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High-temperature series expansions are used to examine the dependence of critical-point ex-
ponents upon the presence of second-neighbor interactions. We consider the Hamiltonian

Qh nnn

J ~ s(D& . s(D& J Q s(D& s(D.&
nnn

|lij &

where the first and second sums are over pairs of nearest-neighbor (nn) and next-nearest-
neighbor (nnn) sites, and where the spins 5 are D-dimensional unit vectors. The two-spin
correlation function, C2(r), is calculated to tenth, ninth, and eighth order in1/k&T for the
Ising (D =1), classical-planar (D =2), and classical-Heisenberg (D =3) models, respectively,
for various values of the parameter R'=—J2/J& and for various cubic l.attices (fcc, bcc, and
sample cubic). These represent the first series expansions of the spin correlation function
for nnn interactions. From C2(r) we obtain series for the specific heat, susceptibility, and
second moment. Analysis of these series and detailed comparisons with the exactly soluble
spherical model (D=~) lead us to conclude that the exponents y (susceptibility) and v (correla-
tion length) may be independent of R'; this suggestion is consistent with the universality hy-.
pothesis.

I. INTRODUCTION

In this work we present evidence from series
expansions germane to the question "Do critical-
point exponents depend upon the range of the ex-
change interaction?"

Qne motivation for considering this question is
that almost all materials in nature involve interac-
tions that are greater than "nearest neighbors
only" in range, while the great majority of theo-
retical calculations are restricted to the, simplest,
nearest-neighbors-only case. A second motivation
is provided by our desire to test the universality
hypothesis, ' which predicts that for systems with
interaction strengths that are finite in range all
critical-point exponents should assume the same
values as for the case of nearest-neighbor interac-
tions only.

To this end we consider a system with both near-
est-neighbor (nn) and next-nearest-neighbor (nnn)
interactions:

nn nnn

J Q f(D&. s&D& g g s(D&. s(&»

nnn

=-Z, (ZP, '& S,"&+It'5%'.,.' f," ), (1.1)

where ft =42/J, and J„Z2 denote, respectively,
the nn and nnn exchange interactions. Here 5& '

and S
&

' denote isotropically interacting D-dimen-
sional classical spins situated on sites i and j of a
regular three-dimensional (d = 3) lattice, where
D=1, 2, 3, and ~ correspond, respectively, to the

Ising, plane-rotator (or classical-planar), class-
ical-Heisenberg, and spherical models.

A. Previous Work

One can show rigorously that for D= ~ (the
spherical model) critical-point exponents are in-
dependent of the parameter R for all values of R
(cf. Appendix A of Paper I'). However, aside from
certain one-dimensional (d = 1) models, there exist
no exact results for finite D.

Moreover, previous approximation procedures
leave this an open question. In fact, the most ze-
eg~g calculations using the method of high-tem-
perature series expansions suggest that the sus-
ceptibility critical-point exponent y for the S =$
Heisenberg model actually varies continuously
with R, at least for R in the range —0. 2& R ~ 2.
As the authors emphasized, however, these results
were based upon the calculation of rather short
series and therefore the rather marked dependence
of y upon R might be spurious.

Indeed, a large literature does exist concerning
the application of series-expansion techniques to
the problem of further neighbor interactions,
and previous workers who had noticed a possible
dependence of exponents upon R were generally in-
clined to dismiss their results as spurious, although
their reasons given were not always convincing.

Using both high- and low-temperature series ex-
pansions, Dalton and Wood have extensively ana-
lyzed the Ising model (D = 1) on two- and three-
dimensional lattices (d= 2, 3). Ana. lysis of the low-
temperature series yielded estimates for the ex-
ponents y' and |3 consistent with the universality
hypothesis.

From high-temperature series, Dalton and Wood
concluded that, for d = 2, 3, y remains unchanged
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when second and third neighbors are introduced.
However, these conclusions were based only on
analysis of the special case of equivalent bonds
(e. g. , J, = J, or J, = 4, = 4,). Although it is quite
plausible that invariance of exponents for this spe-
cial case implies invariance for ul/ values of the
interaction strengths, this is by no means obvious.
Furthermore, the conclusions reached were based
on the following observation: Although a series of
estimates, (y„), for y are consistently/oaves than

,the nearest-neighbor (R = 0) values, the b„j a.re
very slightly increasing —apparently toward the
nearest-neighbor values. It would be interesting
to see if this trend (toward the R = 0 values of y)
continued with the introduction of more coefficients
of the series. More importantly, it would be de-
sirable to calculate the series for arbitrary J& and

8, and hence study y--y(R ).
High-temperature series expansions for the next-

nearest-neighbor classical Heisenberg model (D= 3)
have been analyzed by Bowers and Woolf, ' who also
treated only the case of "equivalent bonds, " A = 1.
We feel that their analysis, which concluded that
X(R = I) = y(R = 0), was not a valid test of the uni-
versality hypothesis. Bowers and Woolf proceeded
as follows. They first obtained an estimate of the
critical temperature T,(R = 1) by a.ssuming that
y(R = 1) = y(R = 0). They then argued that since
this critical temperature yielded consistent esti-
mates for y(R = 1) equal to y(R =0) the exponent
must be independent of 8 . There are two possible
pitfalls in this type of argument: (i) It is not clear
that there is a unique pair (T„y) which yield con-
sistent results and (ii) consistency in itself is not
sufficient to justify the choice of a pair (T, , y).
With regard to this second point we note that be-
cause of correction terms to pure power-low be-
havior a given series may yield estimates for an
exponent which, while not constant, may extrapolate
to the correct value for the exponent. An attempt
to choose T, so as to make the series more con-
sistent may result in incorrect conclusions. "

The 8 = —,
' Heisenberg model with next-nearest-

neighbor interactions of arbitrary strength has been
considered by Dalton and Wood, ' who obtained five
terms in the expansion of the zero-field suscepti-
bility. They analyzed the series for 0& R ~ 1 and
concluded that for this range of A, y-= 1.33. This
value of y was consistent with the work of earlier
authors who had estimated y(R =0)"-1.33, though
more recent analysis of longer series has indicated
larger values for y(R = 0)."

B. Relevant Experimental Results

EuO is an insulating ferromagnet which can be
represented by a 8= ~ Heisenberg model with first-
and second-neighbor interactions. Early experi-
mental investigation of this material led certain
authors to conclude that J'2/J, :——0. 1 with 8, posi-

tive. On the other hand, the recent work of
Menyuk, Dwight, and Reed' indicated Z2/J, =0.5.
Furthermore, Menyuk et pl. concluded from their
measurements (using a vibrating-coil magnetome-
ter) that y=-1. 29. This va. lue disagrees both with
the estimates of y(R = 0) from high-temperature
series expansions and with the very recent work
of Als-Nielsen, Dietrich, Kunnmann, and Passell, "
who studied EuO and also EuS (Z~/Jq = 0. 4, S= 2 )

using neutron scattering. These authcrs concluded
that for both EuO and EuS, y = 1.39 in agreement
with series-expansion results for y(R = 0).

We feel that the present work may shed some
light on the disagreements noted above. In partic-
ular, a conclusion that universality holds would
support the results for y of Als-Nielsen ef, gl. while
a conclusion that universality breaks dosez would

support the result for y of Menyuk et a$. '
The longer series we obtain will also be useful

because the value J2/8, :-0.5 estimated by Menyuk
et a/. was obtained by comparison of their experi-
mental data with predictions of high-temperature
series which were rather short.

In Sec. III we will give a possible explanation
for experimentally observed low values of y, con-
sistent with universality but based upon some pe-
culiar features of the next-nearest-neighbor series
we obtain.

C. Present Work

Using the methods described in Sec. ID of I we
have calculated the coefficients in the high-tem-
perature series expansion for the two-spin correla-
tion function

C,(r ) = g g„( r ) x" (l. 2)
n=O

through order g&o, g9, and g„respectively, for
D= 1, 2, and 3 (Ising, planar, and Heisenberg
models) for X„„„for various values of the param-
eter R . Here -=x/IO s.TFrom the coefficients
g„(r), series of corresponding lengths were cal-
culated for the reduced isothermal susceptibility

X~, for the "second moment" p, ~, and for the re-
duced specific heat C„. Series for X,, p, „and C„
are available upon request from the authors.

We also calculated 20 terms in the high-tempera-
ture series expansion of X and p. 2 for the exactly
soluble spherica. l model (D= ~) (cf. Appendix).
This calculation will be found to play an important
role in the analysis which follows.

As fa.r as we know this is the first calculation
for K,„, of C2(r) and hence p, 2. Our work also
significantly extends the number of known coeffi-
cients in the series for X and C„(cf. Table I).

In the limits 8 - 0 and 8 -~, series for the

corresponding nearest-neighbor problems were
generated, thereby providing a strong check on

the calculation. Additional checks were carried
out, and of course agreement with previous cal-
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C2(r) (and thus p&)

Previous Present

10

PresentPl evlousPrev ious Present

7* (Ref. 8)
5 (Ref. 9)

8 (Ref. 14,
fcc only)

6* (Ref. 8)
5 (Ref. 9)

1010Ising

TABLE I. Comparison of number of expansion coefficients in the series obtained in the present workfor &»„and the
longest previously published series. An: asterisk indicates that series were obtained only for special case, R =1. The
quantities Cz, X, C2(r), and )M2(r) are defined in I in Eqs. (1.4)-(1.7).

CH X

C lass ical
planar

Classical
Heisenberg

Spherical

5 (Ref. 9)

20

7* (Ref. 13)
6 (Ref. 11)

20 20

culations was obtained in the regions of overlap.

II. ANALYSIS OF SERIES FOR ISING, PLANAR,
HEISENBERG, AND SPHERICAL MODELS

We will see below that support for the universal-
ity predictions for K„„„is less direct than the sup-
port for the predictions for K, ,„„. In particular,

our arguments will depend heavily upon a compari-
son between the series ana, lysis for the Ising (D= I),
planar (D= 2), and Heisenberg (D= 3) models, and
the ana, lysis for the spherical model (D= ~). In-
fact, zvithout this comparison there is little to
counter strong (but we think misleading) evidence
for the failure of universality (i.e. , for y and v

TABLE II. Estimates (in units of 10 ) for the critical-point exponent y from PA's to (d/p~) lnyg) for the Ising model
on the sc lattice. Here and in all PA tables which follow, the notation "0" indicates that either the singularity closest to
the origin was not on the positive real axis or that there were two singularities on the positive real axis very close to each
other, thereby making determination of an estimate of the exponent difficult. For all three cubic lattices the estimates
are decreasing with R', at leastforR & 10, and for certain R' there is a remarkable consistency in the estimates.

'Y: Ising, sc, R'=1. 00 Y: Ising, sc, R'=2. 00

N 1 2 3 4 5 6 7 N 1 2 3 4 5 6 7

(a)

2 125
3 122
4 122
5 122
6 123
7 123
8 123

122 122
122 123
123 123
123 123
123 123
125

122 123
123 123
123 123
123

123 123
131

(b)

8

117 121
121 128
126 135
131 127
124 119
122 122
122

126
134
128
123
122

131- 124 122
127 119 122
123 122
122

122

N1

'Y: Ising, sc, R'=5. 00

2 3 4 N 1 2

'Y: Ising, sc, R'=10. 00

(c)

2 117
3 114
4 114
5 115
6 115
7 115
8 174

113 114
114 113
114 116
116 116
116 116
150

115 115
116 116
116 116
116

115
130

2
e3

(d) 5
6
7
8

120 0
0 0
0 0

115 116
115 115
115 115
115

0 115
0 116

116 115
115 115
115

115 115 115
115 115
115

'Y: Ising, sc, R'=20. 00

(e)

2 122 123 121 116 117 115 113
3 122 121 123 118 117 110
4 121 122 118 115 116
5 116 118 115 116
6 117 117 116
7 115 112
8 113
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dependent on 8 ).
A. Fade'Approximants

As with BC, „, the Pads approximants (PA's)
for K „consistently indicated ferromagnetic and
antiferromagnetic singularities at x, and x,f, re-
spectively. With the introduction of second-neigh-
bor interactions, Eq. (3. 1) of I holds only in the
limit of loose-packed lattices, i.e. , for Jf =0 (sc
and bcc) and for R =~ (bcc and fcc). Thus in gen-
eral I x,&! should not equal x,. Furthermore, when

J&, J~ are both negative the interactions are com-
peting in determining the ordered state. Thus,
it follows that T,f ~ T, ) or

fx„/& x, (2. 1)

for all 8 . Equation (2. 1) was verified by the PA
analysis.

A sample or "cross section" of the PA estimates
for y and 2v for the D= 1, 2, and 3 models is pre-
sented in Tables II-VII. We note that the estimates
for y(B ) and 2v(R ) are decreasing with 8 at least
until R:—10. We point out especially the consistency
at R:—6-10 [cf. Tables II(d), III(d), IV(d), V(c),
VI(c), and VII(c)]. For example, from the PA's

alone it would appear that y (Ising, fcc, A = 10):—1.10, so that y —1 has decreased to less than half
of the R = 0 value, 0.25.

On the other hand, consider the PA's for the
spherical model [cf. Table VIII and Table V(a.) of I]
for which y(R ) = 2 for all 8 . If only 11 coefficients
were known in the susceptibility series for the
spherical model (so that N+D~ 10 in Table VIII),
we would be led to conclude from the PA analysis
that for R =10, y=1.31. On examination of high-
er-order PA's (10&N+D~ 19), however, we see
that the residues become much less consistent and
are generally increasing, although on the basis of
20 coefficients it is hard to tell for sure whether
the residues are in fact converging to 2. The be-
havior of the spherical-model PA's clearly illus-
trates the possibility that see do not have enough
coefficients to see asymptotic behavior for the
D= 1, 2, and 3 models. In Sec. II B we present
stronger evidence for this possibility.

B. Park's Method and "T, Renormalization"

We have applied Park's method to the series for
p, 2/g, and p2. For A ~ 1 on the sc lattice ap-

plication of a transformation [of the type Eq. (3. 26)

TABLE III. Estimates (in units of 10 ) for the critical-point exponent p from PA's to (d/dz) lnx (x) for the Ising model
on the bcc lattice.

y: Ising, bcc, R'=1. 00 p: Ising, bcc, R' = 2, 00

(a)

2 128
3 125
4 124
5 125
6 124
7 124
8 124

125 124
125 124
124 124
124 124
124 124
124

124 124
124 124
124 124
124

6 7

124 124
124

2

{b)
6

8

118 123
123 124
123 124
124 124
124 124
124 144
124

123
124
124
124
124

1 2 3

124 124 124 124
124 124 125
124 125
124

y: ising, bcc, R'=5. 00 7: Ising, bcc, R'=10. 00

(c)

2 116
3 117
4 118
5 120
6 121
7 121
8 122

117 118
118 124
124 120
121 122
123 125
124

120 121
121 123
122 124
122

2 3 4 6 7

121 122
124

(d)

7
8

1 2

117 115
115 116
116 115
117 117
117 117
118 117
118

116
116
117
118
117

117 117 118 118
117 117 117
117 117

0

p: Ising, bcc, R'=20. 00

(e)

2 119 117 117 117 116 115 116
3 117 117 117 117 115 116
4 117 117 117 117 116
5 117 117 117 115
6 116 115 116
7 116 116
8 116
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of I] is not necessary because Ix,z l»x, (the sc lat-
tice reduces to an fcc lattice for R -~). Trans-
formations were performed on the series for the
bcc and fcc lattices for which I x,fl-:x, for large
R.

Consider first the exponent y and the sc lattice
for which no transformation need be performed
[cf. Figs. 1(a)-1(c)]. For R =1, 2, the estimates
y„have an gpgeay'd trend, possibly extrapolating to
the R = 0 values at z = ~. For R = 10, 20, however,
there is a dosvnwazd trend with no indication that
the series will bend up again. The only positive
statement we can make is that whatever is happen-
ing for D= 1 is clearly happening for D= 2 and 3.
Similar behavior is observed for other lattices
even after transforming the original series (cf.
Fig. 2), for the exponent v [cf. Figs. 3(a) and 3(b)]
and using other methods of a,nalysis [cf. Figs. 3(b)
and 3(c)].

Consider now the spherical model [Fig. 1(d)].
The general behavior of the first 8-10 estimates
is exactly the same as for the Ising, planar, and
Heisenberg models. ' The only quantitive differ-
ence in the behavior of the series for the D= 1, 2, 3,
and ~ models seems to be the actual value of the

exponents. We now discuss what can be inferred
from this similarity.

C. Conclusions about y(R ) and v(R )

We have seen above a striking similarity between
the series analyses for the D=1, 2, 3, and ~ mod-
els. ' On the basis of this similarity and the fact
that y„„„„„(R) = const, we speculate that the pre-
dictions of universality hold for X,„„for D= 1, 2, 3
(and probably for all D). That is, we suggest that
the series which indicated a downward trend in the
estimates for y and v will eventually show a bending
up to the R = 0 values upon the introduction of a
sufficient number of higher-order coefficients.

What does puzzle us is why the series should
show such great curvature for R» 1 in light of the
fact that as R -~ each cubic-type lattice reduces
to another cubic-type lattice, all of which are be-
lieved to have equal exponents. If any curvature
should be present at all, we might have expected it
to be greatest near the "symmetrical point "R = 1.

III. SUMMARY

A. Conclusions for Exponents

We have generated what we believe are the first

TABLE IV. Estimates {in units of 10 ) for the critical-point exponent y from I'A's to (d/dg)lnyg) for the Ising model
on the fcc lattice.

(a)

2 125
3 121
4 123
5 122
6 122
7 123
8 123

121
122
122
122
123
122

123 122
122 122
122 124
124 123
123

122
123
123

p: Ising, fcc, R'=5. 00

p: Ising, fcc, R'=1.00

2 3 4 5 6 7

122 123
122

113 116
116 123
116 121
119 120
142 120
120 121
123

116
121
120
120
120

119 118
120 121
120 120
121

y: Ising, fcc, R'=10.00

y: Ising, fcc, R'=2. 00

1 2 3 4 6 7

120 126
121

(c)

2 111
3 110
4 ill
5 113
6 113
7 115
8 115

110
111
121
117
119
119

3

111 113
0 117

114 118
119 119
119

113
119
119

6 7

114 115
119

2

(d)

8

113 111
111 110
110 110
110 110
110 110
111 110
111

110 110 110
110 110 110
110 110 110
110 110
110

1 2 3 4 6 7

111 ill
110

'Y: Ising, fcc, R'=20. 00

2 3

2 116 113 112 112 111 110 110
3 109 112 112 113 109 110
4 112 112 112 0 110

(e) 5 112 113 0 109
6 111 109 110
7 110 110
8 110
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R" = 20
&0

(O) ISIrig

high-temperature series expansions for the two-
spin correlation function for the Ising, classical-
ylanar, classical-Heisenberg, and syherical mod-
els ot' magnetism (D= 1, 2, 3, and ~) with next-
nearest-neighbor interactions. We have also sig-
nificantly extended the series for the zero-field

R'= 2Q

t0

&0

y (R' =0)~ —I, 25

—I-20 yn

y ( R*=0)~—l.25

5

2
I

I

I I I I li
I I

5 IO

—I. l5

—l.35
y(R'=0)

I I I

6 7 8
1

n

I

IO

I
2

I

(C) He18eflbel"g

I

IO

t, l5
—l, 4o - y(R'=0)

—
l 20

FIG. 2. Estimates for p from Park's method applied
to Ising model series fox the (a) bcc and (b) fcc lattices.
The series were first transformed to reduce the effects
of antifer 1omagnetic singularities By compal lson with
Fig. 1(a) we see that the behavior of the estimates appears
to be lattice independent.

isothermal susceptibility and the syecific heat for
these models.

Straightforward analyses using a number of dif-
ferent techniques indicate that the exponents y and
v are decreasing vrith the parameter 8 at, least for
8 10. However, comparison vrith similar anal-

I!
I

IO

' l. t5

yCR'= 0)
= 2.00

—l.70 R'= 2Q
IQ

(a ) Ising

l.20 2 I/n

(b) Ising

R "-20
IO

5

2
I I I I I I I I

5 6 7 89IO 20

—t. 30

—l. 20 ( c ) Ising
R'=20o-

5
I

2

y(R'=0) ~—I.25

—l, 20 y„

Flo. l. Estimates for p from Park'~ method for the
(a) Ising Ip(R' = 0) =—1.25 f, (b) classical-planar h/(R' =0) = 3.33j,
() . — . I ('=)=-. J, ().
h/(R' =0) =2. 00[ models on the sc lattice. %'e note the sim-
ilar behavior for all four models. The reader should note
that later terms of the series for P' =1, 2, and 5 indicate
a "turning up" to larger values of p. Moreover, this bend-
ing occurs at laager order pg for tagger values of R', sug-
gesting that perhaps a similar turning up might occur fox'

very large 8'(R'=20, for example) if a sufficiently large
number of terms in the series were available. This mgsg
occur in the spherical model for which y is rigorously in-
dependent of R'.

FIG. 3. Ising model, sc lattice. (a) and (b) Estimates
of 2p from application of Park' s method and "T~renor-
malization, "respectively; (c) estimates for y from a vaxi-
ation [H. E. Stanley, Phys. Bev. 158, 546 (1967)j of the
ratio method in which &„=1-gfl —p„(g )„]I.cf. Eq. (2. 8) of
Ij,, where (x~)„is found fx'om Eq. (2. 7) of I. The similar
behavior for the estimates in (a)—(c) andin Figs, 1 and 2
indicates that the genex'al behavior noted in Fig. 1 is not
confined to the exponent p, to a specific lattice, or to a
specific method of analysis.
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TABLE V. Estimates (in units of 10 ) for the critical-point exponent p from PA's to (d/dx) lny+) for the planar model
on the sc lattice. We see the same decrease with R' in the estimates for y as seen for the estimates for the Ising model.

y: Planar, sc, R'=1.00 p: Planar, sc, R' =2. 00

(a)

2 132
3 125
4 127
5 127
6 128
7 128

125 127 127 128
126 127 128 128
127 128 128
128 128
128

128 2
3
4

(b) 5

120 122 130
122 0 135
131 135 126
134 132 126
129 122
127

134 12' 127
132 121
126

p: Planar, sc, R'=5. 00

N 1

y: Planar, sc, R'=10.00

(c)

2 119
3 119
4 110
5 118
6 118
7 118

119 107 118
115 118 118
118 118 118
118 118
119

118 118
119

2
3

(d)
5
6
7

122
122
122
117
118
118

122 122
122 120
120 119
118 117
118

116 118 118
118 118
117

y: Planar, sc, R' =20. 00

2 125 125 125 111 120 118
3 125 125 123 121 119

(e) 4 125 123 121 109
5 115 121 112
6 120 119
7 118

TABLE VI. Estimates (in units of 10 ) for the critical-point exponent y from PA's to (d/dx) lnX(g) for the classical-
Heisenberg model.

Heisenberg, sc, R'=1.00 y: Heisenberg, sc, R'=2. 00

(a)

2 138
3 128
4 131
5 131
6 132

128 131 131 132
130 131 0
131 132

0

2

(b)
5
6

122 124
124 124
135 139
139 136
134

135 138 134
139 136
133

y: Heisenberg, sc, R'=5. 00 y: Heisenberg, sc, R'=10. 00

(c)

2 120
3 120
4 120
5 119
6 120

3 4

120 120 119 120
116 120 120
120 120
120

y: Heisenberg, sc, R'=20. 00

2

(d)
5
6

124
123
124
117
120

123 124
124 122
122 121
120

4 5

114 120
120

2 128 127 127 127 121
3 127 128 125 123

(e) 4 127 125 124
5 0 123
6 122
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TABLE VII. Estimates (in units of 10 ) for the critical-point exponent 2v from the PA's to (d/dx) [latex g(x)/yQ)) for
the Ising model on the sc lattice. These estimates show the same decrease with R' as the estimates for y.

(a)

2 130
3 122
4 124
5 124
6 124
7 124

122
124
124
124
125

124 124 124
124 124 124
124 127
127

2v: Ising, sc, R'=1. 00

2 3 4 5

124 2
3

(b) 4

6

120 119
119 120
125 124
124 124
124
123

125 124
124 124
124 124
125

2v; Ising, sc, R'=2. 00

2 3 4 5 6

124 123
124

2 v: Ising, sc, R' = 5. 00

2 3 4 5 N 1

2v; Ising, sc, R'=10. 00

5 6

(c)

2 119
3 118
4 85
5 117
6 117
7 117

118 20 117 117 117
117 118 118 118
118 118 118
118 118
117

2v: Ising, sc, R'=20. 00

2

(d) 4
5

7

122
121
122
117
116
117

121 122
118 119
119 118
116 117
116

116 116 117
116 116
117

(e)

2 125 124 124 115 115 116
3 124 120 121 115 115
4 124 121 121 116
5 118 115 116
6 115 116
7 116

yses for the exactly soluble spherical model [for
which y(R ) = 2 for all A ] leads us to put forth the
hypothesis that this decrease is probably spurious

and would disappear if more terms in the series
were known. Ne thus conclude from this iygdi~ect
evidence that the predictions of universality are

TABLE VIII. Estimates (an units of 10 ) for the critical-point exponent p from PA's to (dldx) [lnx(x)] for the spherical
model on the sc lattice with R' =10. For N+D & 10 the estimates for p are consistently - 1.3. For larger values of N+D
the estimates are generally increasing although it is not clear that the estimates are converging to the known exact value
ofy, 2. 0.

y: Spherical model, sc lattice, R' =10.00

1 2

130
135
126
132
131
131
132
132
133
135
138
144
151
158
164
169
173

1 125
137

3 135
4 134
5 133
6 134
7 127
8 131
9 132

10 132
11 132
12 131
13 131
14 131
15 143
16 0
17 0
18 0

132 133
134 133
132 130
132 131
131 131
130 133
133 135
136 0
162 171
170 168
168 169
171 198
175 181
178 182
180 185
181

6

133 133
133 0
131 132
130 133
133 135
138 143
144 0
161 169
167 180
169 179
166 182
180 182
179 206

0

8-

133 132
131 132
132 133
136 158

0 165
160 166
169 178
173 179
179 182
178 193
175 144
133

. 9 10

132 132
132 132
134 136
165 166
166 165
165 0
179 181
178 212
162 0

89

11 12

132 133
131 131
140 146
171 175
184 181
180 181
181 248

0

134 135
130 138
153 159
177 179
182 185

0

15 16

136 137
0 0

165 170
181

17 18

139 134
0
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correct for the Ising, classical-planar, and classi-
cal-Heisenberg models. This conclusion is in
agreement with the conclusions of most other
authors (cf. Sec. I 8) who analyzed K„,using
shorter series, primarily for the special case
R = 1. Furthermore, assuming the spin indepen-
dence of exponents our work would indicate that the
decrease in y observed by Menyuk et a/. for the
S = y Heisenberg model is also spurious and is re-
lated to the shortness of the series that they ana-
lyzed.

The series for CH were not regular enough to
permit reliable predictions for the exponent n.

which has the property that

lim y'*(T) = y .
T Tc

(3.2)

y*(T) =a — — s'+ (higher-order terms in c) .
(3.3)

In order to measure the correct value for y we
must have

If the series expansion for X exhibits much curva-
ture, then the experimentally measured y*(T) will
do so also. This can be seen, for example, by
calculating y*(T) for the model function in Eq.
(2.40) of I. Here we find

B. Relation with Experiment
b

gAR (3.4)

y*=- (T —T )—Ing
d 1

'dT (3.1)

In Sec. I B and in I we discussed certain experi-
ments, the results of which would indicate a possi-
Me breakdown in universality. While our high-
temperature series analysis leads us to believe
that universality is obeyed, it also gives us one

possible reason for the disagreements between
theory and experiment noted above. We note that
for K, „„and 3C „ there were ranges of values
for the parameters R and R, respectively, for
which the series exhibited considerable curvature;
there was so much curvature, in fact, that a super-
ficial analysis might lead to incorrect predictions
for exponents. We feel that a similar phenomenon
may be affecting experiments to determine expo-
nents.

Because experiments cannot actually get to tem-
peratures arbitrarily close to T„what is actually
measured is a temperature-dependent exponent y*
defined through

which implies for b-1 that e must be 10 times as
small for 8 = 0. 1 as for 8 = 1.0 (cf. Sec. IIF of I).

We thus see that when there is considerable
curvature in a series, not only are the series anal-
yses likely to yield incorrect estimates but experi-
mental investigations are likely to do so also. We
are by no means claiming that this is the reason
for the disagreement between theory and experi-
ment; we present it only as one possibility.
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APPENDIX: SELECTED SERIES FOR THE SPHERICAL MODEL

Coefficients in the spherical-model susceptibility series for selected values of R -=J2/J, are listed below, '

shown are the first 20 terms for R =0, 1, 2, 5, 10, and 20. An arbitrary number of terms can be straight-
forwardly calculated using methods explained in Appendix A of Paper I.

Spherical Model on se Lattice: Susceptibility
Jg=1. 00, J2=0. 00 Jg = 1.00, J2 = 1.00 J, =O. 5O, J,=1.OO

0
1
2
3
4

6
7
8
9

10

0. 100 000 000 00
O. 600 000 000 OD

o. 300 000 000 OD

0. 144 000 000 OD

0.666 000 000 OD

0, 302 400 000 OD

0. 134 760 000 OD

0, 593 280 000 OD

0, 258 354 000 OD

O. 111585 600 OD

0.478 450 800 OD

01
01
02
03
03
04
05
05
06
07
07

0. 100 000 000 OD 01
0.180 000 000 OD 02
0, 306 000 000 OD 03
0.506 400 000 OD 04
0. 823 500 000 OD 05
0.132 249 600 OD 07
0, 210 366 360 OD 08
0.332 097 840 OD 09
0, 521 035 594 2D 10
0.813 250 818 2D 11
0.126 378 992 OD 13

0. 100 000 000 OD 01
O. 150000 000 OD 02
0.211500 000 OD 03
0.290 400 000 OD 04
0.392 456 250 OD 05
0. 524659500 OD 06
0. 695 747 756 2D 07
0, 916 757932 5D 08
0. 120 167 546 5D 10
0. 156 823 726 4D 11
0. 203 893 421 2D 12
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11
12
13

15
16
17
18
19
20

Jg=1.00, J2= 0.

0. 203 938560 OD

0. 864 735480 OD

0.365 034 816 OD

0. 153 482 796 0D
0.643 100 083 2D
0.268 622 284 5D
0. 111891 970 5D
0.464 902 263 4D
0. 192 724 355 2D
0. 797276 776 SD

08
08
09
10
10
11
12
12
13
13

0. 195 650 8114D 14
0.301 893 941 5D 15
O. 464475 829 6D 16
0. 712 7674544D 17
0. 109125 324 OD 1S
0. 166 722 778 3D 20
0, 254 237 919 OD 21
0.387 020 784 3D 22
0.588 220 074 2D 23
0, 892 713 457 OD 24

TABLE. (Continued)

Spherical Model on sc Lattice: Susceptibility
00 J)= l. 00, J2=1.00 J(= O. 50, J2 = l. 00

0.264 226 907 4D 13
0, 341433 757 9D 14
0, 440 081 655 7D 15
0. 565 946 375 OD 16
0. 726326 009 7D 17
0. 930435 813 5D 18
0. 1189904137D 20
O. 151939509 4D 21
0. 193 739 003 7D 22
0.246 716 796 4D 23

0

2

3

5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20

J(=0.20, Jp=1.00

O. 100 000 000 OD 01
O. 132 000 000 OD 02
0. 162 000 000 OD 03
O. 192 595 200 OD 04
0.224 814 816 OD 05
0.259 340 820 5D 06
0.296 720 481 3D 07
0.337435 195 5D 08
0.381 937 794 VD 09
0.430 675 527 3D 10
0.484 104 896 2D 11

0.542 702 097 OD 12
0. 606 971 006 3D 13
0. 677 44S 763 1D 14
0. 754716 549 9D 15
0. 839 394 954 9D 16
0. 932 159 163 4D 17
0. 103 373 915 4D 19
0.114492602 7D 20
0. 126 657 756 2D 21
0. 13g 962 408 6D 22

J) = O. 10, J2 = 1.00

0. 100 000 000 OD 01
0. 126 000 000 OD 02
0. 146 700 000 OD 03
0. 164 774 400 OD 04
0. 181178 586 OD 05
0. 196 448243 OD 06
0, 210 937092 8D 07
0.224 888 917 8D 08
O. 238 476 815 4D 09
0.251 826 667 OD 10
0.265 031 549 5D 11

0.278 161085 6D 12
0.291 267 806 5D 13
0, 304 391 627 OD 14
0.317563 067 8D 15
0.330 805 613 2D 16
0.344 137458 7D 17
0.357 572 815 SD 18
0.371 122 893 5D 19
0.384 796 637 1D 20
0.398 601 288 1D 21

J, =0.05, J,=1.00

0. 100 000 000;OD 01
0. 123 000 000 OD 02
0. 139275 000 OD 03
0. 151711800 OD 04
0. 161 403 881 6D 05
0. 168 998 758 2D 06
0. 174 947323 2D 07
0. 179578 309 6D 08
0. 183 139318 9D 09
0, 185 821601 4D 10
0. 187 775 535 6D 11

0. 18g 120 906 2D 12
0. 189954 098 2D 13
0. 190353323 4D 14
0. 190382 520 4D 15
0. 190 094321 7D 16
0. 189532 344 2D 17
0. 188 732 976 4D 18
0. 187 726 783 3D 19
0. 186 539 618 8D 20
0. 185 193509 4D 21

For the values of the exact series coefficients, the
reader may order document NAPS 01762 from Asis-
National Auxiliary. Publications Service, c/o CCM Inform-
ation Corporation, 866 Third Ave. , N. Y. , N. Y. 10022,
remitting $2.00 for each microfiche or $5.00 for each
photocopy.
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The configuration-interaction method is utilized to investigate the effects of weak covalency
on the crystal-field splittings, the g factors, the spin Hamiltonian, the spin-orbit factors, and
the nuclear-quadrupole splitting in the salts FeF2 and KFeF3. Recent x-ray data for FeF2
allow predictions to be made concerning the pressure dependence of the above-mentioned pa-
rameters in that salt. In addition, predictions are made for the pressure dependence of the
Neel temperature and the saturation (T =0) value of the magnetic-hyperfine field based upon
the calculated pressure dependence of the spin-Hamiltonian parameters for FeF2.

INTRODUCTION

The effects of weak covalency have been observed
in transition-metal salts for many years. Even in
the highly electronegative fluoride salts one ob-
serves significant charge transfers. As has been
shown previously, ' ' these covalency effects must
be taken into account if one expects to deal with
the problem of calculating atomic parameters such
as the crystal-field splittings, g factors, the spin
Hamiltonian, etc. In addition, certain nuclear
parameters (i. e. , electric-quadrupole and mag-
netic-hyperfine splittings and the isomer shitt)
are coupled to the charge environment of the nu-
cleus and are thereby affected by the covalent
bond.

In the ensuing sections we investigate, respec-
tively, the crystal-field splittings for KFeF, and

FeF~ (ionic and covalent), the spin Hamiltonian
(including covalent reduction), and the Fe' nuclear-
quadrupole splitting and magnetic-hyperfine field.

CRYSTAL-FIELD SPLITTINGS

The formalism utilized here (configuration in-
teraction) was developed by Hubbard, Rirnmer, and
Hopgood (HRH) in a first-principles treatment of
the crystal-field splittings and the transferred hy-
perfine field in the perovskite salts K¹F3and
KMnFS. In order to effect this variational calcula-
tion, HHH assume a trial wave function of the form

where the (
&'s are representative of determinantal

wave functions with E, and n&„being the appropriate
mixing coefficients. Here the basis set will con-


