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This is borne out by the success me had in com-
puting the pressure dependence of the nuclear-
quadrupole splitting, mhich is very sensitive to
these low-lying levels. The credibility of the val-
ues calculated for the other quantities depends, in
addition, on the assumption of a high-spin config-
uration and the perturbation-theory expressions
for these quantities.

We have also investigated the salt KFeFS. The
value calculated for the cubic splitting 10Dq in that
salt was determined to be 3900 cm '. Based upon

our results and the error incurred in the HHH cal-
culation for nickel ion in KNiF, , we predict a value
of approximately 5500 cm ' for the experimental
value of 10Dq in KFeF3.
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Estimation of Spectra from Moments —Application to the Hubbard Model
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We discuss the approximate calculation of a Green's function and its spectral density from
its low-order moments by the use of ratio-extrapolation techniques to estimate and factor
off the dominant shape of the band edges. The techniques are illustrated, following Brinkman
and Rice, on the problem of a single hole propagating in ferromagnetic, antiferromagnetic,
and random electron-spin configurations in the atomic limit of the Hubbard model; the methods
are, however, of wider applicability.

I. INTRODUCTION

Recently Brinkman and Rice' studied the nature
of single-particle excitations in the atomic limit
of the Hubbard's model for a magnetic insulator
by making use of the sequence of low-order spec-

tral moments. In particular they considered the
Green's function, and reiated spectral density, for
a single hole among the X available localized elec-
tronic states of a simple-cubic lattice, for which
the electronic spins of the N —1 occupied sites mere
arranged (i) ferromagneticaiiy (F), (ii) antiferromag-
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netically (AF), and (iii) randomly (R). Nagaoka'
has shown the ferromagnetic problem to be equiva-
lent to the exactly soluble problem of a single elec-
tron in a narrow band. Thus the ferromagnetic
single-particle bandwidth is unchanged from that in
the spinless case. On the other hand, Brinkman
and Rice found significant band narrowing for the
random and antiferromagnetic cases: The bands
were found to be about 80 and 75%, respectively,
as wide as the ferromagnetic band.

This note is a general comment on the extrapola-
tion of the moments in order to estimate the
Green's function and spectral density with particu-
lar application to the Brinkman-Rice problem. We
present improved estimates for the band narrowing
which, however, agree quite well with the esti-
mates by Brinkman and Rice. The small differ-
ences in bandwidth lead to rather larger differences
in the behavior, or "shape, " of the Green's function
and spectral density near the narrowed-band edge
which is described by a "critical exponent. " We
also address ourselves to the problem of extrapo-
lating the behavior of the spectral density over the
whole of the narrowed band. Our method produces
a spectral density which (i) is non-negative, (ii) re-
produces correctly the known moments, and (iii) in-
corporates the singular behavior at the band edge.
The problem at hand provides an excellent illustra-
tion of our general approach.

We shall not reproduce the details of the Hubbard
model here or discuss the physics involved. Rather
we shall base our discussion directly on the mo-
ment series for the spectral density. ' We fore-
warn the reader that our approach lacks rigor.
Indeed, there exist examples of positive-definite
functions which are not uniquely determined by
their moments. Furthermore, there do exist
techniques for obtaining exact upper and lower
bounds for averages of functions with respect to
an unknown spectral density whose first N moments
are known. ' However, no bounds on the spectral
density itself may be obtained from the moments.
In practice this may not always be important be-
cause the averages over the spectral density,
rather than the spectral density, are physically
important. However, in many cases the spectrum
itself may be observed more or less directly. That
our results cannot be correct in detail is seen from
the fact that the extrapolation techniques predict a
spectral density which goes to zero sharply at the
edge of the narrowed band, whereas, as discussed
by Brinkman and Rice' and by Nagaoka, ' there must
be band tails which extend all the wa,y out to the ferro-
magnetic band edge, altl:ough they are probably ex-
ponentially damped. We conclude that the apparent
singularities found at the narrowed-band edges are
probably not real. However, true singularities may
appear on the reali. axis within the band, and it is also

is convergent at least for luau I & qt, and the coeffi-
cients m» are given by

»
ma, =q M~, = — p(E)dE .»

qt
(8

-qt

That is, the nz» are essentially the moments of
p(E). In Table I we list the first six Ma, for the
R and AF cases and the first fifteen M» for the
F case, after Brinkman and Rice. '

II. BAND EDGES AND SHAPES

Rather than directly analyzing p(E), we have
studied the singular behavior of G(&u), and using
estimates for that, together with the first N exact
moments, have formed approximants for p(E) over
its whole range. We have employed a ratio and
Pade -approximant analysis to study the Green's
function. It is convenient to analyze the function
M(zo) defined by

TABLE I. Coefficients M2& (from Brinkman and Rice,
Ref. 1).

2r (F) M2~ (AF) M» (R)

0
1
2
3

5
6
7
8
9

10
11
12
13
14

1
6

90
1 860

44 730
1 172 556

32 496 156
936 369 720

27 770 358 330
842 090 474 940

25 989 269 017 140
813 689 707 488 839

25 780447 171287 800
o25 043 888 527 953 000

26 630 804 377 937 000 000"

1
6

66
876

12 786
197 796

1
6

72
1072-,'

17 7814
314403

~Only the first 14 figures are accurate.

possible that there are pairs of singularities displaced
slightly above and below the real axis on the second
sheet of the Green's function. In any event we con-
tend that the allowance for singularities, as was
partly done by Brinkman and Rice, is essential to
a satisfactory simple numerical representation for
the spectral density.

The single-hole Green's function G(&u) and its
spectral density p(E) = p(- E) are related by

(uG((o) = dE
( ( ),p(E) (I)

with q the lattice coordination number and I; the
hopping matrix element which enters Hubbard's
model. ' Thus the Taylor-series expansion,
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M(w)=Z m„~' .
L'= 0

(4)
TABLE III. Estimates for the band-edge exponent v

from successive pairs of points in the pg-shifted ratio plot.

Then we may use the identification w= (qt/&u) to see
that

(F) 4=0.3

~K)
(AF) 6=0.9

~N)
(R) a=o. 8

v(lv)

c((e) = &u 'M(q'f'/(u') .

We estimate the singular point u by extrapolating
the sequence of ratios

p~ = P22q. / Alp „p K~ as B~-1 (8)

M(w) =- B(so) + A(w) [1 —(u/u, )]" (7)

for w in the vicinity of w„where A(w) and B(zv) are
analytic, tending to A, and B„as zo approaches zo, .

from below. The "critical" exponent v may then
be estimated by extrapolation of the sequence

TABLE II. Estimates for the singular point from
successive pairs of points in the n-shifted ratio plot.

vs (n+ A) ' for various values of the "n shift, " A.
We choose h so as to minimize the curvature of the
plot of p„vs (n+ a) . It is easily seen that this is
a, simple method of accounting for the importance of
expected higher-order contributions to )L(.„varying
as n . This method has proven very successful in
analyzing the nature of singularities at the critical
point of the Ising model, for example. s In the pres-
ence of sufficiently strong competing singularities
on the circle of convergence, the leading correc-
tions will decay less rapidly than n 2 and various
smoothing devices may be needed. The straight-
ness of the plot can be gauged by comparing esti-
mates of w, obtained from the intercepts of the
straight lines through adjacent pairs of points on
the plot with the n= ~ axis. The best values for
the singular point &u, /qf obtained in .this manner are
found to be 1.000 (F), 0. 7405 (AF), and 0. V984 (R),
in close agreement with the estimates of Brinkman
and Rice, namely, 1.00 (F), 0. 742 (AF), and 0. 805
(R).' Some of the evidence for this is presented in
Table II, where we list the successive estimates,
&u, (N)/qt, for N up to 5, obtained by extrapolation
through adjacent points for the optimum values of

On using 15 terms in the ferromagnetic series
we obtain, with 6 = 0. 52, the estimates 0. 99998,
0. 99999, 1.00000, 1.00001, 1.00001, for X= 10-14.
From these we estimate &u,/qt= 1+ (5&&10 '), which
is in excellent accord with the exact result &, = qt .

To proceed further we postulate that M(w) may
be written as

2

3
4
5

6
7
8

9
10
11
12
13
14

0. 6000
0. 5333
0. 4935
0. 4933
0. 4973
0. 4982
0.4994
0.4998
0.4999
0. 5000
0. 5000
0. 5000
0. 5000

0.2455
0.2652
0.2744
0.2740

0.3425
0.3289
0.3286
0.3284

B,(N)=Z m2„zP, . .
n =0

(9)

In this case, however, we must extrapolate B,(N)
vs (N+ A)

" rather than (N+ n, ) '. To demonstrate
this fact, suppose that Eq. (V) holds. Then for
large enough e we have, using, say, the binomial
theorem and Stirling's theorem,

g„=n[1 —w (m~/m2„, )]-1+v as n-~, (8)

vs (n+ A) ', again choosing A so as to minimize the
curvature of the plot of g„vs (n+ a) '.

The relation (8) will be valid even if the amplitude
and background functions A(zo) and B(w) contain co-
incident weaker singularities such as
(w, —w) In(zu, —w), if v & 1, but the rate of conver-
gence will in general be slower. Following this
procedure we obtain the sequences of estimates for
v shown in Table GI. On this basis we estimate for
the F case v =0. 500, which agrees with the rigorous
result v=-,'. Using six moments, however, we
could have concluded only that 0.49 v-Q. 51. For
the AF case we conclude v =0. 2V (which is to be
contrasted with Brinkman and Rice's result of.

0. 195), while for the R case we conclude v —-0. 33
(compared with 0. 40 as found by Brinkman and
Rice). [For the addict of simple fractions we re
mark that our estimates are not seriously incon-
sistent with the conjectures v(AF) = —,

' and v(R) = -', . ]
Since v) 0, the background constant B, can be

estimated by extrapolation of the sequence of partial
sums

(F) a=0. 56
~,(&)/qt

0. 898
0. 988
1.001
1.001

(AF) a=0. 89
~,K)fqt

0. 7528
0. 7424
0. 7405
0. 7405

(R) S=O. 78
~,Ã)fqt

0, 7937
0. 7984
0. 7984
0. 7984

Hence, as N- ~ we find, with b a constant,

B —B,(N) =bg n ' '= —N ",
n =Ã v
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which is the desired result. In this manner we ob-
tain estimates for B, of 1.515 (F), 3. 11 (AF), and
2. 42 (R). Brinkman and Rice did not present esti-
mates for the amplitude A, or background B,. We
may, however, compare our results to those ob-
tained in the Bethe approximation, ' namely, A,

3 75~ Bc=2. 50
To obtain estimates for A„we form the Taylor

series of the function A*(w), given by

A*(w) = [M(w) —B,] [1—(w/w, .)] ', (12)

—w, A'(w, ) [1 —(w/w, )]+ (13)

where A'(w, ) and B'(w, ) denote the first derivatives.
From the Pade approximants, we obtain, for A„
—0. 68 (F), —2. 8 (AF), and —1.9 (R), while from
the u-shifted ratios we find —0. Vl (F), —2. 86 (AF),
and —2. 00 (R). The Pade-approximant estimates
are a few percent lower because they make no al-
lowance for the (weak) singularity of the second
term in (13). We thus summarize our analysis of
the singular behavior of G(v) by the following three
equations:

(uGF((u) =1.515 —0. V1 [1 —(qt/(u)']'",
w- qt+ (14a.)

~G„(&u) = 2. 42 —2. 00 [1 —0. 63V4(qt/&u)3]'s',

(u- 0. V984 qt+ (14b)

u&G»(w) = 3.11 —2. 86 [1 —0. 5483(qt/&u) ]0'~7,

(u- 0. V405 qt+ . (14c)

We may obtain an independent check of our esti-
mates for ~, /qt and v by using Pade-approximant

TABLE 1V. Series coefficients for A (M)).

and estimate A, =A" (w, ). We present the Taylor-
series coefficients for A*(w) in Table IV. Note
that they are all negative. We may use two inde-
pendent techniques to obtain A, : (i) We form direct
Pads approximants' to A" (w), and evaluate them at
w, ; or (ii) since the series coefficients are all
negative, we may use n-shifted ratio techniques to
extrapolate the partial sums of A*(w, ). If A. (w)
and B(w) in (V) are differentiable near w„and 0
( p & 1, then we should extrapolate the partial sums
A,*(N) vs (N+ tI, )" ' because, near w„

A.*(u) =A, —w, B'(w, ) [1-(w/u, )]'

TABLE V. Polynomial coefficients for the spectral
density obtained from N moments without employing
Me=Bc. Note that the number of coefficients obtained is
equal to the number of moments employed.

0
1
2
3
4
5
6
7
8
9

10
11
12

0
1
2
3

5

(F) N=6
pn

0.862 90
1.255 2

—23. 197
69.695

—81.163
32.993

(AF) N=6
Pn

0.707 28
0.529 50

—2.957 6
10.328

—13.912
6.2574

(H) N=6
Ptl

0.785 62
0.066 36

—3.054 3
10.130

—12.467
5.261 6

(F) N= 13
Pn

0.838 61
3.2179

—46.709
155.62

—153.69
—75.592

13.051
310.49
181.55

—766. 44
59.599

607.06
—288. 73

Zf)
+so B'+B +C 1 — — + ~ ~ ~

C C C C
WC

techniques, although six-term series are rather
short for this purpose. As a consequence, the con-
vergence of the Pade approximants is not as smooth
as that of the ratio extrapolations, so we must be
satisfied with, at best, moderate agreement be-
tween the methods. Since the singularity in M(w)
is weak, we study the function

PIP - -(1-v)

D(w) =—[wM(w)]= —vA, . i ——
dK WC

W„(F)
—0.5000
—3.000

-45. 000
—894.000

—20 205. 00
—490 698.0

—2. 11000
—5.370 73

—44. 5326
—498.8133

—6 461.295
—91 230.51

—1.420 00
—4.689 92

—45. 744 1
—598.657

—9 030.987
—148 219.36

From the Pads approximants to L(w) = (d/dw) lnD(w),
we obtain estimates for w, which are within 0. V%

(Ri)i 0 8% Q F), and 2 0% (F) of the ratio estimates.
Evaluation of the Pade approximants to the related
function (1 —w/w, )f.(w) at w= w, yields direct esti-
mates for the exponent p. The estimates for v are
0. 60 (F), 0. 28 (AF), and 0. 39 (R). In view of the
relatively poor convergence of the Pade sequence,
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0.8 0.8—

0.6

0.2
0.2

'0 0.2 04
Wc 2.'

0
0

2

0.2
I

04
I

0.6
l

0.8 1.0

0.8—

0,6—

Anti ferro magnet

I

0.4
Wc&

0.8 1.0

FIG. 1. Reduced spectral densities vs g;,e~ according
to various approximants for the (a) ferromagnetic, (b)

antiferromagnetic, and (c) random configurations, vrith

the condition M, =B, imposed.

It is easily seen that the form of M(2v) postulated
in (V) is implied by a function cr(e) of the form

o(~) = ft(~) (1 —2v, e')",

=0 ~ &n'"
where R(c) is an even function, analytic for q near
+2v, 2~2. We will represent 8(&) by the polynomial

R(~) =Z P„(~'2v, )",

and determine coefficients P„ from the Taylor se-
ries for M(20). First, note that using (18) and (19),
(1V) becomes

M(2v) =Z 5~ 22''~ p„B(n+I+ —,', v+1) —,(20)
1=0 n =0

due partly to the residual singularities present in
D(2v), these are in satisfactory agreement with our
ratio results.

III. SPECTRA

We now turn to the task of obtaining p(E) from
G(&o) using (1) and (2). It is convenient to introduce
reduced variables

~ = (&/qt), 22(~) = qt P(q«),

where thebeta function is, as usual. ,
1

d.e-2(l-n) -'="" '" .I' x+ y)
0

Then note that M, = M(u, ) may be expressed as

M =8 =g p2v i 2Z2(Bn+—'I+v-1)
n= 0 l=0

=E P„zv~ B(n+ p~ 'v) (22)

Then we have

( )
22(z/qf)

qt

2 1

M(zo) = ~=K 2v2 o(&)e22dz . (1V)
1 —6 2v 2 0

Comparing (4) with (20) we obtain

m„= 2v
'" ' Z f2„8(n+ I+-,', v+ 1) .

n -"0
(23)

(xlven the first Ã moments ~0, ~3, . . . , ~3M 3,
and an estimate for M„namely, B„me can thus
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0
1
2
3

5
6
7
8
9

10
11
12
13

(F) X=6
pn

0.848 48
2.4813

—39., 680
149.29

—252. 50
201.14

—61.322

(AF) X=6
pn

(F) X=13
Pn

0.83741
3.304 2

-47.497
155.73

—136.72
—129.19

51.139
389.77
—6.175

—596.64
74. 707

338.23
4.493 6

—101.74

I. Pol nomial coe cxffi 'ents for the spectral
btained from N momen s agdensity o ann

e obtained.Note that {N+1) coefficients are o a'

seven polynomi coe i 'al fficients from the six-term
moment series and in the latter case, up to six co-
efficients. For ethe F configuration we have ob-

Il s androximations using up to 15 moments, an
are able to compare our resu s wl
tion. In Table V we is e plist the olynomial coefficients

bt ined by using six moments fofor the 8 and AF0 Mne
nfi rations and by using six an

ition M =8, wasthe F configuration when the condi i
not employed in obtaln1ng thno e ' ' ' e fit. In Table VI we
list the polynomi coe ial fficients obtained similarly,

Ferro

0.2-

0(
0.702 19
0.948 67

—8. 4324
36.083

- 68.059
58. 260

—18.594

(a) X=6
Pfl

0.78224
0.350 59

—6.8189
28.033

—50.438
42. 005

—13.225

-0.4
0

0.1—

I

0.2
i

0.4 2 0.8
I

0.8

I I

M ~ B not imposedC CAnti ferromognet

[crc (e) —o5 (e)]/crc (e)

1.0

Ic Bc imposed

18)rozimation for (r(e) of the formobtain an approx&ma son
and (19). The (M+1) coefficients „are
ponents of the vector p given by

(24p=K ~ n1,

re the components of m are mQ, s,where e c
M, =8. and where e eth lements of the ma, -~3N8& c e &

trix K are given by-

K =(o ' '"B(n+l+ '„ I +1),-l, n c

0& E&N-1, 0&n&N

=w ' B(r)+—', v), l=N, 0 rc & icr . (25)
If we o nod t have an estimate for M, ==8, we can

the first N coefficients pQ p],determine e i
K of K withp„, Oy usingy D g only tile components

ii ~ o

a roximate spectral densities%e have generated approxlma e ' ' s
lo in the condition M, = 8, and wl ouboth by emp oyer. ng

can calculate as many a,sit. In the former case we can calcu a e a

-0,2-

0.4
2

wc

I

0.6 0.8

0.3
I I I

Random

[o~ (~) —o6(~)]/cr~ (~)

0.1—

I I I

Mc = B not imposeC C

0

-0.1—

"0.2—
Mc = Bc imposed

-0.3
0

I

0.2 0.4 0,6
2

wc

a arent convergence oof theFIG. 2. Measure of the app o
t al a roximants for (a) ferromagnetic,

ferromagnetic, andd e ran omco
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but by employing the condition M, = 8, in the fitting
procedure.

The spectral densities obtained from the low-
order moments together with 8, are plotted in Fig.
1 using the reduced units introduced in (16). In
Fig. 1(a) the approximate spectral densities for
the F case obtained by using six and 13 moments
are given together with the exact spectral density.
In Figs. 1(b) and 1(c) we plot the approximate spec-
tral densities obtained by using one and six mo-
ments for the AF and 8 cases, respectively.

To obtain some measure of convergence of the
approximate spectral densities, we plot in Figs.
2(a)-2(c) the normalized difference [o~(e) —o5(e) j/
o8(q) between the estimates obtained by using five
moments and by using six moments for the three
configurations. For the F case we have also in-
cluded the measure for 12 and 13 moments.

From these figures, we see that (i) the apparent
convergence for the 8 and AF spectral densities
.(namely, to within 2%) is quite good in comparison
to that of the ferromagnetic spectral density (only
to within about 10% for M=6); (ii) the apparent con-
vergence of the sequence is distinctly better (espe-
cially near the band edge) when the condition M, = B,
is imposed. The relatively poorer convergence of
the F sequences is readily understood in the light
of the known singular behavior of this spectral den-

sity at low frequencies. The X=6 estimate is the
first in which representation of this low-frequency
singula, rity is apparent. Thus, it is expected to
differ significantly from the N= 5 estimate, which
does not show any effects of the singularity. The
N= V and M=8 estimates already show much better
apparent convergence. %e could easily have im-
proved our treatment of this case by dividing out
the low-frequency singularity as well as that at the
band edge. Nevertheless, the approximations ob-
tained above for the ferromagnetic spectral density
are perfectly adequate for many purposes, e. g. ,
for estimating the mobility. Finally we note (111)
that although the fits obtained are slightly oscilla-
tory in character, the spectral densities are found
to be everywhere positive. Our best fits to all three
spectra are plotted on the same scale in Fig. 3,
where we have also indicated the expected small
band tails not predicted by the numerical analysis.

In summary, we have shown how to obtain approx-
imations for the spectral density which (i) reproduce
correctly all known moments, (ii) contain the ap-
propriate behavior at the leading edge of the band,
and (iii) are found to be non-negative. In contrast,
Brinkman and Rice used a direct polynomial ap-
proximation which gave roughly the correct band
narrowing but which did not remain positive and
did not reproduce the desired behavior near the

I l l I I I &

I
) I I I

(F) N=)3

0.6
FIG. 3. Best approximants

for the reduced spectra vs re-
duced energy -= for all three con-
figurations. The dashed lines
represent the expected (but not
numerically predicted) band
tails. The dotted curve is the
exact result for the ferromag-
netic case.

-).0 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8
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band edge. They corrected the first deficiency by
fitting the polynomial over the narrowed band, but
this approximation also failed to reproduce correct-
ly the behavior near the band edge.

We note that our approach is adaptable to a large
variety of situations. For instance, if we also have
a Taylor-series expansion for p(E), as in the lat-
tice-vibration problem, we may remove the low-
frequency singularity from o(z) before solving for
the polynomial coefficients p„. While the method
certainly does not yield a solution to the so-called
moment problem, it does provide a practical tech-
nique for obtaining good approximate spectral den-
sities for a large class of Gx'een's functions. In-
deed, recent application to exciton line shapes has
been made by Doniach, Roulet, and Fisher. In
contrast to the examples considered here, the cor-

responding spectral densities are strongly asym-
metric about the origin, and two distinct band-edge
exponents must be estimated, but the approach still
works well.
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Ferromagnetic-resonance measurements on single crystals of gadolinium iron garnet doped
with ruthenium were carried out at 9.25 GHz in the temperature range 4.2-500'K. The single-
ion model is used to calculate the anisotropy contributions ~~ and ~2 and the field for ferro-
magnetic resonance. By fitting the theory to the experimental anisotropy data one finds gH,
=1.2&& 10' Oe and v/$=-0. 4, where g, H~, v, and $ are the g factor, the exchange field, the
one-electron trigonal-field parameter, and the one-electron spin-orbit-coupling parameter,
respectively. The linewidth could be interpreted in terms of the longitudinal-relaxation model
assigning a short relaxation time of 7 = 3.3 && 10 ~2 sec to the Ru+ ions.

I. INTRODUCTION

The system GdsFe, Ptu„0, 2 has been studied with
respect to the anisotropy and linewidth. A com-
parison with ruthenium-doped yttrium iron garnet
(YIG)' is possible, particulaly concerning the de-
duced atomic parameters. Gadolinium iron garnet
(GdIG) is also of interest for magneto-optical-stor-
age applications which require a certain magnitude
and temperature dependence of the anisotropy field

near the compensation temperature. This can be
achieved to a large extent, especially by small
dopes with ruthenium.

The contribution of strong anisotropic ions such
as Co ', ' Ru ', ' ' and Ir '' tothe magnetocrys-
talline anisotropy could be well explained in terms
of the single-ion model. ' This model requires a
sufficient knowledge of the energy levels of these
ions and their dependence on the direction of mag-
netization. For strong anisotropic ions where the


