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A model Hamiltonian has been constructed for the ferroelectric transition in the perovskite
structure in terms of localized-strain and soft-normal-mode coordinates and temperature-in-
dependent model. parameters. No anharmonic interactions higher than fourth order are consid-
ered. The free energy for tetragonal, orthorhombic, and trigonal distortions is calculated in
a molecular-field approximation with the cubic structure as a reference configuration. From
the free energy, the polarization and the strain distortions are determined. The soft-mode
frequencies and the shifts in the acoustic-phonon frequencies are calculated from linearized
equations of motion describing the fluctuations about these average values. The soft-mode
frequencies in cubic structure vanish at the supercooling temperature, as usually assumed.
However, in the distorted structure they remain finite at the stability limit determining the
superheating temperature. The model Hamiltonian describes first- or second-order transi-
tions depending on the strength of the coupling with the strain. For suitable choice of model
parameters, the model allows for transition from the cubic to the tetragonal phase as in PbTi03,
to the trigonal phase as in CsGeC13 and various solid solutions, as well as a series of transitions
from high- to low-symmetry structures, as in BaTiO&.

I. INTRODUCTION

Traditionally two approaches have been used to
describe displacive ferroelectric transitions. Qne
is the phenomenological Devonshire theory in
which the free energy is expanded as a power series
in the polarization and the strain. The coefficients
are, in general, arbitrary functions of temperature

which are determined experimentally. Although no
explicit temperature dependences are calculated,
this theory has been extremely useful in correlating
experimental data. The other is a lattice-dynami-
cal approach starting from very general anharmon-
ie-lattice models. Qne or more of the harmonic
normal-mode frequencies are assumed to be un-
stable. These modes are stabilized by anharmonic
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interactions. However, partly because of the for-
mal nature of these theories and partly because of
the large number of anharmonic-lattice coefficients,
no attempt has been made to provide explicit de-
scriptions of measured quantities such as the polar-
ization soft-mode frequencies and strain distor-
tions. Vfith a few exceptions, ' these calculations
have been restricted to the quasiharmonic approxi-
mation in which the unstable harmonic soft-mode
frequency is stabilized through interaction with the
stable harmonic modes. The interactions among
the soft modes themselves are neglected.

Recently a calculation based on a model Hamil-
tonian containing a small number of temperature-
independent parameters was able to give a quantita-
tive description of the structural transition in the
perovskites. These papers will hereafter be re-
ferred to as I. This transition involves rotations
of octahedral units. The analogous calculation for
the ferroelectric transition is presented in this
paper.

The model described in I was expressed in terms
of localized normal-mode coordinates describing
the rotations of the octahedra. A free-energy ex-
pression was constructed using a molecular-field
approximation, including the contributions of the
soft optical phonons. The order parameter, in this
case the rotation angle, and the strain. distortions
were determined from the free energy. The soft
optical-phonon frequencies and their interaction
with the acoustic phonons were obtained from lin-
earized equations of motion derived from the
Hamiltonian.

The free-energy expression has a complicated
functional dependence on the order parameter. If
expanded in powers of the order parameter an in-
finite series results with generally temperature-
dependent coefficients. These coefficients depend,
however, only on combinations of the original model
parameters, and thetemperature dependence is de-
termined by the theory. This should be compared
with the Devonshire theory where each term in the
power series introduces a new set of coefficients
which are arbitrary functions of temperature. Usu-
ally only a few terms are kept and frequently the
temperature dependence of all but the quadratic
term is neglected. The Devonshire theory then
predicts a strain distortion proportional to the
square of the polarization, ' and by an extension
of the free-energy approach to give an approximate
description of dynamic phenomena, predicts soft-
mode frequencies in the distorted phase pro-
portional to the order parameter. ' From the cal-
culations based on the model Hamiltonian, one of
the soft-mode frequencies squared is found to be
proportional to the order parameter squared,
whereas the other frequency and the strain distor-
tion are found to have a more complicated tempera-

ture dependence.
It is also interesting to compare the approach

used in I with the quasiharmonic approximation.
If for simplicity we consider the undistorted cubic
phase and only fourth-order anharmonic interac-
tions, the soft-mode frequencies squared &u,'(q)
are given by'

&u„(k)= ~,'(k)+ Z g, ',!(k,q) 2~x o(q)

and

By contrast, the sof t- mode frequencies in I were
determined by the self-consistency conditions'

'(k) = ' (k} Z g"'(kq)
qX'

where the same soft-mode frequencies appear on
the left-hand side and in the summation on the
right-hand side. For the molecular-field approxi-
mation discussed in I, one obtains

as before, whereas

~2(0) k T1/2 for T~ 0

From the form of Eq. (1) it follows that for equal
coupling coefficients the contribution to the sum on
the right-hand side is larger the lower the frequen-
cy. The terms involving the acoustic phonons and
the soft-mode frequencies themselves may there-
fore be expected to be most important. In fact, in
I only the soft-mode frequencies were considered.
In the ferroelectric transition the interaction with
the strain is much stronger as evidenced by the
large change in the c/a ratios, " and in this paper
the fourth-order coupling will be included. How-
ever, no anharmonic interactions higher than fourth

where &,o(k) are the harmonic normal-mode fre-
quencies and g'„' (kq) are fourth-order anharmon-
ic coupling constants. In the last term the actual
phonon frequencies, renormalized by the anharmon-
ic interactions, have been replaced by the harmonic
phonon frequencies. This constitutes the quasi-
harmonic approximation. The summation runs over
all the modes excePt the soft modes ~,. These
are neglected as the corresponding harmonic fre-
quencies are purely imaginary. " For P&,.o(q) « i
and k = 0, one obtains the usual Curie-gneiss be-
havior,
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order will be considered.
The harmonic Hamiltonian is usually assumed to

consist of a positive contribution due to short-
range forces and a negative contribution due to long-
range dipolar forces. ' The latter must then be
larger than the positive contribution in order to
have an instability. However, the short-range
interaction need not always be positive. A dis-
placive transition can then take place even in the
absence of long-range dipolar forces. This appears
to be the case for the structural transitions studied
ln I.

The anharmonic interactions will be assumed to
be due to short-range forces only.

The ferroelectric transitions in the perovskites
are usually first order. ' In the Devonshire theory
a description of a first-order transition requires
sixth-order terms in the polarization with a nega-
tive fourth-order term. A negative contribution
to the fourth-order coefficient is obtained from the
third-order coupling to the strain when the strain
is eliminated in terms of the polarization. "
Similarly, in the molecular-field approximation,
the model Hamiltonian gives a first-order transi-
tion for a sufficiently strong coupling to the strain,
but without the need to introduce additional sixth-
order terms. This suggests that a Hamiltonian
with only a few model parameters may be sufficient
to describe the ferroelectric transition also.

This differs from a model expressed in terms of
optical-phonon soft-mode coordinates recently pro-
posed by Lines. ' The coupling to the strain is
neglected and in order to describe a first-order
transition an intrinsically negative fourth-order
coefficient is introduced. To stabilize the system
a positive sixth-order term is required as in the
Devonshire theory. Evidence in favor of a correla-
tion of strong coupling to strain with the order of
the transition is provided by recent experiments on

the KTa„wb, „0,alloy system. " The soft modes
were found to be underdamped in the cubic structure
for values of x corresponding to a second-order
transition and overdamped in case of a first-order
transition. The damping is expected to be largely
due to the coupling to the strain because of the rela-
tively large density-of-states factors for acoustic
phonons.

Ferroelectric transitions in the perovskites are
known to occur from the cubic to the tetragonal
phase as in BaTiO3, PbTiO3, and KNbO3 with the
polarization along the c axis. " Whereas PbTi03
remains tetragonal for all lower temperatures, as
is well known, BaTi03 and KNbO, have subsequent
transitions to orthorhombic and rhombohedral struc-
tures' with the polarization in the (1, 1, 0) and

(1, 1, 1) directions, respectively. Direct transi-
tions from cubic to rhombohedral structure have
been observed in' CsGeCl3 as well as in solid solu-

tions, for example, in PbZr„Ti&,03. "
The free-energy and soft-mode frequencies ap-

propriate for each of these distortions are calculated
below. In constructing the model the high-tempera-
ture cubic structure is used as reference configura-
tion.

II. MODEL HAMILTONIAN

In the absence of dipolar forces the soft mode in
the undistorted structure is triply degenerate due to
equivalent cube axes. We choose as a basic set
normal-mode coordinates which describe displace-
ments along each of the three cube axes. The soft
mode can be built up from localized displacement
fields Q(f), where l is a unit-cell index. Q(l) plays
the same role for the ferroelectric transition as
the vector operator R(l) describing rotations of the
octahedral units for the st"uctural transition. It
is a linear combination of the displacements of the
individual ions taking part in the soft mode, the
condensation of which leads to the distorted struc-
ture. Independent translations along each of the
cube axes permit the construction of three branches
as required. %e shall consider only these three
degrees of freedom and their interactions with
strain and acoustic phonons.

The dipolar forces split the triply degenerate
mode of the cubic structure into a doubly degener-
ate transverse mode and a singlet longitudinal
mode.

For the cubic perovskite structure the Hamil-
tonian describing the kinetic energy and the effect
of short-range forces may be written

&i= i +~ &~(f)+ ' "o~ QBf)
Xl A,l

+ —'ZQ&(f)+ —'~ Q~(f)C (f),4 )I,W)I,
'

where Q and P are canonical conjugate variables

[Q~(f), &i (f')1= &&i~ & «

and where anharmonic terms higher than fourth or-
der have been neglected. Interactions between the
cells, dominated by long-range dipolar forces, will
be written

&a = 2 +~ v ~~ («') Q~(f ) Q~ (f'), (5)
)tX'
l l'

where g, .(ll') describes the total interaction of the
displacements in cells l and l'. It includes the ef-
fect of the rearrangement of the electrons described
by the electronic polarizability as well as the di-
rect dipole-dipole interaction.

As is well known, v„.(q) is nonanalytic at q= 0.
Its value depends on the direction in which q goes
to zero. For q=0, the interaction has the

m22-24
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v»1(q)=f 11~ — (q1q1 Iq )

We shall use the notation

v».(0) = vr(0)

v»(0)=v~(O), q[(X.

strain may be expressed in terms of the normal-
mode coordinates of the acoustic phonons in the
usual way:

+ o ~ z1)1&1(f)&1(&)Q1(f) (10)

The form of the coupling constants appropriate to
cubic symmetry ls listed in Appendix A. Thlee
independent coupling constants G,~ and six indepen-
dent constants g&» enter.

The Hamiltonian describing long-wavelength
acoustic phonons may be expressed in terms of the
localized-strain tensor components,

&,= 21'5 u(l) + 2 Z C„e,(L) e~(l), {ll)
ijx

where u(l) is the displacement of the center of mass
of the lth unit cell from its equilibrium position X(l)
due to the acoustic-phonon modes and M is the total
mass of the unit cell. The constants C&& have units
of energy and are related to the usual elastic con-
stants c;& by

0 3 0C;)=a c;, .
The Hamiltonian given by Eqs. (3), {5), (10), and

(11) has the symmetry appropriate for the cubic
perovskite structure. The distortion from cubic
symmetry below the transition temperature is de-
scribed by nonvanishing expectation values of the
operators Q,(l) and the strains e;~(l). The strain
tensor e&&(l) will, however, have nonvanishing ex-
pectation values also in the cubic phase above the
transition temperature which then describes usual
thermal expansion. We set

Q1(~) = &1+&1(~)

e, (l)=e, +u;(f),

(12)

(13)

where A. )„and e, are the thermal average of the
soft-mode coordinate and the strain, respectively.
The fluctuations about the average values of the

(1/&) ~.v» (q) = o .

The interaction of the soft-mode coordinates Q„(f)
with the elastic strain and long-wavelength acoustic
phonons may be expressed in terms of localized-
strain tensor components e„( )f W.e adopt the
abbreviated notation

f]=E ) /=1

4 23& +5 13'

The third- and fourth-order anharmonic interac-
tion may then be written

ufo= ~ G111 «(f)Q1(f)Q1(f)

+'s(&q)=qte1(pq)+q e&(uq)

and where Q(i1q) is the normal-mode coordinate for
the i1th acoustic branch of frequency &u(i1q), wave
vector q, and polarization vector e(pq). The ten-
sors p, && and &&; will usually be described using the
abbreviated notation defined by Eq. (9).

When Eq. (13) is substituted in the elastic Ham-
iltonian, Eq. (11), it separates into static terms—
terms which are linear in the fluctuation u;(f) and
terms which are quadratic in the fluctuations. The
latter are most conveniently expressed in terms of
the acoustic normal-mode coordinates

H, ' = - Z P(iraq) P(p, —q)

+ —2~~ &o(uq) Q(uq) Q(u, -q), (16)

where P(pq) is the canonical-conjugate momentum

«Q(vq),

SlmllRrly the 8tlaln VRl'lRbles ln II3 may be ex-
pressed in terms of the static strain and the acous-
tic normal-mode coordinates Q(i1q) by means of
Eqs. (13) and (14).

The equation of motion for the displacement field
Q);(f ) ls obtained from the Blodel Ha111llton1all by
means of the commutation relation, Eq. (4),

sfo
— Q1{~)= flo Q1(f) -p» («') Q1 (f')

+ 1'1Q1(f)+ 1'a ~,Q1(f)Q1(f')+3&G 1V& (~)Q1(f)

++~&V1'1(~) &S(f) Q1 (l) . (13)

We substitute Eqs. (13) and (14) for Q,(l) and «;(f)
and linearize the equations of motion by replacing
pairs of operators x~ and u& by their expectation.
VRlues

&» = &&1{f)&V(~)&,

D,1= {u1(l)uq(l)) .
We further neglect the resonant coupbng to the
acoustic phonons which will be discussed below.
The equations of motion for the Fourier coefficients
r,(q) then take the form

9
ofo &1(q)
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= n,'i, (q) —Z v, (q) r, , (q)+ 3r, (X',

+ 1'2&~ [2(&«&«+ &» )&«(q)+(&«+~««)&«(q)l

+ 2 ~ G ««e i i'«'(q) + +J« '«(e ' e i+ + i&) ~«(q)
0

(20)
This set of equations may be diagonalized by in-
troducing a canonical transformation

i'«(q) = Z b««. (q) s „(q),
(21)

&«(q) =~&«(q) &«'«(q),

The last term in Eil. (26) describes the resonant
coupling with the soft-mode coordinates. The
equation fox' the latter is written correspondingly

3„2 s.(q)=e.(q)s (q)

+2 ~ G;««&«o;(~q)&««(-q)Q(uq). (29
x'Kv]

Introducing time Foux'ier transforms, we obtain
the coupled-mode dispersion relation

[~ —&'(p q)] Q(uq)

fir««(vq) fi'v'«'«(p & q) +««'
q(Q ]LL q~j,

such that
9

s «(q) = p «(- q), where

f;.»(~q) = G;: f .«(q) &;(v, —q) .

(30)

(31)

„2 s«(q)= e'(q)s«(q),

where the coefficients b««. (q) may be determined
from Eil. (20). The eigenfreiluencies &«(q) depend
on the correlation functions ~». and D, &. From
Eels. (22) the former may be written

1
~«« = —~~ f ««(q)&«« ~ (-q)(s«{q)s«(-q)) . (23)

qM. '

Then making use of the fluctuation-dissipation
theorem we obtain the following self-consistency
conditions:

1
&» =@Z &««(q)f'«, «(-q) [2e«(q)] coth-,'pe;(q) .

q)).

(24)
The determination of fi». (q) and thus e,(q) for
arbitrary q requires an explicit model form for
v». (q) throughout the Brillouin zone as well as the
solution of a general cubic equation. The acoustic-
phonon correlation function may be written corre-

spondd

ingly

&;;=+&;(Pq)&, (gq) [2~(i«q)] coth-, p&u(i«q)

(26)
where &(p,q) are the renormalized acoustic phonon
frequencies calculated below. The linearized
acoustic-phonon equations of motion take the form

9
». Q(~q) = ~(uq)Q(pq)

+ 2 5 G,», A«, n;(p, , —q)b;«(q)st(q),
»~X

(26)

where g(p. q) are acoustic-phonon frequencies corre-
sponding to elastic constants

&;;= &';;+ &«a';;«(&«+ &««)

The resonant interaction does not affect the soft-
mode frequencies at q = 0 but only their dispersion.
For the acoustic-phonon frequencies it leads to
step discontinuities in the elastic constants at the
transition point. In the small-q limit for sound

propagation along particular symmetry directions
a given acoustic mode couples only to a single op-
tical-phonon mode &. In the limit

the changes in the elastic constants are then ob-
tained trivially. Explicit expressions in case of
tetragonal distortion are given in Sec. V. The
quadratic terms in the equations of motion have
been neglected. An approximate discussion of
the effect of these terms is given in I for g,»- O.

Higher-order interactions which affect the q de-
pendence of the acoustic-phonon frequencies ' are
also neglected.

The soft-mode frequencies and the changes in the
elastic constants depend on the static distortions
A~ and e;. As in I these will be determined from
an approximate self-consistent fx ee-energy ex-
pression. The effect of the resonance interaction
on the free energy may be neglected. For the op-
tical phonons this interaction gives small changes
in the q coefficient of e, (q). The acoustic phonons
are only affected in the low-freiluency region ~, (q)
«e„, whereas the free energy involves summations
over the whole Brillouin zone.

IV. FREE ENERGY

In order to derive an approximate expression for
the free energy including the contribution of the
phonon modes, we introduce a trial density matrix
of the form

G i«« = Gi««+ +ig i&«&i

(28)

NHgiiyT Nlqii-
)

where H„, is a diagonal Hamiltonian
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H,f, = Eo+~ ex(q) ex(q) ex(q)

+& &(qp) b'. (q) b. (q) (33)

8 = —k'g Trpefg 1Dpegg

may be written in the form

(36)

expressed in terms of temperature-dependent en-
ergies Eo, &x(q), and rz(pq) .By definition nx and

a, are linear combinations of the set of operators
Lx„Px] satisfying Bose commutation relations,

[&x(q), &x (q')] = bxx 5,. (34)

+= Tr(p nH+ P p fr lnp ff), (35)

where II is the original Hamiltonian. The effective
Hamiltonian is used only to define a density-matrix
diagonal in the number representations of the ex-
citations &x(q) and ~(gq).

For noninteracting Bose excitations the entropy
contribution to the free energy

The operators b, (q) and b„(q) are the corresponding
annihilation and creation operators for the acoustic
phonons.

In terms of the density matrix the free energy
may be written

3=b.~([I+ (q)]l [I+ (q)]- .(q) I .(q)],
(3'I)

where nx(q) is the Bose occupation number factor,

xxx(q) = I/(e"""'+ I), (33)

together with the corresponding term for the acous-
tic phonons.

In order to evaluate (H ) we express (x„Px] in
terms of the new normal-mode coordinates a„and
a,. It will be convenient to make use of the opera-
tors sx(q) introduced in Eq. (22). We assume that
s)„may be expressed in terms of a)„and a), with
equal amplitudes for forward and backward prop-
agating waves,

sx(q)= [2ex(q)] '"[ex(q)+ex(-q)] . (»)
The form of P,(q) follows from the requirement that
the transformation be canonical. For this choice
of sx(q), (H) takes the form

(H ) = -,' 5~ ex(q) [ex(q)+ —,]+ -,' Z &(Pq) [n (P q)+ &]
—

x ~ vxx(o) A x+ x flP~ (Ax+ &xx) + ,Z &'„(e-& e, + D;,)
Xq PQ $j

+ xl'x~(Ax+5Ax~xx+ 3&xx)+ 4I'x~(AxAx +Ax &xx+Ax &x x +4AxAx &xx + &xx&x x +»xx &xx)
a ~ M a a a a

u. '

+ ~ G&xx'e& (AxAx'+ &xx ~ )+ a ~jg''gx(e'ey+D J) (A + + )
f jX

where hxx, and D&& are given by Eqs. (24) and (25),
respective1. y.

We choose the arbitrary function Eo(T) in Eq.
(33) such that the self-consistency condition

(H)=(H. n& (41)

is satisfied.
As already discussed, v,„.(0) depends on the

direction in which q - 0. For each type of distor-
tion we choose the direction for which I" is a
minimum.

The extremum conditions SP/&A = 0 yield static
part relationships which together with Eqs. (24) and

(25) determine the thermally averaged quantities
A, e(, b~, and D,~.

The self-consistency condition, Eq. (24), involves
summations over the Brillouin zone. In order to
avoid complicated summations and the need to de-
termine the 0 dependence of the modes explicitly,
a molecular-field approximation will be used to
determine the thermally averaged quantities in
which the wave-vector-dependent interaction poten-
tial vxx. (q) is replaced by its average over the Bril-
louin zone. The corresponding molecular-field
energy &), is obtained from &), by replacing the true

I

harmonic normal-mode frequency by Qo. In the
molecular-f ield approximation the correlation func-
tions b». take the form

1 p
&xx -- Zb xxb x. x 2 coth2 &-x i

)

expressed in terms of wave-vector-independent
quantities.

The molecular-field free energy is obtained by
replacing ex(q) by the flat spectrum &x in the trial
density matrix. Because of Eq. (8), the molecu-
lar-field equations are independent of the particular
form of v». (q).

For an arbitrary distortion from cubic symmetry
setting SE/Se, = 0 gives the six equations,

~C &ge g+ &~ «xx (AxAx + ~xx ~ ) = o . (43)
XX'

For each type of distortion the extremum condition
sE/sA = 0 yields a relationship of the form

Aa'(A', e~, &xx, a~&)= o .

We note that F always has an extremum at A = 0.
For a sufficiently strong coupling to the strain, the
solution A (T) determined from g= 0 will have the
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already discussed, a second-order transition is ob-
tained for relatively weak coupling to the strain,
as, for example, in the structural transition of
SrTi03 with a change in the c/a ratio which is
roughly two orders of magnitude smaller than for
the ferroelectric transition in PbsTiOs or BaTiOs.

The condition for a first-order transition may be
written

d A
(T) &0 ~

T=TQ
(47)

70 ~c
TEMPERATURE

FIG. 1. Temperature dependence of the order pa-
ra.meter squared. To and T„.are, respectiveLy, the

supercooling and the superheating temperatures. T~ is
the transition temperature.

with To as defined by Eoi. (45). This condition is
a very complicated function of the model param-
eters and temperature. It is written down ex-
plicitly for the case of tetragon~i distortion in

Appendix B.

V. TETRAGONAL DISTORTION

g(A - 0, T- To) = 0

and

(45)

dA.
(T.) =", (46)

respectively. The transition temperature T, is
defined as the temperature for which the local min-
ima are equal as shown in Fig. 2(c). For T & T„
there are no additional extrema and the undistorted
cubic phase is stable.

The broken curve in Fig. 1 shows the corre-
sponding result for a second-order transition. As

l

form shown by the solid curve in Fig. 1. For T & To
there is only one additional extremum of I' as a
function of A . The corresponding free energy is
shown in Fig. 2(a). For To& T&T„an additional
extremum appears, characteristic of a first-order
phase transition. The supercooling and super-
heating temperatures To and T„are defined by

A~=A. 5~s, (46)

where the 3 axis has been chosen as c axis. For
the correlation functions we obtain

&ii = &22= &~, &ss= ~s, (50)

where we have introduced the reduced notation for
Similarly for the static strains,

ei ——0,
eg = e2 +es,

(51)

The free energy is minimum for q ~c axis. In the
moLecular-field approximation it has the form

For a tetragonal distortion corresponding to a
static displacement of ions along a cube axis, only

one of the components of Q(l) will be different from
zero. We set

F = —,
' 8 ~,(n, + —,') —kTZ [(1+n1) ln(1+ n1) -n„jnn, ]+ —,

' ~'r(0)A'+ —,
'

Qo (2h, + 63)

+ &I'1 (A + 6A 63+ 3 63+ 6 A1)+ 2I'2 (2A 61+ 2&1 63+ A1)+G11[83(A + D3)+ 281 61]

+ 2G12[e3 +1+ 1(A + +3+ +1)]+ + 11 (e 'eg++'J)+ +[g'J3 (A + 13)+2g' '1 ~1](e ' +D' ') ( )

where u1r(0) is the transverse harmonic normal-
mode frequency defined by

~z, (0) = ~o —vr(0) . (53)

For tetragonal distortion, b», = 5». and the corre-
lation functions take the form

&, = (I/21', ) coth 2p ~1, &3 = (I/21o3) coth 2p1o3 .

(54)
The molecular-field energies , are defined by

r-
where the transverse soft-mode fre1luencies e2 (0)
are defined below.

Because the contribution of the acoustic phonons
to the free energy is to a very good approximation
independent of the distortions, terms involving only
the acoustic phonons have been neglected.

The extremum conditions SF/8A = 0 and SF/Se,
= 0 yield the static part relationships

A [(o (0) + I (A + 3 b, ) + 2I'2 &1

~1= e„r(0)+ v r(0), (55)
+» e3+ 4G12e1+~ 8 '&3 (e; e y+ &1)]= 0 (56)

ig
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a)

b) e)

mental values. They are further renormalized by
a coupling of all the longitudinal modes through the
polarization field. '

We may use the static part relationship, Eq. (56),
to eliminate ~'r(0). We obtain

e»(0) = (I'2 —I,)A'+ (r2 —Sr, ) (~3—,)

+ 2(G12-G11) (e3-e1)

+Q (q„, g,»)(e, e, +D, ,) (61)

c) e3r(0) = 2F,A (62)

FIG. 2. Free energy as function of the order param-
eter for different temperatures.

e',2(0) = e,r(0)+ [v r(0) —v2(0)],

or making use of Eq. (6),

e12(0) = e1r(0)+ C .

(59)

(60)

However, as is well known, these longitudinal
modes are not directly comparable with the experi-

2
( 11+ 13) 3+ C12e1+ 11 +1+G12(A + +1+ +3)

(57)
C33e3+ 2 13 1+ G11(A + +3)+ 2G12 +1

where C;& are defined by the form of Eqs. (2'I) ap-
propriate for tetragonal distortion. The change in
the c/a ratio is given by

c/a —1 =e3 —e1 .

From the equations of motion, Eq. (20), and the form
of the interaction potential v». (q) it follows that
pure longitudinal and transverse modes are obtained
only for the propagation vectors in the 1, 2 plane
and along the 3 axis. For q ~c there are two dif-
ferent transverse modes e, r(0) [E(TO)] and e3r(0)
[A,(TO)] and one longitudinal mode e«(0) [E(LO)].
(The conventional group-theoretic notation for these
modes is given in the square brackets. ) For q tt c
there is a doubly degenerate mode e»(0) [E(TO)]
and one longitudinal mode e32(0) [A1(LO)]. The
form of the soft-mode frequencies is determined
from Eq. (20),

(0) = & (0) SI'1 61 I"2 (A h1 h3)

+ 2(G11+G12)e1+ 2 G12 e3+ Z g111(e;e, + D11),
(58)

e32r(0)= (dr(0)+ SI', (A + n3)+ 2I'2 n,1

+ 4G, 2e, + 2G»e3+5~g, &3 (e, e, +D„) .
ij

The corresponding longitudinal modes are given by

We note that whereas e3r(0) is proportional to A

and thus to the polarization, e»(0) has a more
complicated temperature dependence.

It is also interesting to note that for a first-or-
der transition the frequencies of these modes do not
vanish at T= T„. At T„ the isothermal susceptibil-
ity is infinite. However, the adiabatic susceptibil-
ity, which is inversely proportional to the square
of the optical-phonon frequency, remains finite.

The form of the mixed modes for arbitrary di-
rection of q may be obtained from Eq. (20).

The changes in the sound velocities due to the
resonant interaction are similar to those at the
structural transition except the longitudinal and
transverse modes are no longer degenerate. For
the cubic to tetragonal transition we obtain from
Eq. (30)

2 T
C11 ——C11 —G13D3,

2 MT
12 12 13 3

2 LC33= C33 —G11D3 P

2 I,T
C44

——C44 —G44D1 '

66 c66 s

where
4p A

M e1r, z, (0)
(64)

where p is the density of the crystal. As in I this
expression may be generalized to take into account
the soft-mode damping.

These expressions have been derived under the
assumption that &, «&&. For &„-E), the effect of
the resonant interaction cannot be expressed simply
as a shift in the sound velocity. Instead the coupled-
mode dispersion relation, Eq. (30), quadratic in

~, must be solved explicitly for the two eigen-
frequencies.

The change in the elastic constant c» cannot be
expressed in terms of a pure longitudinal or trans-
verse mode. The constant c66 is not affected by
the resonant coupling, whereas c44 can have two
different values depending on the particular propaga-
tion and polarization vectors considered. A sound
wave propagating along an a axis polarized along
the c axis couples to a longitudinal mode, whereas
a sound wave propagating along a c axis polarized
along the a axis couples to the corresponding trans-
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verse mode.
The changes in the sound frequencies for arbi-

trary propagation direction and polarization and for
arbitrary distortion may be determined from Eq.
(30). Equations (63) predict step discontinuities
in the low-frequency elastic constants as for the
structural transition. We also note that the dis-
continuity is much larger when the acoustic wave
couples to a transverse mode as compared to a
longitudinal mode.

A, =A/W2,

es=ea ~e3 ~e6~0 ~

hj -—— h2 4 hs 4 66 & 0 .

The matrix b». takes the form

I/v2

0

(66)

(66)

(6'7)

VI. ORTHORHOMBIC DISTORTION

For orthorhombic distortion,
The free energy is minimum for q-0 along the 3
axis and ls given by

&'=
2 Z «,(11,+ 2) &&Z-[(1+11,) In(I+n, ) -11,inn, ]+2 «sr(0)A2+ 2 g2'(2a, + as)

1 1
+ 4 &1 (zA + 6A A1+ 64, + 3 63) + g I'2 I —,'.A. + (A + 1S,1) 6, + (A + 2d, , ) hs+ 2A 63+ 2+2]

+ G11 [e 1(A + 2&1)+es &31+ G12 Ie 1(A + 2+1+ 2&3) + es(A + 2&1)j+ 2G44e 4(A2+ 2&)

+ 2~ C'1(e1ey+ll11) + 2~ l«11(A'+»1)+a 13 &sj(e1e;+D11),

where &2z, &3z, where

with

coth~P&+ coth &P&, ,

~3=—cothap +3,1

3

~6 =——coth &P & ——coth &P &2,

&1r = (F1+ Fs )A',

&sr = (F1 —Fs)A —4F2 ~3 —6G44es,2

1
esT 2(F2 F1) + (3F1 F2) (~3 ~1)

—2I'2 &3+ 2(G» —G,s) (e, —e, ) —4G44e,

& ~(g»; -a;n) (e; e,+ D;,),
ff

«1= e'.(0).~.(o)

The static part relationships take the form

«r(0)+ I'1 (2A. + 3131)+ I" (
—'A + 6 + 63+ 2 13, )

+ 2 11e1+ 2 12 (e1+ es)+ 4G44e6

(70) where we have made use of Eq. (Vl) to eliminate
«r(0). The longitudinal-mode frequencies are as
before given by Eq. (60).

VII. TRIGONAL MSTORTION

+Kg;, ,(e;e, +D;,)= 0, (VI)
For trigonal distortion,

for all ~
1

C11 1+ C12 (e1+ es)+ G11(2A + +1)

+ G12(2A + h1+ Q) = 0, =e4,

j -'3

'L &3

C11es+ 2C12e, + G11 63+ G12(A + 261) = 0,

C44es+ G,4(2A'+ 63) = 0 .

(72) &v, =&i,
= A4, X0X' .

The matrix b». takes the form
For orthorhombic distortion the modes are all

nondegenerate. Pure longitudinal and transverse
modes are obtained only along the orthorhombic
axes. For q=q(0, 0, I), we obtain the frequencies

es~; for q= (q/v2)(1, I, 0), we obtain e»,
esz, esr; and for q = (q/V2)(l, —l, 0), we obtain e»,

I/V3 I/W3
—I/vZ

I/v6 I/v6

I/W3

0

2/re- j
and the free energy may be written
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F= —a'Q &u~(n„+ —,') —&Tg[(1+n&) in(1+n, ) aa-a luna]+ —a'ver(0)A +~Go 6,

+ 41'& (a A + 6A h~+ 3hq)+ 2I a [a A + 2A (hq+ 264)+ 6&+ 264 j+ (G~~+ 2G~a) e~(A + 3 ha)

+ 4 44e4(A + 3~4)+ a

~Conj(eleJ+Df/)+
a ~gfJX(eleg+D0)(A + 3+1) i

eaar = 2(i",+ 2I a) ,'A', —

with &» given by Eci. (60).

(80)

VuI. CUMC PHASE

The corresponding equations for the cubic struc-
ture are obtained as a limiting form from any of the
distorted structures;

A. ~= 0,

a, =0, x& 3

=0, x&3

ey =8

1 1, 1
CI, = — COth-,

llew~+

—LOth-, l3 ul, ),
1 1

44 ——
3 2

coth ~P(d& — coth &Pu&3 2&3 2'(
The static part relationships take the form

~ (0) I'q(aA +Shq)+2I'a(aA + 6~+264)

+ 2(Gu+ 2G&a) es+ 8G44e4+ Z g&ga (e; ey+D&g) = 0,
(V8)

(Cii+ 2Caa) &i+ (Gii+ 2Gaa) (aA'+») = o,
~44e4+G44(aA + d4)= 0 .

Pure longitudinal or transverse modes are obtained
for q along the (1, 1, 1) direction in the plane per-
pendicular to this direction. For q ~t (1, 1, 1) there
is a doubly degenerate transverse mode of frequen-
cy e&r and a longitudinal mode ear, . For tl J. (1, 1, 1),
we obtain the modes &», &», and &3~. The fre-
Quencies are given by

eqr ——2(1"~ —1 a) —,'A —6I'a g —12G44e4,

&ax = &))

The free energy is given by

F = a'&u(n— + a) —kTS [(1+n) ln(1+n) nln-n)

+ a Qo6+ —,'(3l')+ 21'a) 6 + 3(Gg, +2Gga)en

+ —aQ C;; (e ) e )+D;q) + a &Z g;, ~(e; e;+D;,), (82)

where the strain terms have the usual form appro-
priate to cubic symmetry. The molecular-field en-
ergy is defined by

+ = er(0)+ a'r(0) ~

From &E/Be = 0, we obtain

(Cii+ 2C&a) e+ (Gi&+ 2G&a) 6= 0,

(83)

which determines the contribution to the thermal
expansion of the coupling to the soft-mode coordi-
nates.

For arbitrary direction of q there is a doubly
degenerate transverse mode er(0) and a singlet
longitudinal mode ea(0), where

e', (0)= ~',(0)+ (31',+ 21",) ~

+ 2(Ggg+ 2Gga) e+Z g;, ,(e;e q+D, q), (85)

"~(0)=&'(r) 0C+

From Eqs. (45) and (56) the supercooling tempera-
ture is defined by

~'r(0)+ (31"i+21"i) &(&o)+ 2(Gii+ 2Gia) 8 (To)

+~Aga[e& (&o)eg(&o)+D&s(To)1=0 (8 )

Eliminating the harmonic soft-mode frequency using
the definition of To, the soft-mode frequencies may
be wl itten

e r = (SF&+ 2Fa) [&(~)—n(&o)1+ 2(G u+ 2Gia) [8 (&) —8 (~o)j +~g&yx [e &(&)8 y(&) —e ~(To) &y(&o)+ Dc, (&) —Dry(&o) l,
(8'7)

which explicitly exhibits the fact that the soft-mode
frequency vanishes at the stability limit T= T'0.

IX. CONCLUDING REMARKS

A simple model Hamiltonian has been constructed
to describe the ferroeleetric transitions in the

perovskites. The temperature dependence of the
polarization, strain distortions, and the trans-
verse q= 0 soft-mode frequencies have been calcu-
lated using the molecular-f ield approximation. The
soft-mode frequency in the cubic phase vanishes at
the supereooling temperature To, whereas the modes
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in the distorted structure remain finite at the su-
perheating temperature T„.

In order to calculate the q dependence of the
modes, more detailed assumptions need be made
as to which ions take part in the internal displace-
ments and to the interactions among these ions.
Huller has considered a model for BaTi03, assuming
that all the ions except the Ti ion are highly bound
to their equilibrium positions but including the ionic
polarizability of the oxygen ions. ' The predicted
anisotropy in the 4' dependence of the soft modes re-
sulting from the anisotropic nature of the dipolar
forces has been observed experimentally. How-
ever, no attempt was made to give a realistic de-
scription of the temperature dependence of the
modes.

In order to compare the expressions derived in
this paper with the experimental results for partic-
ular materials such as PbTiO8 and BaTiQ8, the non-
linear set of equations determining the soft-mode
frequencies, the order parameter A, the correla-
tion functions 6;, and the strain distortions e

&

must be solved numerically for a given set of model
parameters. The model parameters must be de-
termined to give the best over-all fit with the ex-
perimental data. This program was carried out in
I for the structural transitions in SrTiQ8 and LaALQ3
for which the model parameters were well over-
determined. It will be of particular interest to see
whether the series of transitions observed in BaTiO8
may be correctly described by this simple model.

Very recently, calculations based on the self-
consistent phonon approximation (SPA) have been
carxied out for a model ferroelectric containing
only fourth-order anharmonic interactions. The
q dependence of the modes was calculated explicitly
and the mode frequencies determined self-consis-
tently using Eg. (2). A first-order transition was
obtained. However, the molecular-fieM approxi-
mation used in this paper gives a second-order
transition. In both these approximations, correla-
tion functions containing more than two normal-
mode coordinates are factorized into products of
pair correlation functions. Such factorization ap-
proximations are only valid as long as the fluctua-
tions are not too large. The molecular-field ap-
proximation effectively cuts off the Long-wavelength
fluctuations, whereas in SPA these become so large
as to invalidate the factorization approximation.
This is discussed in more detail elsewhere.

2644 ~423 ~518 6612 ~

g111=g222=g'883 y

Z121 g 122 I 131 F188 @232 F238

g 112 g 118 g P21 g 228 8831 g 382 y

g123=g 132=&231 ~

g442=g 443 =g'551 =g 55S =g661=g 662 y

g 441 g552 ~663 ~

APPENDIX 8

If we neglect the fourth-order coupling to the
strain, setting allg&». =0, and eliminate e& in
favor of A and b,„using Egs. (57), then for tetrag-
onal distortion, g(A, a~) defined by Eq. (44) may
be written

7 (A, Dx) = &r(0)+ (I"i —fCt —fCa) A

+ (3I'i —
3 Ci —

3 C2) &3 + (2I'a+ ~Ca —fC2) &x,

(Gii —&ia)'
C (Gii+ 2Gi2)'

C11 C12 C11+ C12
(82)

If we ignore the contribution of the correlation
functions 61 and 42 to the slope at T = To of A as
determined fromg(A', h, )= 0, the condition for a
second-order transition takes the si;nple form

(I'y —
3 C, —N-C2) &0 .

%e note that for a sufficiently strong coupling to
the strain this condition is no longer satisfied and
the transition is first order.

Taking into account the A. dependence of the
correlation functions the condition for a second-
order transition is rather complicated,

a+ by, + ey2 &0, (84)

where

y, =,' [coth-', Pov r(0)+ —,'Pour(0) csch zPour(0) t,2n,2

all other coupling constants G&». being equal to
zel o.

The coupling constants g&»=g&&~ for all i,j . There
are six independent coupling constants g;». These
are

APPENDIX A

For cubic symmetry there are three distinct
coupling constants 6&».. Introducing the reduced
notation for the last two indices, we may write

~11 ~111 6222 ~383 &

~12 ~122 ~133 ~P11 G238 6311 ~322 )

(d+ ae) y,
2I"

1

—ey1Q=
ey, + 2I"2

a= r, ——,'C1-3 ~2, &=3I'1-rC1-3 C2,

84 C, , d= r2-r, +2C2,

8 = I'P —311+2 C2 .

(85)
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