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where V is the weak perturbation. For dilute scat-
terer s

T~=P, t, (k, Z), (AS)

where t, is the t(k, E) for the isolated scatterer at
the ith site.

When
~
r —r'( is very large, the integral in (A5),

by use of (A2) or (A4), can easily be shown to be of
the order of e ' ' " ', and thus (Al) or (3) fol-

lows.
For systems where the scatterers are neither

weak nor dilute it is more difficult to prove math-
ematically that (A1) holds. However, physically,
the exponential decay in G~ is expected to still be
true. The decay occurs because Bloch states are
scattered, and in a system with concentrated and
strong scatterers, the decay should be even more
rapid.
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The melting curves of the simple metals may be calculated by a method which involves no
adjustable parameters whatsoever if the electron-ion pseudopotential is known. This simplic-
ity is made possible by the use of variational principles to determine the free energies of the
solid and liquid states. The approach yields a volume- and temperature-dependent effective
Debye temperature for the solid, and an effective volume- and temperature-dependent hard-
sphere packing fraction for the liquid. As applied to Na, the method gives a melting curve in
good agreement with experiment up to at least 40 kbar. The long-wavelength limit of the
pseudopotential, which is not well known for most metals, is eliminated via the correct equil-
ibrium density at 0 K. (The melting curve is not, however, sensitive to the choice of this
parameter. ) Additional thermodynamic quantities are computed for both phases and along the
melting curves in good agreement with available experiment. Lindemann's law is fairly well
obeyed in the solid phase, although not perfectly, and its analog (i. e. , constant hard-sphere
packing fraction along the melting curve) holds in the liquid. The Lindemann ratio varies be-
tween 0.013 and 0.015 along the melting curve; the packing fraction is about 0.42. Above
certain temperatures, there exist no Debye temperatures for which the free energy of the solid
phase is stationary; following previous workers we interpret such temperatures as forming a
line of mechanical instability which, however, lies far above the actual melting curve.

I. INTRODUCTION

This paper is the second in a group of three on
the subject of structural phase transformations in
metals and alloys. The first paper, ' dealing with
concentration-dependent changes of structure in
binary alloys, showed that the well-known Hume-
Rothery rules for the relative stability of alloy
phases resulted from the divergent slope of the con-
duction-electron dielectric function at 2k~. In the
transitions considered, temperature was generally
an unimportant parameter, and for that reason the
essentially zero-temperature theory applied there

yielded rather good agreement with finite-tempera-
ture observations. But in many structural trans-
formations temperature is manifestly a dominant
parameter. In the present work, therefore, we
extend the approach used in I to finite temperatures,
and apply the resulting theory to the most familiar
and ubiquitous of structural phase transitions in
metals and alloys, namely, their melting.

The principal requirement of a theory of melting
is to calculate the Gibbs free energies G,. and G, of
the solid and liquid phase as functions of pressure
and temperature. The melting curve is then deter-
mined in the P-T plane by the conditions
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G,(P, T) = G, (P, T) .

Elsewhere in the plane the phase with the lower
Gibbs free energy is more stable. Since melting is
a first-order phase transition, thermodynamic
quantities such as internal energy are discontinuous
across the melting curve, and it is therefore usual-
ly convenient to consider the calculation of Q, and

G, as two separate problems. We shall do so here.
One may also examine the properties of just one
phase to see if some kind of instability, such as an
imaginary vibrational frequency, develops beyond
a certain temperature. Such an approach is incom-
plete a &d will only yield an upper or lower bound to
the melting curve. We consider this possible in-
stability (in the phases of metals decreed to be
solid), but find that for the particular metals studied
the resulting upper bound lies so far above the
melting curve as to suggest that the instability is
irrelevant to the actual phenomenon of melting.

Theoretical investigations of melting date back
at least to the time of Lindemann. ' Because of the
great complexity of the correlations between parti-
cles, especially in the liquid state, the statistical
aspects of the problem have received the greatest
share of attention. Modern computing techniques '

have made it possible to compare various approxi-
mate schemes with one another and with actual and
computer experiments. The nature of the inter-
atomic forces in real materials has received far
less attention, probably because such forces are
usually difficult to calculate from first principles.
Most studies have instead been based on inverse
power law, hard-core, ~ or other relatively
idealized and short-range forces, such as the Len-
nard-Jones force field.

In the nearly free-electron metals, the interionic
forces can easily be computed from a knowledge of
the electron-ion yseudopotentia, l. From the
point of view of melting theory these forces are of
particular interest because, unlike the interactions
usually assumed to prevail in molecular solids,
they are explicitly density dependent. ' Conversely,
the calculation of the melting curve of a metal is a
stringent test of any theory of metals because it
requires knowledge of free-energy differences of
the order of one part in 10 of the free energy of
either pure phase.

Recently there have been indications that the cal-
culation of the equilibrium thermodynamic proper-
ties of both the liquid and the solid phases of simple
metals, and hence of their melting curves, may be
within the reach of existing theory. We may men-
tion, for example, the work of Ascarelli and Harri-
son, "based on a hard-sphere model for liquid
metals, and that of Price, 6 which makes use of the
structure factor obtained by Hahman'7 from molec-
ular dynamics experiments. In the solid phase,

thermodynamic properties depend heavily on the
phonon spectra, which have by now been computed
for a number of simple metals. ' Very recently,
Hartmann'9 synthesized much of this previous
work, by a method somewhat similar to our own,
to compute the heats of fusion of a number of met-
als.

In this payer, we present a melting curve for the
free-electron metal Na which agrees well with ex-
periment in spite of the fact that it has been calcu-
lated with no adjustable parameters save one which
is related to the long-wavelength limit of the elec-
tron-ion interaction. The computed melting curve,
moreover, is insensitive to the choice of this pa-
rameter. Such a calculation is made possible by
the use of a variational principle to determine the
free energies of the solid and liquid phases of the
metal. The variational principle allows one to de-
termine an effective volume- and temperature-de-
pendent Debye temperature for the sold phase, and
an effective hard-sphere packing fraction for the
liquid. From these quantities we find that in the
solid phase the rms atomic displacement from
equilibrium is very nearly a constant fraction of the
nearest-neighbor separation all along the melting
curve, and that in the liquid phase the melting curve
almost coincides with a line of constant packing
fraction. Thus our calculations represent an ap-
proximate "experimental" verification of Linde-
mann's law for the solid phase of Na and its analog~
for the liquid phase.

Before proceeding to the body of the paper it will
perhaps be useful to give a summary of the approach
to be used. We consider the free energy of the
solid phase of the metal to be composed of (i) the
internal energy of the static lattice, plus (ii) the
additional free energy associated with the excitation
of phonons at finite temperatures Part .(i), which
is essentially the binding energy of the solid, has
been calculated many times for Na and other nearly
free-electron metals; we adopt the approach of
Asheroft and Langreth. Thus the internal energy
is considered to be the sum of (a) the kinetic, ex-
change, and correlation energies of the electron
gas, (b) the Madelung energy arising from the
Coulomb interaction between the ions, and (c) an
additional reduction in energy arising from the re-
distribution of the electron gas in the presence of
the attractive electron-ion interaction.

Part (ii) of the free energy is the sum of the ther-
mal contribution of the potential energy (i.e. , the
deviation of the potential energy from its value in
the static lattice), the phonon kinetic energy, and
the free energy associated with the phonon entropy.
The thermal potential energy may be added to the
free energy simply by including in the expressions
for (b) and (c) an additional exponential fa,ctor of
the Debye -Wailer type. Adding this potential energy
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to the other terms in the free energy, we then de-
termine the phonon frequencies by requiring that
the free energy be stationary with respect to each
frequency. This variational principle, as is well
known, is equivalent ~ to the so-called self-consis-
tent phonon approximation, according to which the
phonon frequencies are determined by the assump-
tion that each ion moves in the time-averaged force
field of its moving neighbors. The self-consistent
approximation has previously been applied many
times to solid rare gases, "but evidently not to
metals at high temperatures. Rather than calculate
the full phonon spectrum in this way, however, we
approximate it by a Debye spectrum. We thus in-
corporate all effects associated with lattice motion
at a given volume and temperature in a single pa-
rameter, namely, the Debye temperature, which
includes not only information about the phonon
spectrum but also, because of the self-consistent
way in which it is calculated, some of the effects of
anharmonicity.

For any given density of the metal (or equivalent-
ly, any given applied hydrostatic pressure), we find
that above a certain temperature there no longer
exist any frequencies which satisfy the variational
condition. We interpret this temperature as an in-
stability temperature, above which the solid phase
would be mechanically unstable if it had not already
melted. Such an instability has been previously
noted, for example, by Choquard. ~

In the liquid phase, the internal energy once again
involves the sum of the terms (a)-(c) of the solid
phase. But (b) and (c) involve sums over the posi-
tions of the ions, and thus cannot be calculated for
a liquid without knowledge of the liquid pair corre-
lation function g(r ) or its Fourier transform, the
structure factor S(k). Following Ashcroft and
Lekner, we take S(k) to be the structure factor
of an equivalent gas of hard spheres, and calculate
the hard-sphere structure factor in the Percus-
Yevick approximation, ' which can be solved analy-
tically in k space for this special case. [The S(k)
determined in this way is generally a good fit to
experiment. ] The liquid free energy is thus (i) the
electron gas terms, as in the solid, plus (ii) the
potential-energy terms, calculated using the hard
sphere S(k), plus (iii) the kinetic energy of the
ions, plus (iv) the entropy term, taken a,s the en-
tropy of the hard-sphere gas in the Pereus-Yevick
approximation.

The only unknown parameter in this approach is
the hard-sphere packing fraction. This we deter-
mine variationally, requiring that the resulting free
energy [i.e. , the sum of terms (i)-(iv)] be mini-
mized. The minimized free energy so obtained is
probably an excellent approximation to the liquid
free energy, and would, in fact, be a rigorous upper
bound for it if the Percus-Yevick approach were

exact.
We now proceed to the main part of the paper.

Section II gives the formalism for the solid state,
and Sec. III that appropriate to the liquid. Section
IV presents the calculated melting curve for Na,
as well as a number of other thermodynamic prop-
erties of the liquid and solid state.

II. SOLID STATE

We wish to determine the Gibbs free energy per
ion for the solid state. This is given by

G=E —Ts +PV, (2)

where E, S, and V are, respectively, the internal
energy, entropy, and volume per ion in the solid
phase. It is convenient, however, to compute the
Helmholtz free energy per ion

(3)

and obtain the PV term separately as the volume
derivative

We shall consider in turn the energy of the static
lattice, followed by the temperature-dependent
terms.

The static internal energy of a nearly free-elec-
tron metal is the sum of the electron gas terms,
the Madelung energy, and the electron-ion interac-
tion energy. The first of these is the sum of the
kinetic, exchange, and correlation energies of the
free-electron gas and is given approximately by

F« = (2. 21/x~3 —0.916/x, —0. 115+ 0.0311nr,)Z,
(5)

where ~, is defined in terms of the density of ions
N and the valence Z of the metal by 3 mr', = (NZ) '
The Madelung or ion-ion interaction energy is

Z„= —Q, [S(k) —1],M 2 y2

where S(k) is defined for any system by

(6)

S( k) ~-1 (Q Q ik (r~-r~ ~ ))

() denoting an ensemble average over the ionic
positions r, and r, ~ . In the static monatomic lat-

., tice, S(k) =Res 5„-K, K being a reciprocal-lattice
vector. In this case the average is trivial, since
only the one static configuration need be considered.
The generalization to lattices with more than one
atom per unit cell is straightforward, but will not
be required in the present work.

Finally, the electron-ion or band-structure ener-
gy is given by

@as= (2+) ~ (pi Vip-i )
k~o
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where p-„" and p „" are Fourier components of the
ionic charge density and of the electronic charge
density induced by the unscreened electron-ion in-
teraction V&", (assumed loca, l and energy indepen-
dent). The metal is taken to have unit volume.
From Poissons's equation and the definition of a
dielectric function,

of S(k). (The corresponding modification of E„is
much smaller and will be neglected here. ) To com-
pute the change in E» and E& we write

r, =R, +uE,

where u, is the displacement of the lth ion from its
equihbrium position R, . Thus

E„=—Z —
l v, l's(k) —- i l,1 k 2 1

2 iso 8m 6&, ). (io)

p„-'"= (k'/8~)(i/~, —i)vf p„-"' . (9)

Substituting (9) into (8), and using pP"=g, e' '", we
obtain

S(k) N-& Q &lt (Rg~- %g ~
&(( &k u&&)( -6 ~ u &I

))
E0E

2 2~ egr-1 + f& ~ (RE-RE~) -Et pE E~e

where ~

(is)

or, for a static crystalline lattice,

E„=—Z —lv;l' —-ll N.
Z2

We have omitted the zeroth Fourier components
of (6) and (10) because they are infinite and must
be balanced against the infinite zeroth Fourier com-
ponent of the electron-electron interaction, not in-
cluded in (5). The sum of the three zeroth compo-
nents is

Eo NZ lim( 8——»Z /k + V&, ) as k- 0 . (12)

E0 is a substantial term which must be included in
the internal energies of both the solid and the liquid
phases. At finite temperatures, the expressions
for E& and E» must be modified from their static
forms to take account of the temperature dependence

p, = (2NM) Z —(2n", + 1)(1 —cosq R, ) (i4)

where

+ structure -independent terms, (15)

for a system with inversion symmetry. Here M is
the ionic mass, and ~~ and n; are the frequency and
occupation number of a phonon of wave number q
and polarization parallel to k. The sum on q is
over the first Brillouin zone. Consistent with the
Debye approximation to be made later, we assume
co~ to be independent of polarization, so that p2 is
independent of k. Substituting (13) into (6) and (10),
we obtain

1
E„+Egg — — Z U( Rg —R,')

U( R R ) g if'
& 5& ~~ --&. P& &. ~

l

v.
l~2

2Z' jR, -g, . ] i
IR, —R,. l 2p ~ )

sinkIR -R ~ I+. --2 —
Vg — 1 e s-E dk

The function U( R, —R, .) behaves like a te&hexa
tu~e-dePendent ion-ion interaction acting between
ions at their static positions. For the purpose of
calculating the free energy of the solid, the use of
this pseudointeraction is formally equivalent to the
use of the true ion-ion potential

8 zv...„,(R,&= Z "' ', ,—~;~' ——
)|f.& 0 I

= Z e' "'U&",
k40

acting between the moving ions.
The remaining temperature-dependent terms in

the free energy are the kinetic energy of the ions,

given by

E„„=(S/2N) Z; k.~;(n;+-'.),
and the phonon entropy term

—TI „= —Z [u»r ln(1 e~""') —k—cu".n", ], (18)

where P= 1/k&3T. As previously we have assumed
co; independent of polarization.

It remains to specify the phonon frequencies.
These are determined variationally, by requiring
that the free energy be stationary with respect to
each frequency, i.e. ,

(19)
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Substituting for E the sum of terms (5), (6), (10),
(17), and (18), and using Eq. (13) for S(k), we ob-
tain

where

D, (p)= Z k 8'" "''e " '& U
ft 00

(27)

CMte;= E — rkee &e '&Uc(1 —coeq )(,))t &O k&0

Pr) ~

l40
(20)

Equations (17), (18), and (14) then become

D, (q, p, ) represents the I.aplacian of the effective
temperature-dependent ion-ion interaction evaluated
at a separation R&, or, equivalently, the Laplacian
of the static interaction averaged over the positions
of moving ions with equilibrium separation R&. Thus
the right-hand side of (20) is simply the trace of the
dynamical matrix, averaged over ionic positions.
Equation (20) is therefore identical to the self-con-
sistent phonon approximation in the special case
where phonon frequencies are independent of polari-
zation.

Equation ( 0) implicitly includes some of the ef-
fects of phonon-phonon interaction by means of tem-
perature-dependent shifts of phonon frequencies.
But it includes no effects associated with finite pho-
non lifetime. In actuality, the lifetime of phonons
in the alkalis near melting is as little as 10 peri-
ods. But for calculating an integral property like
the free energy, such lifetime effects, unlike fre-
quency shifts, should be of little importance unless
the phonons are no longer good quasiparticles,
which, at least in some alkalis, they appear to be
even near melting. '

The preceding formalism can be substantially
simplified for a Debye phonon spectrum in which
the first Brillouin zone is approximated by a sphere
of the same volume and radius qD, and

with p2 given by (24).
The solution to Eq. (26) has a curious temperature

dependence which can be understood qualitatively by
considering the left- and right-hand sides of the
equation as functions of 8D at various temperatures
(see Fig. 1). The factor T~M(k~p~~) is of course
linear in 0~ for all temperatures. The behavior of
gD, (p, ) depends on that of p, . For large 8D(8~» T)
p,'-0, and the sum approaches a constant value
independent of 8~. For 8D«T, p, ~T/8~, and the
sum becomes exponentially small. If the sum varies
smoothly in the intermediate region, then for some
moderate temperature the possible solution to (26)
will be given by the two intersections of the two
solid curves in Fig. 1 (plus the unphysical solution
8~=0). As T increases, the curve for gD, (p, ) will
decrease as illustrated in Fig. 1(a), and the two
solutions to (26) will move closer together. Even-
tually, for some T= T„ the two solutions will
merge, and for T & T, there will be no solution ex-
cept 0 a=0. Following Choquard, we interpret T,
as an instability temperature, above which the solid
phase is mechanically unstable.

The solutions Op(T) to Eq. (26) are shown sche-
matically in Fig. 1(b). Of the two branches of solu-
tions, the lower one goes to zero at T = 0 and is
therefore unphysical. Near T = T„8D(T)-O, + const
&&(T, —T) ~~, the behavior expected from a self-con-
sistent or mean-field theory.

The instability just described is not an artifact
of the Debye approximation but exists at least for
any phonon spectrum in which frequencies do not de-
pend on polarization. To see this divide equation
(20) by M(( f and sum over q. For high temperatures

E„„=I6 ksO' g)+ ,'ksTI(Oeg/T)—,

—TS,„=ksT[3 ln(1 —e eD ) -I((~)~/T) j,
p,'= 2(n '/M)(T/k, o',-) z(8,/T; ft,),

(22)

(23)

(24)

where k~QD =ScqD is the Debye temperature and

p,
- (MN) P —

2 (1 —cosq ~ R,),
so that Eq. (20) becomes

C(e, T E-o,' E C'eo "e-'"'v;) . =
l &0 fc&0

(26')

1(x)= —, (

J(x;8,)= — ccoco-,'c 1 — ' )ee, (25)
tp, &

5 M(ksO~~) = Z Dg(pq),
l&0

(26)

0(=Oaf~(/& ~

The new self-consistency condition on OHD is deter-
mined by summing the left- and right-hand sides
of (20) over all q in the first Brillouin zone, and
using (21). This yields

Since the right-hand side of this equation is bounded,
there must exist a temperature T, above which
there is not a set of p, 's for which the equation can
be solved, so that an instability exists just as for
the simple Debye spectrum.

III. LIQUID STATE

Many of the terms in the free energy of a liquid
metal can be transposed directly from the solid.
In particular expressions (5), (6), (10), and (12) for
the various terms in the internal energy are valid
also for the liquid. It remains, however, to find
ways of computing the liquid structure factor S(k)
and the entropy of the liquid. By analogy with our
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(b)

(arbitrary units)

L
O

C3

O

I

I

I

I

I

I

I

I

Tc

T (arbitrary units)

FIG. 1. Schematic illustrat-
ing calculation of SD from Eq.
(26). (a) Left-hand side of Eq.
(26) (straight line) and right-
hand side (curved lines) at
several temperatures. Inter-
sections are allowed values of
0&. (b) Schematic of OD(T)
corresponding to (a) . Upper
branch of curve is the physical
branch. The unphysical solution
8D (T) = 0 is not indicated.

treatment of the solid state, we would also like to
find a variational principle to determine any un-
known parameters on which the free energy may
depend.

All of these goals can be accomplished with the
help of a well-known inequality for the free energy
derived from thermodynamic perturbation theory, "
which we write

2Z2
" y- 2

E = —S(k) ——1 i dkBS
& Vc

V~f = 8vZ/k

The kinetic energy E„„per ion is just
=3Zk,„,u, r .

(31)

(32)
E& E +-,'Q;U(k)(S„,(k) -1) . (28)

F Eeg+EN +EBS +Eo+Ekgn TSh (28)

E~ and Eo are given by (5) and (12), respectively.
Expressions (6) and (10) for E~ and E» reduce to

2

E„= i tS(k) —1]dkr (30)

Here Eh, is the free energy of a gas of hard spheres
of the same number density as the metal, plus all
structure-independent terms in the free energy.
S„,(k) is the corresponding hard-sphere structure
factor. The second term on the right-hand side is
thus the pair interaction energy of metallic ions
arranged according to a hard-sphere structure fac-
tor. Since (28) is valid for any hard-sphere packing
fraction we minimize the right-hand side with re-
spect to this single parameter and simply take the
resulting upper bound to be the approximate E. In
a metal such as Na, where the hard-sphere struc-
ture factor fits experiment very well, this upper
bound is likely to be very close to the true free en-
ergy; in other materials, perhaps not so close.

To calculate S„,(k) we have a choice of several
approximations, of which we have chosen that of
Percus and Yevick, which is conveniently solvable
analytically in k space where U(k) is itself known

explicitly.
For completeness, we now write out the various

terms in our approximate liquid free energy. We
have

Finally, the entropy term is given in the Percus-
Yevick approximation by32

SQ 8 3 ~(1 )
6g

kg k~ 1-g

where

Sga, 3 e Mk~T
@2

where the hard-sphere packing fraction g is defined
in terms of the hard-sphere diameter d and ionic
volume V, by

q = (-', ~d')/V, (34)

and e is the natural base. An expression for the
structure factor, on which (30) and (31) depend, is
given by Ashcroft and I ekner.

IV. APPLICATION TO Na

The formalism of the preceding pages may be
applied directly to Na once the electron-ion pseudo-
potential Vk" and the dielectric function c~ are spec-
ified. For Vk we choose the Ashcroft empty-core
pseudopotential"

Vg = —(8vZ/k ) coskr, , (35)

which is determined entirely by the single parameter
The modification of the formulas of Secs. II and III
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0 K Isotherms for Na

and Langreth.
Figure 2 shows the calculated 0 'K pressure

isotherm for Na. The experimental isotherm is an
extrapolation of the shock data of Rice, as quoted
by Neece et al. ' Both theory and experiment are
based on the bcc structure, rather than the low-
temperature hcp modification. As is evident, the
theoretical pressures never deviate by more than
10%%u() from experiment, even at 100 kbar.

The finite-temperature properties of the solid
phase depend on e(V, T). We have calculated this
function from Eq. (26) with the help of a "zero-
phonon " approximation and a high-temperature
approximation. The first of these is just

(SV)

150 200
Volume (atomic units)

250

FIG. 2. 0 'K pressure isotherms for solid bcc Na.
Theoretical curve includes zero-point motion. Experi-
mental curve is extrapolated from shock data of Rice,
quoted in Ref. 35.

f(y)= —+ —(1-y ) ln
1 1 2 1+y
2 4y

g= (1+0.158k.2)

~'= (vk,)-',

y = k/2k ~ .

(36)

Justification of the form (36) is given by Ashcroft

is immediate; in particular, Eo [Eq. (12)] becomes
Eo = ~NZ, where n = 4pv, . Bather than determining
u by this equation, however, we have instead chosen
it to yield the correct zero-pressure volume at
O'K, setting dE/dr, =0 at the observed r, at O'K,
E being the internal energy of the metal at absolute
zero (including zero-point energy).

For the dielectric function we have used the
modified Hubbard34 interpolation form, as used by
Ashcroft and Langreth':

e, = 1+(X~/y') E(y),

F( )=
1 —X'f (y)/(2y'+g)

3l! 4T Si( q~))„)
)PM) ~ (k Oz )

2 (38)

Equation (38), which is accurately satisfied near
melting, makes it possible to obtain 0~~(T) from
(26) with a minimum of calculational effort.

Figure 3 shows 8 ~(V, T) for Na, as calculated
from Eqs. (26), (2V), (3V), and (38). The instability
shown schematically in Fig. 1 is clearly visible for
each volume plotted; it occurs, however, at tem-
peratures nearly an order of magnitude above the
actual melting curve of Na.

Knowledge of O„,(V, T) determines an effective
volume- and temperature -dependent ion-ion poten-
tial, given by Eq. (16). Figure 4 shows this effec-
tive potential for Na at three different temperatures
and at x, = 3.95. The graph is based on the approxi-
mate Eqs. (SV) and (38), as are all remaining cal-
culations in this paper. The principal effects of in-
creasing temperature are to move the extrema of
the potential to larger ionic separation, and to re-
duce their magnitude, as would be intuitively ex-

where D, (p, ) is defined by Eq. (2V), and p„, denotes
p, evaluated at R, equal to a nearest-neighbor
separation. Equation (SV) will be a satisfactory
approximation if the sum in (2V) is dominated by
contributions from R, 's almost equal to the near-
est-neighbor separation. In Na, where the long-
range Friedel oscillations in the ion-ion potential
are very small, this condition is reasonably well
satisfied. The effect of (SV) is probably to under-
estimate somewhat the temperature variation of
terms in (26) arising from distant sites, resulting
in an error in the calculated Debye temperature
which should, however, be much less significant
than the deviation of the Debye spectrum itself from
reality. Note also that the structure factor (13)
calculated in this zero-phonon approximation still
satisfies the sum rule g f [S(k) —1]= 0 to within terms
of order e ~» '» which are completely negligible
below melting. The high-temperature approxima-
tion T»Q& yields
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pected. For sufficiently large x, it can be shown
from Eq. (16) that the Friedel oscillations are uni-
formly reduced from their static form by a factor

-( 2k'PP~n) 2

Figure 4 does not take account of the tempera-
ture dependence of e, itself. The variation of the
electronic Fermi factors with temperature leads to
an ek whose slope approaches eF/kiiT at k = 2k~ (e~
is the Fermi energy) instead of diverging logarith-
mically as at T =0. In consequence the Friedel os-
cillations in the pair interaction must be multiplied
by an exponential damping factor e ~ ", where k

'

-(ksT/2ki, ) a.u. is of the order of the effective
"thickness" of the Fermi surface due to tempera-
ture broadening. Even at T = 820 'K and r = 30 a.u. ,
however, this exponential factor still equals 0.86.
It is even closer to unity for smaller values of T
and x. Thus the principal temperature dependence
of the ion-ion interaction is indeed included in the
curves of Fig. 4.

The relative weakness of the temperature depen. —

dence of 0„,suggests that the free energy of the
solid phase of the metal may be adequately de-
scribed by a pseudoharmonic approximation in
which, however, frequencies still depend on volume
and temperature. To test this hypothesis, we have
compared the thermal part of the lattice potential
energy Ithat is, the deviation of (15) from its static
value] with the phonon potential energy at the same
volume and temperature. The latter is obtained by
multiplying Eq. (20) by h(nk+ 2)/2M&v~ and summing

FIG. 3. Debye temperature of Na vs temperature for three
different densities. Note that instability (maximum tem-
perature for which a solution exists) occurs far above
melting tempera ture.

TABLE I. Isothermal data for the solid phase of Na.

Temp.
('K)

200

300

400

600

V

(a.u. /ion)

264
240
200
160

270
240
200
160

275
240
200
160

280
240
200
160

Solid
I

(kbar)

0.0
6. 5

26. 0
72. 1

0.0
8.0

27. 5
73.7

0.0
9. 5

29.0
75. 3

1.4
12.5
32.1
78. 6

4.8
4
3.8
3i 1

6.1
5.6
4.9
4.3

7.0
6.4
5.8
5.1

8.3
7.6
7.0
6.3

(By/ion)

—0. 467 56
—0. 467 04
—0.462 21
—0.450 51

—0. 471 06
—0.470 23
—0.465 72
—0.452 87

—0.475 17
—0.474 04
—0. 469 12
—0.455 84

—0. 484 91
—0. 482 99
—0.477 25
—0. 463 10

on using Eq. (14) and (37). We find the two are
equal to within better than 0. 2 mRy/ion except for
temperatures far above melting. We have therefore
evaluated the thermal potential energy in this pseudo—
harmonic approximation, using a Debye approxima-
tion for the phonons with SD(V, T) as described in
the preceding paragraph. Although this procedure
nominally introduces an error of 0. 1-0.2 mRy/ion
in the free energy, we note that the error involved
in finding the temperature corresponding to (15) for
a given value of p,„is potentially many times great-
ter. We note, furthermore, that we are still in-
cluding some of the effects of anharmonicity via the
volume and temperature dependence of OD. Both
dependences must be included for reasonable quan-
titative agreement with the experimental melting
curve.

Isothermal data for the solid phase of Na is pre-
sented in Table I.

Compared to the solid, the calculation of the free
energy of liquid Na according to the methods of
Sec. III presents no serious numerical difficulties.
The resulting isothermal data is given in Table II.
Unfortunately, however, there appear to exist no
experiments with which to compare these data di-
rectly.

It is revealing to compare individual terms in the
energies of the solid and liquid phases. The Made-
lung energies are Eii = —1.792Z'is/~, for the solid,
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EBs Na

0.04—

0.03—

bJ
I 0.02—

FIG. 5. Band-structure energies
for solid and liquid Na. The curve
for the soI.id phase refers to a static
lattice. Those for the liquid are given
at three different hard-sphere packing
fractions.

0.0 I—

0.00
(50

I i I

200 250
Volume (a.u. /ion)

I

500

Sl i 0 Sso1id

t'lip —t solid
(«) periment at room temperature, one would be in-

clined to attribute most of the discrepancy in S,«
-S„,« to errors in S,«. Even so, it appears that

which holds along the melting curve. The apparent
maximum in the melting curve is certainly an arti-
fact, arising from the increasing inaccuracy of our
computations for the liquid state above 30 kbar.
The agreement with the experimental curve is,
however, remarkable, considering the fact that a
change of only 0. 5 mRyjion in the free energy of
either phase could shift a calculated melting point
by as much as 6 kbar. Note also that the slopes of
the calculated and experimental melting curves
agree fairly well except at low pressures.

Additional properties of the solid and liquid metal
along the melting curve are listed in Table IV. Ex-
perimental quantities are in brackets. As suggested
by the Table as well as by Fig. 6, the calculated
change in entropy is somewhat large. From the
fact that the solid entropy agrees very well with ex-

TABLE III. Additional thermodynamic properties of
the solid and liquid phases of Na. n is the coefficient of
linear thermal expansion; E/Kp is the ratio of the isother-
mal compressibility to its free-electron value 1.7~s~. Ex-
perimental results are in brackets.

o. (x].0-")

K/Kp

Solid

73 (100-200 'K)
61 (300-400 'K)
[71'(0-100 C) l

1.5 [1.5 l

Liquid

60 (200-600 'K)

[85" (100 .C)l

1.5

Quoted in W. B. Pearson, Handbook of I-attice Spacings
(Pergamon, New York, 1958).

"Liquid Aietals Handbook, 2nd ed. , edited by B. N.
Lyon (U. S. GPO. , Washington, D. C. , 1952).

oQuoted in Ref. 16.
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600
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eltlng Curve of Na

200—

Experiment

Present Theory

I

20 40
P (kbar)

I

60 80

FIG. 6. Melting curve of Na. The experimental curve
is taken from Ref. 36. The dashed curve is interpolated
through five calculated points. The short line segments
passing through the computed points denote the calculated
slopes, obtained from the Clausius-Clapeyron relation
[Eq. (40)].

S,«as calculated in the present hard-core model
and with Percus-Yevick structure factors is still
within 4% of experiment.

The last two columns of Table IV give the hard-
sphere packing fraction g and Lindemann ratio
3p, /R2, (i.e. , the ratio of the mean-square ionic
displacement 3po to nearest-neighbor distance R„,)
along the melting curve, To a fair approximation
both of these quantities, especially g, are constant.
Thus, apparently for the first time, we have ob-
tained, essentially from first principles, an ap
proximate Lindemann law for both the solid and
liquid Phases of a real material. The rather small
deviation from perfect Lindemann behavior, notable
chiefly in the solid, is probably real and not an
artifact of the model. It most likely arises from
the density dependence of the conduction-electron
screening, which makes it impossible to express
either the melting curve or the thermodynamic

properties of either phase in any kind of reduced
unit.

The extreme sensitivity of the calculated melting
curve to small errors in the free energy might ap-
pear to suggest that the good agreement with experi-
ment is fortuitous. We note, however, that two
large contributions to the free energy are the struc-
ture-independent terms E„and Eo. Of these Eo,
which is related to the long-wavelength limit of the
electron-ion pseudopotential, is the less accurately
established by theory or experiment. But the cal-
culated melting curve proves not to be significantly
altered even when the Parameter n (the only adjust
able Parameter in our theory) is adjusted by as
much as 5%. This same change is, however, suffi-
cient to bring the zero-temperature isotherm of the
solid into agreement with experiment at high pres-
sures (at the cost of agreement with the observed
equilibrium volume).

The structure-dependent terms in the free energy
are probably well accounted for by the present
variational approach. The computed Debye tem-
peratures (obtained by fitting the exact second mo-
mentof the frequency spectrum to the second moment
of the Debye spectrum) agree fairly we11 with
those obtained by specific-heat measurements. "
The hard-core structure factors for the liquid fit
well with experiment. ' Thermodynamic proper-
ties such as entropy and thermal expansion coeffi-
cient, which are sensitive to individual structure-
dependent terms in the free energy, also match
experiment.

Although many of the terms in the computed free
energy seem to be corroborated by experiment,
several other corrections of varying potential im-
portance have not been considered. First, anhar-
monic effects have been included only in the rela-
tive ly crude self -consistent phonon approximation.
This approximation is known, ' however, to give
much better agreement with experiment than the
so-called quasiharmonic approximation, which in-
cludes no anharmonic effects other than the volume
dependence of the phonon frequencies. Moreover,

TABLE IV. Data for the solid and liquid phases of Na along the melting curve. The columns are, from left to right,
pressure (kbar), temperature ( K), solid and liquid volumes (a.u. /ion), solid and liquid entropy per ion, difference be-
tween liquid and solid volumes, difference between liquid and solid entropies, liquid packing fraction, and solid Lindemann
ratio.

P
390[370"]
400 [376"]
450 [414"]
500 [442"]
550 [473"]
600[510"]

0.0 275 289
1.0 272 286
6.0 255 265

11.1 240 249
18.1 223 231
31.4 203 203

Data at zero pressure extrapolated from 1
Luedemann and Kennedy, Ref. 31.

6.9
6.9
7.0
7.1
7. 1
7.0

kbar.

8. 1
8. 1
8. 2
8. 2
8.3
8.0

14
14

9
9
8
0

'Reference 32.

(s) —s,)/k~

1.2[0.85 ]
1.2
1.2
1.1
1.2
1.0

0.41/0. 42
0.41/0. 42
0.41/0. 42
0.41/0. 42
0.42
0.42/0. 43

3p2/g2

0.0152
0.0151
0.0146
0. 0142
0.0137
0. 0128
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the present approach cannot be improved on simply
by perturbation theory, which seems to diverge
near melting. The next step is evidently the "high-
er -order self -consistent approximations, "'
which at this writing, however, are difficult to treat
numerically.

Even disregarding the question of anharmonicity,
the Debye approximation is itself quite crude. In

Na, however, it is probably accurate enough to cal-
culate an integral property such as the melting
curve. (In other materials it might be less satis-
factory. ) In the liquid state, the Percus-Yevick
approximation for the structure factors is probably
inadequate at high densities, although for the pack-
ing fractions appropriate to Na near melting it is
probably good enough. A more accurate approach
would certainly be to use the true hard-sphere
structure factors as obtained from Monte Carlo ex-
periments. These, of course, are not available
analytically. For polyvalent metals such as Al, in
which the Friedel oscillations play a larger role,
it might be appropriate to use a reference system
other than hard spheres.

Another omission is the higher-order terms in
the band-structure energy arising from components
of the induced electronic charge density proportional
to the second and higher powers of the electron-ion
interaction. Such terms are known to play a signifi-
cant role in determining the elastic constants of
certain polyvalent metals. ' For monovalent met-
als, in which the characteristic wave vectors are
larger than 2k~, they are probably less important.
Furthermore, since V~ varies in sign with k, the
third-order term may well cancel against itself.
In any event, it would be hoped that such terms
would not differ much from the solid to the liquid
phase. At present, however, their calculation in
the liquid phase requires knowledge (not presently
available) of three-ion and higher correlation func-
tions. Thus, their effect on the melting curve would
be hard to predict at this writing.
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Pair Effee ts in Su bsti tu tiona1 Alloys.
I. Systematic Analysis of the Coherent-Potential Approximation

L. Schwartz
Division of Engineering and App/ied Physics, Harvard University,

Cambridge, Massachusetts 02138

E. Siggiaf
Department of Physics, Hazard University, Cambridge, Massachusetts 02138

A single-band model is used to study the elec tronic s true ture of disordered binary alloys. Func-
tional-derivative techniques are used to generate an expansion for the electron self-energy that
is free of all "multiple-occupancy" corrections. This analysis reveals that the relevant small
parameter for the coherent-potential approximation (CPA) is Z ~, where Z is the number of
nearest neighbors. In addition to being exact to first order in the concentration x and third or-
der in the impurity potential P, the CPA retains just those contributions of higher order in x
and 5 that are independent of Z ~. Various methods have been suggested to calculate correc-
tions to the CPA due to two-atom clusters. While all of theseareexact to order x and 5, we
argue that a proper generalization of the CPA must also be correct to higher orders in Z ~.

The appropriate equations are derived and shown to imply the existence of satellite levels on
either side of the impurity subband. A formalism is developed to examine the departure from
the usual assumption of complete compositional disorder. To order x, the single-band Hamil-
tonian is found to imply the existence of short-range order in the alloy. The influence of this
short-range order on the density of states is discussed and is shown to modify the clustering
effects previously evaluated.

I. INTRODUCTION

This paper is concerned with the single-particle
theory of the electronic structure of disordered
binary alloys. The problem is most simply dis-
cussed in terms of a nearest-neighbor tight-bind-
ing-model Hamiltonian. ' This model has the
simplifying feature that the disordered potential is
cell localized and may therefore be decomposed
into a sum of contributions from each site. In a
Wannier basis these contributions are simply the
energy levels e and e of the two constituents. It
is assumed that the distribution of these levels is
completely random. A principal advantage of this
model lies in the fact that there are available a
number of exact results concerning the localization
of the energy spectrum and the values of the lead-
ing moments of the density of states. ' These exact
results have been used to compare several common
theories based on a "single-site" decoupling of the

equations of motion. Following this course several
authors' have concluded that the coherent-potential
approximation (CPA) of Soven and others provides
the best possible single-site description of the alloy.
Within the appropriate limits, the CPA exhibits di-
lute alloy, virtual crystal, and well-separated-im-
purity-band behavior. '

The coherent-potential (CP) concept has generally
been developed within the framework of a multiple-
scattering description of disordered systems. '
In this approach the propagation of the electron is
regarded as a succession of elementary atomic
scatterings which are then averaged over all con-
figurations of the alloy. The essential feature of
the CPA is that the individual scatterers are viewed
as being embedded in an effective medium whose
choice is open and can be made self-consistently.
This physical condition corresponding to this choice
is simply that if the part of the medium belonging
to a given site is removed and replaced by the true


