~) =2n(1-n) at temperatures high compared to U and 8', which is just the probability
that a noninteracting electron and hole of opposite spin are at the same site. At these tem-
peratures X(T ~) obeys a Curie law with Curie constant given by mz(T ). For U«8',
~& (T) is nearly temperature independent and approximately equal to 2n(1 —n). For U» W

and kT «U the local moment has its maximum possible magnitude, which is either 2n or
2(1-n), corresponding to electrons (n &2) or holes (n &2), respectively. In addition, the
behavior of the paramagnetic susceptibility y(T) which is found to be smoothly varying with
temperature does not suggest the existence of a phase transition associated with a disappear-
ance of local magnetic moments.

I. INTRODUCTION

The possible existence of two phase transitions
occurring in the nondegenerate Hubbard Hamil-
tonian, which includes only intra-atomic Coulomb
interactions, has been recently studied. ~~ ' The
first of these phase transitions was associated with
the disappearance of a macroscopic state with
long-range order at a temperature To. The second
was associated with the complete "melting" of local
magnetic moments at a temperature T, . Depending
on the ratio of the Coulomb interaction energy U
to the half-bandwidth W', the value of To was found
to be larger or smaller than T, . In these previous
theoretical calculations of T„TO, and the local
moment at a particular site, assumptions about the
moment magnitude and direction at neighboring
sites were made. ' ' In addition, the ordering tem-
perature and the melting temperature were not
computed self-consistently, i.e. , within the same
calculational framework. &

' lt is felt that such as-
sumptions and approaches greatly restrict the
validity of former theories and lead to erroneous
conclusions.

It is the purpose of the present paper, using the
Hubbard-model Hamiltonian, to present a different
method for determining the temperature dependence
of the average local-moment magnitude m, (T)

~; l n;, —n;, I in metals, which avoids some of
these previous approximations and pitf alls. The
local-moment magnitude at a site i is computed in-

dependently of any assumptions about the direction
or magnitude of the moments on lattice sites j4i.
Furthermore, in contrast to previous calculations,
in the present approach m, (T) and the ordering
temperature To are calculated within the same
framework. It will be shown here that Hubbard's
alloy analogy, within which the one-electron prop-
erties of electrons in narrow nondegenerate energy
bands are calculated from the electronic properties
of an appropriate binary alloy, can be used to ob-
tain in a simple way the average moment magnitude
m, (T) as well as the static uniform spin suscepti-
bility )((T). The temperature dependence of m&(T)
and )t(T) is calculated for a wide range of values
of the parameter U/W and for different values of
n, where n is the number of electrons per site of
a single spin state. While the expressions for )((T)
calculated in the present paper are identical to
those obtained by Hubbard and Jain using more
complicated equation-of -motion techniques, they
are presented here for several reasons. First,
they are used to calculate the ordering tempera-
ture To which, because only the uniform suscepti-
bility is considered, is equivalent to the Curie
temperature Tc. Second, these expressions for
X(T) enable one to determine whether the previous-
ly predicted ' phase transition of the local moments
is reflected in y(T). Third, they illustrate how one
can obtain in a simple physical way the usual
Hartree-Fock (U/W «1), the f-matrix approximation
(n«1), and strong scattering (U/W» 1) limits of
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the susceptibility for the Hubbard Hamiltonian.
The present theory is exact in the low-density
limit n «1 (which is the analog of the dilute al-
loy'» ), the weak-intera, ction limit U/W «1 (which
is the analog of the rigid-band alloy'» '), and the
atomic limit W=O (which is the analog of the
'atomic alloy"'» ).

Since the alloy analogy is only appropriate to
paramagnetic systems or those with ferromagnetic
order, 7 attention here will primarily be confined
to paramagnetic metals. In this way it is possible
to avoid the difficult problem of ascertaining the
'nature of the magnetically ordered state below To
in the Hubbard Hamiltonian.

The conclusions reached in this paper are as
follows. In paramagnetic metals there is go phase
transition associated with a disappearance of local
moments. Instead the moment magnitude, which
is always nonzero for 0 &~ & 1, decreases gradually
with temper ature. At temperatures high compared
to U and W, the value of m, (T) approaches the
finite value 2n(1 n), whic-h is just the probability
that a noninteracting electron and hole of opposite
spin are at the same site. There is furthermore
no evidence in the calculated paramagnetic sus-
ceptibility X(T) which could suggest a possible phase
transition associated with the disappearance of local
moments.

An outline of the paper will now be given. In
Sec. II Hubbard's Hamiltonian and alloy analogy are
reviewed. The equivalence of the coherent-poten-
tial approximation (CPA), ~» 6 first noted by Velicky
et al. ,

' and the Green's-function truncation proce-
dures introduced by Hubbard are discussed and the
local-moment magnitude is expressed in terms of
the spin-configuration-averaged resolvent for the
Hamiltonian. Using the CPA, general expressions
for m, (T) and g(T) are obtained for arbitrary U/W
and n, . In the high-temperature limit these expres-
sions are shown to reduce to simple and physically
understandable results.

In Sec. III an approximate spin-configuration-
averaged resolvent for the Hubbard Hamiltonian is
calculated for several values of the parameters
U/W and n using the alloy analogy and the CPA.
The temperature dependence of m&(T) and X(T) is
discussed. Numerical examples are used to corn-
pare the magnitude of m, (T) for different param-
eters U/W and n Finally i.n Sec. IV the conclu-
sions of the present calculation, which were stated
above, are compared with those of previous the-
ories~~ and with experiment.

~,(E) = Z, (E)1, , (2. 5)

X= Z T„C',.G,.+ .' Z-' Un„n. . . (2. 1)
i&j,e i, (y

where T,&
is the hopping matrix element and U the

intra-atomic Coulomb repulsion energy. The op-
erators C;, and C;, are the usual creation and anni-
hilation operators for an electron with spin 0 at
the site i and z;, = C;,C„.8 As first pointed out by
Hubbard, the motion of electrons with spin s = x 0
can be approximately described by the following al-
loy Hamiltonian:

k, =2. T,, P„C,.+ ~& e.'C', ,C,.„s=~o (2. 2)

where e,' is equal to e"-=U or &6=-0, depending on
whether an electron with spin —0 is at site i or not.
Equation(2. 2) can be viewed as describing two inter-
dependent binary alloys: A„Bq „ofelectrons with
spin v and A+Bq „of electrons with spin —0. Here
g, is the average number of electrons per site with
spin (J. The relative concentration of atoms with
energy level c" is n, or n„and with energy level

is 1 —g, or 1 —g„corresponding to whether the
electrons have spin o or —0, respectively. Fur-
thermore, in approximating Eq. (2. 1) by Eq. (2. 2)
it is assumed that for the purposes of calculating
the motion of o spin electrons, electrons of spin
—cr are fixed at the lattice sites and vice versa.
Thus the resonance-broadening correction of Hub-
bard is not included here.

To calculate the one-electron properties of the
Hubbard Hamiltonian, the spin-configuration-
averaged resolvent G, (E) for electrons with energy
E and spin o is needed. G,(E) is the propagator for
electrons of spin 0 in the translationally invariant
system in which the spin configuration is identical
at each site and is given by the average spin con-
figuration in the solid. G, can be written

G, =(E-X,"')-', (2. 3)
where

(2. 4)
if'

Here Z, (E) is the self-energy operator which de-
scribes the average effect on an electron with en-
ergy E and spin 0 of the Coulomb interactions with
all the other electrons in the metal. As in most
alloy problems 6, can only be calculated approxi-
mately. However, the form of the alloy analog
Hamiltonian equation (2. 2) makes application of the
CPA5 easy. It follows from Befs. 5 and 6 that
the self-energy operator Z, (E) for the alloy Hamil-
tonian is given within the CPA by

II. CALCULATION OF LOCAL MAGNETIC MOMENTS AND
SPIN SUSCEPTIBILITY WITHIN HUBBARD'S ALLOY

ANALOGY

The Hubbard Hamiltonian is given by

where

(1 —n, )n, , U'Z(E —Z, (E))
1 —t(1 —n .) U —X;.(E)]F(E —Z, (E))

(2.6)
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z(z - z,(z)) = (f
i
G,

i
f ) . (2. 7)

Here 1, is the unit operator and Eq. (2. 6) is equiv-
alent to Eq. (4. 23) of Ref. 5 except for a, difference
in the origin of energy. Equation (2. 6) wa.s pre-
viously derived by Hubbard from equation-of -mo-
tion techniques. The observation that Hubbard's
truncation scheme is equivalent to the CPA applied
to Eq. (2. 2) is due to Veiicky et a/. It can be
noted using Eqs. (2. 4) and (2. 6) that in the limit
U/W « I, the self-energy Z, (E) = U», and thus

BC,'", reduce to the usua, l Hartree-Fock a.pproxima-
tion to the Hubbard Hamiltonian. In the atomic
limit U/W=~, in which the resolvent of Eq. (2. 1)
can be obtained exactly, the calculated expression
for G, obtained from Eqs. (2. 4) and (2. 6) reduces
to the exact expression' for G,. The alloy approx-
imation is thus valid for both large and small va-
lues of the parameter U/W. It is therefore ex-
pected to be a reasonable interpolation scheme for
calculating the spin-configuration-averaged re-
solvent for the Hubbard Hamiltonian for arbitrary
U/W.

The density of states per atom of electrons with
spin o is given by

p, (Z) =-(vX) 'im TrG, (z+fO), (2. 6)

which can be simply related to the density of states
for noninteracting electrons p,'(E) using the equation

-(~) 'Im f" dz'p,'(E')(E —Z, (E) —E') '=p, (E) .
The average number of electrons per atom with
spin 0 satisfies the equation

», = J dz(l+e' "&i'r) 'p, (E), (2. 9)

where the Fermi energy p, is related to the number
of electrons per site 2n through the identity 2n
-=n, +n, . In order to compute the self-energy
Z, (E) a,s a. function of po(E), 2», and U, Eqs.
(2. 6) and (2. 9) must be solved simultaneously at
each temperature for the five unknown quantities
Z, (E), Z, (E), »„» „and p, .

Until now this section has been essentially a re-
view of previous work. '~ ' It is the purpose of the
remainder of the section to go beyond these earlier
theoretical results and to calculate both the local
magnetic moment and the static uniform spin sus-
ceptibility within the framework which has now been
set up.

Because of the difficulty in dealing with nontrans-
lationally invariant systems of particles, what is
usually calculated in the Hubbard Hamiltonian is
the average spin configuration at a site, i.e. ,
n, and n, . It is possible, however, to decompose
the average configuration at a site into the com-
ponent configurations which when properly weighted
make up the average. . The alloy analogy may now

be seen to contain useful information about the
probability of the occurrence of the possible atomic
configurations. Just as in the binary-alloy prob-
lem, '~ 'the average electron density of states
p, (E) may be decomposed into the component den-
sities p", (E) and p, (E) which correspond to the den-
sity of states of electrons whose spins are, re-
spectively, compensated (e,'= U) or uncompensated
(e,'=0) by electrons with opposite spin at the same
site. It follows from the CPA that p, (E) and

p, (E) satisfy the electron-conservation equation ~

p, (E) =», p", (z)+ (1-»,)p,'(z), (2. Io)

where

p,'(E) = —(&&) Im(z G,' (E) ~i) (i =A, 8) (2. 11)

m, (T)-=X 'P, ~», , -»„~

i» & ) conf j&& av &

(2. 13a)

(2. 13b)

where the symbol ( ~ ~ ~ )„„«,„denotes a weighted
average over all the possible spin configurations
at the site i, n;, is the expectation value of the num-
ber operator' at the ith site for a given configura-
tion of spins at the N sites in the lattice, and the
vertical bars ~ ~ ~

~

mean that the absolute value
of the quantity between them is to be taken. The
reasons for defining I, as in Eq. (2. 13) are three-
fold. First, the local moment as defined above is
a measure of the average (spin) angular momentum
at each site; second, rn, is easily related to a,

physically measurable quantity, namely, the spin
susceptibility at high temperatures; and third,
I, can be simply calculated within the alloy-analogy
framework. '

It follows from Eqs. (2. 13) that m, (T) is the
average number of electrons per site with uncom-
pensated spins which is given within the alloy
analogy by

m&(T) = 2(1 —») 1 dz (1+e + "& ~ r) (E)
~ OO

(2. 14a)

=2»(l —»)+ — Im, dE (1+ e' ~' '
)

'
™
&OQ

z(z —z.(z))
[e ' —Z (Z)]Z(E —Z, (z))

~

(2. 12)
In the following, to avoid the difficulties mentioned
in Sec. I, attention will be focused on paramagnetic
metals for which n, =n, =n.

There has been a notable lack of precision in the
literature & in defining the local magnetic moment
m, (T) at a site in a crystal. The following definition
for m& (T) is used here:
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(i l 0, l i)Z, (E)(i l G, l i)
i+ Z, (E)(i l G, l i) (2. 14b)

From Eq. (2. 14b) it may be noted that rn, (T) can
be decomposed into a constant term 2n(1 —n) in-
dependent of U and a term which is related to the
density-density correlation function and which
vanishes as U-0. In the small-U/Wlimit, for
which Z, (E) = Un, the second term in Eq. (2. 14b)
reduces to the usual expression for the unenhanced
local susceptibility times 2n(l —n) U. In the large-
U/W limit, for hT «U, the second term is given by
2n if n& &, and 2(1- n) if n&2. This will be dis-
cussed in more detail in Sec. III. The first term
in Eq. (2. 14b) expresses the fact that for any value
of U there will always be on the average electrons
with uncompensated spins at a site in a metal un-
less the electron bands are completely full (n = 1)
or completely empty (n= 0).

From Eq. (2. 14b} it follows that at temperatures
high compared to lE —E '"], where E '" and
E are, respectively, the lower and upper energy
bounds of the bands for interacting electrons, we
have

(2. 16)g= p, a lim [n, (H) —n, (H)J/H
H P

may be calculated from Eq. (2.9) by replacing the
energy levels e,' by the spin- and field-dependent
quantities e,' —p, soH= e,'(H). Here p, s is-the Bohr
magneton and H the external magnetic field. It
should be noted that in the presence of a magnetic
field the relative concentration of the energy levels
&", (H) and e, (H) is field dependent and is given by
n~(H) and 1 —n„(H), respectively. As a. result the
self -energy and the configuration-averaged resol-

mi(T-") =2n(1-n)»&' IE "-E""I.
(2. io)

In Eq. (2.15) the limit (il G, li) E as E ~ has
b"en used. Equation (2. 15}can be derived without

using any approximation scheme. This exact result
expresses the fact that at temperatures high corn-
pared to U and W the average loca/ moment is given
by the Probability that a noninteracting electron
and hole of opposite spin are at the same site These.
results may be illustrated for the case of a half-
filled band, n=-,'. When kT» U, 5' there are four
equally likely spin configurations which may exist
at a given site. These four states are shown sche-
matically in Fig. 1. The first two correspond to
a local moment of 1. The last two correspond to
zero local moment. The average moment magnitude
at a site is thus —,

' = 2n(l -n) By cont. rast the

average vector moment (n;, -n;, ) „«,„is clearly
zero. The metal at high temperatures, therefore,
can be thought of as a system of local moments of
average magnitude —,'.

Finally the uniform static spin susceptibility

vent also depend on H.
The high-temperature limit of the paramagnetic

susceptibility g(T-~) may be easily calculated and
related to m, (T- ~). Since the interactions between
electrons are unimportant at temperatures large
compared to U and W, X(T- ~) is given by an ex-
pression appropriate to noninteracting electrons:

x(T-")=2vs —,»» IE '*-E "I (2. 17)
ep.

As T~~,
n= (1+e ""-r) ' f dEpo(E) .

Thus 2&n/Bp, is equal to 2n(1-n)/hT=m, (T- ~)/
hT. It then follows from Eq. (2. 17) that

X(T- ) = p,,'m, (T- )/hT . (2. 18)

FIG. 1. Local spin configurations for kT» U, 5' and
1for g= 2

The susceptibility at high temperatures is thus
proportional to the local-m3gnetic-moment mag-
nitude m, (T- ~). It should be noted that Eq.
(2. 18) exhibits the appropriate symmetry between
electrons and holes. However, only in the nearly
free-electron limits n «1 or 1 -n«1 does
g(T- ~) reduce to the classical result. This ap-
parent violation of the correspondence principle
is due to the fact that Eq. (2. 18) represents the
intraband contribution to the susceptibility. The
contribution to X of additional bands is thus neglected
in this equation; only when these contributions are
included by modifying the original Hamilton'. an

[Eq. (2.1)]will the classical result be obtained for
T» 0.

In Sec. III the temperature dependence of m, (T)
and X(T) is discussed for special values of the pa-
rameters U/W and n In ad.dition, the Curie tem-
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perature Tc, , which is the temperature below which
the paramagnetic state is unstable with respect to
ferromagnetism, is obtained. T& can be calculated
either from the pole in the susceptibility or from
the equation n, (T) =n, (T). Within the present
framework it is not possible to calculate easily the
wave-number dependence of the susceptibility.
Consequently the Neel temperature T&, which is
the temperature below which the paramagnetic
state is unstable with respect to antiferromagnetism,
will not be considered.

III. BEHAVIOR OF LOCAL MAGNETIC MOMENT m((T)
AND SPIN SUSCEPTIBILITV X(T) IN SEVERAL

LIMITS

In this section the temperature dependence of the
local-magnetic-moment magnitude m, (T) and of the
spin susceptibility g(T) is studied in three limiting
cases in which the electron self-energy Z, (E)
[Eq. (2.6)] may be easily determined. These three
limits, for which the analogs in alloy theory have
also been extensively discussed, '~ ' are (i) the
Hartree-Fock approximation U «S', coxresponding
to the rigid-band approximation in alloy theory;
(ii) the f-matrix approximation n «1, correspond-
ing to the dilute-alloy limit; and (iii) the strong-
interaction limit U» 8', corresponding to the
split-band limit in alloy theory.

A. Temperature Dependence of m&(T) and x(T) in the Hartree-
Fock Approximation

In the Hartree-Fock approximation (U/8' «1) the
electron self-energy in Eq. (2. 6) reduces to

z, (E)=en. (3.1)

From Eq. (2. 14a) it follows that

m, (T) = 2n(l -n)+ 2n(l -n)m Ulm f dEE (E)/

(1+~ ) + O(f//W)' . (3.2)

It is evident that, except for small corrections of
order, (U/g'), m, = 2n(1 n)—is essentially tem-
perature independent. The second term in
Eq. (3. 2) which may be related to the non-ex-
change -enhanced local susceptibility approaches
zero for temperatures large compared to O'. The
temperature dependence of m, (T) is shown in Fig.
2. Here as in all subsequent figures it is assumed
for simplicity that the density of states of nonin-
teracting electrons is give»y p.' (Z) = 2(v W)

'
&& [1 —(E/g')~ ] . This band shape is sometimes
called the Hubbard band model. The characteristic
temperature T,indicated in Fig. 2 is the temperature
at which the local magnetic moment (assuming for
simplicity n & —,) is reduced to (2n-2n /3). This
temperature is in reasonable agreement with the
melting temperature of Hefs. 2 and 3 in the limit
0/'8' « l. Since it has been shown' that weakly
interacting (U/8'« I) systems with half-filled
bands undergo an antiferromagnetic phase transi-
tion, for the case n = —,

' the figure is not strictly
correct at very low temperatures.

The static uniform spin susceptibility g(T) can
be obtained from the field-dependent cognterpart
of Eq. (2.9) by replacing e,' by e,'(H). Expanding
Eq. (2.9) about the small parameters [n, (H) -n]
and II it follows that

p (E)

p max

-0.8?5 0.~25 E/

O.6—kTg /W

FIG. 2. Temperature dependence
of ng& for U/8' —0.25 and for g —2

and n = 4. In the insert is plotted
the density of states for interacting
electrons.

U/W= Q25
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(3.3)

Z, (Z) =~U/ [1 —UF'(Z)) . (3.4)

It follows from Eq. (2. 14) that

, (T)=-2(1- ) -'Im J" dZ(1+e"-"'"')-'

where (sn/sp)0 is the temperature-dependent den-
sity of states per spin at the Fermi energy for non-
interacting electrons. Equation (3.3) is the usual
expression for g in the Hartree-Fock limit. Be-
cause U/W«1 and (sn/sp)0-0(W '), there is no
pole in g. Thus the system does not undergo a
ferromagnetic phase transition for any m

It may easily be verified from Eq. (3.3) that, for
kT» W, g(T) is Curie-Weiss-like. For lower
temperatures y(T) is predominantly temperature
independent.

B. Temperature Dependence of m&(T) and x(T) in the t-Matrix

Approximation

In the f-matrix approximation (n«1) which is
the analog of the dilute-alloy limit in alloy theory,
the electron self-energy [Eq. (2.6)] is given by

Temperature Dependence of m&(T) and X(T) in the
Strong-Interaction Limit

In the strong-interaction limit (U/W»1), which
is the analog of the split-band alloy, the electron
self-energy [Eq. (2. 6)] is given by

Z,(E) =nU+n(1 —n)U /[E —U(1 —n)] . (3. 10)

It can be seen from Eqs. (3.10) and (2. 18) that the
density of states contains two well-separated bands,
one centered at 0 containing i —n states and one
centered at U containing n states. This density of
states is illustrated for n= & in the insert of Fig.
3. The temperature-dependent local magnetic
moment is given by

m, (T) =-2(I n) v 'Im '-dZ(I+e'e " ~)' r)
'

F(Z —Z.(Z))
I+Z,(Z)F(Z-Z, (Z})

'

In the limit kT «0; it can be shovrn using either
Eq. (3. 11) or the energy-integrated form of Eq.
(2. 10) and observing that if n & —,', p lies in the lower
band and if n & &, JU, lies in the upper band, that

, FJE -«/I I —UF(E) j}
1 + UnF (E)/[1 —UF (E)j

Expanding jn powers of ~, Eq. (3.5) can be written

, (T) =2n,

m, (T)=2(l —n}, n & ~

(3. 12)

(3. iS)

~,(T)=2s(l-n)(1+Uv 'Im J dE(1+e ' )

I

F (E) + BF(E)/sE
( 2) (3 6)

1 —UF(Z)

x(&)=&v'(, )
for $7'«U, g. pere U is given by

U"=U/[I UIF(E""}I]

(3.8)

(3.9)

where F(E '"), evaluated at the lower band-edge

energy, is real and negative. For the Hubbard band

model F(Z ")= —2W . In Eq. (3.8) Sn/Sp is the

density of states at the Fermi energy for interacting
electrons. Equation (3.8) may be seen to be equiv-

alent to the usual expression ~
~ for y(T) in the limit

n«1. Because of the smallness of sn/sp near the
band edge compared to (U"') ' & W ', there is no

pole in y for n «1. Thus the system does not un-

dergo a ferromagnetic transition.

Since the integral in Eq. (3.6) is of order n, it fol-
lows that

m, (T) = 2n+ 0(n')

is temperature independent to first order in g. The

static unifol m spin susceptibility obtained from
Eqs. (2. 9) and (2. 16) is

In the atomic limit, for which the single-electron
properties of Eq. (2. 1) can be exactly solved, the
alloy analogy has been shown to be exact. ' Con-
sequently, if W=0 and kT«U, Eqs. (3. 12) and
(3. 13) are valid independent of any approximation.
These two equations are physically reasonable and
indicate that, if U/W» 1 and AT «U, the local
magnetic moment has its maximum value, cor-
x'espondlng elthex' to electrons 1f g & p or holes
if n & —,'. At temperatures high compared to U/k,
where k is the Boltzmann constant the moment
falls to the value appropraite to noninter-
acting electrons: rn, =2n(I -e). These results are
shown in Fig. 3. The temperature T, indicated in

Fig. 3, defined as in Sec. IIIA, may be seen to be
in reasonable agreement with the "melting" tempera-
ture obtained by other authors ~ for U/W && 1. As
in Fig. 2, because of the antiferromagnetic order-
ing at low temperatures for the ca,se v = &, the figure
is not strictly correct below the (small) Neel tem-
perature T„-W /U. '

It follows from Eqs. (3.10), (2. 9), and (2. 16)
that, for U/W»1, kT «U, and n & —„the static
uniform susceptibility is given by

(
2i), e p', [p,/(I —n)]

(1 —2n}/(I n) + po [tu/(I - n)-][tu/(I - n)]
(3. 14)

This result is identical to the expression for y(T)
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-I.O 0 I.O E/ g 3.0 4.0 5.0

FIG. 3. Temperature dependence
of m& for U/W=4. 0 and for n=2
and N =4. In the insert is plotted
the density of states for interacting
elec trons.

.2—

0.2
I I

ky 0.6
u

y(T) = 2P, aa n/k T . (3. iS)

Finally, when AT- U the Curie-law behavior again
breaks down, until AT» U when y is given by Eq.
(2. 18). These results can easily be extended to the
case n &—,'. It follows from Eq. (3. 14) that the Curie
temperature T~ is obtained by solving the equation

1 —2n+ p, [y.(Te)/(I —n)] p, (Tc) =0 . (3. 16)

The condition for paramagnetic instability has been
previously discussed in detail. ' It is clear that
there will be a ferromagnetic phase transition if
(a) p, is negative and (b) the density of states at
the Fermi energy po[p/(I —n)] is sufficiently large.
For symmetrical band shapes p, will be negative
only if the lower band (centered at E = 0) is less
than half-full. At zero bandwidth it may be seen
from Eq. (3. 15) that the system is always para-
magnetic.

IV. DISCUSSION AND CONCLUSIONS

The fact that the alloy-analogy scheme for the
Hubbard Hamiltonian reproduces the usual expres-
sions for the static uniform susceptibility in the
three limiting cases considered above suggests
that it is reasonable to apply this approach to the

in the strong-interaction limit obtained using equa-
tion-of-motion techniques. ~

' It may be seen from
Eq. (3. 14) that for kT«W the susceptibility does
not obey a Curie-gneiss law. This result is felt to be
incorrect and may reflect a weakness in the alloy-
analogy approximation. However, when U» AT

» W, Eq. (3. 14) reduces to the expected Curie
law, and we get

more general case of arbitrary U/W and n. In

addition, the high- and low-temperature values of
the local magnetic moment obtained in Sec. III ap-
pear to be physically reasonable.

It can be concluded from the discussion in the
previous section that m, does not undergo a phase
transition to a zero value. There is instead a par-
tial "melting" of the local-magnetic-moment m3g-
nitude, which at temperatures high compared to
U and W approaches the finite value 2n(1 —n)
Furthermore, there is no structure in the spin sus-
ceptibility which can be related to a sudden disap-
pearance of local magnetic moments. This is in
contrast to previous results y which predict a sharp
phase transition associated with a disappearance
of the local magnetic moment. Because the alloy-
analogy scheme is exact in the case W=O, in which
limit the same conclusions hold, it is evident that
these results are not a feature of the approximation
used here.

The discrepancy between the results of the pres-
ent and previous calculations ~ can be traced to a
difference in the definition of the local moment, in
the case of Ref. 2, and to the additional assump-
tions made in Ref. 3 about the local environment
of each local moment. In Ref. 2, in which an anti-
ferromagnetic system was considered, the time-
independent-vecto~ local moment on each of the two
antif erromagnetic sublattices was calculated.
This vector local moment was defined to be (n, —n, )
on one sublattice and (n, —n, ) on the other, where
n, and n, represent, respectively, the average oc-
cupation probabilities of spin-0 and spin-4 electrons
calculated within a particular antiferromagnetic
sublattice. It is evident that the quantity (n, —n, )
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will undergo a phase transition to zero at the Neel
temperature. However, this pha. se transition is
clearly characteristic of the bulk rather than the
local properties of the system and cannot be con-
sidered as distinct from the usual antiferromag-
netic-paramagnetic phase transition associated with
the disappearance of long-range order.

In Ref. 3 the partition function of the Hubbard
Hamiltonian, Etl. (2. 1), was calculated using the
"static approximation" to the functional integral
representation. By minimizing the approximate
free energy, a time-independent Ising-vector local
field $o was computed. However, no exact physical

'

interpretatio~ was ascribed to Eo. In a single-im-
purity alloy such as described by the Anderson
Hamiltonian, this static local field is proportional
to plus or minus the absolute value of the impurity
spin+ ln, ' ' —n', ' I, calculated from an unrestricted
Hartree-Fock approximation to the impurity Green's
function. Consequently, it seems reasonable to
associate $a in a metal with +m, xconst, where
m, is the average local magnetic moment defined
in Etl. (2. 13). In addition to the static approxima-
tion a, further approximation was made in Ref. 3.
In determining $o at the site i the local fields at
sites iW j were set equal to O. This one-center
approximation reduces a calculation of the local
moments in metals to that of the local moment of
an impurity in a metal host. As a consequence of
the one-center approximation, at finite tempera-

tures &, was found to undergo a phase transition to
zero similar to that f'ound in very dilute alloys.
However, because it has been shown here that the
average moment magnitude m, is nonzero at all
temperatures for 0 & n & 1, it can be concluded that
the value obtained for (o from the one-center ap-
proximation is apparently incorrect.

It is evident that sufficient care must be taken in
defining and computing the local magnetic moment.
At finite temperatures the local-moment magnitude
and direction fluctuates from site to site. The
average of the local-moment magnitude m, (T)
=( ln„—n„1) „««, at temperatures high compared
to fI and W Rpp1'oaclles R fllllte vRllle 211(1—tt). Oll

the other hand, the average of the vector local mag-
netic moment (n„-n;,)„„«„,at a site is zero above
the ordering temperature To. The apparent size
of a local magnetic moment in metals is strongly
dependent on the nature of the experiment which is
performed to measure this quantity. A Mbssbauer
experiment, for example, is sensitive to the average
of the vector local magnetic moment if the rate of
change of its direction is fast compared to the nu-
clear precession frequency. ' Otherwise it mea-
sures a distribution of the magnitudes of the local
magnetic fields. On the other hand, the static uni-
form spin susceptibility )((T) at high temperatures
measures the average local-moment magnitude.
At these temperatures )((T) is described by a Curie
law with Curie-Weiss constant 2tt(l n) =m, (T- -~).
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