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Critical polarization . fluctuations in the nonpolar phase of a ferroelectric have been deter-
mined self-consistently using a correlated effective-field theory of ferroelectricity. Static cor-
relations take the form of highly developed ferroelectric chains along an incipient polar direc-
tion, with interchain correlations being relatively very weak and of either sign. Neither inter-
chain nor intrachain correlations exhibit an exponential decay at large distances and a unique
definition of correlation length is correspondingly difficult to obtain. The new statistical theory
is able to describe phase transitions of both displacement and order-disorder character and
predicts a paraelectric susceptibility divergence as t =T -T~ -0 of the form fin{1/t) I/t and a
specific heat going as A. —[8'/in{1/t)], where A and B' are constants. These forms are to be
compared with the Curie-Weiss susceptibility and the logarithmic divergence of specific heat
which follow from the commonly used random-phase approximation.

I. INTRODUCTION

Statistical theories which discuss the critical
properties of ferroelectric phase transitions, both
for displacement and tunneling (order-disorder)
models, still commonly make use of a random-
phase approximation (RPA) to "close" the many-
body problem. In general, theorists are much more
satisfied with this rather crude statistical approxi-
mation in the ferroelectric context than, say, in
magnetism. The reason is not difficult to find; it
often gives the correct temperature dependence (as
fa, r as experiment can tell at present) for the limit-
ing "critical" behavior of susceptibility, correlation
function, soft-mode frequency, etc. , for ferroelec-
tric systems, but not for magnetic ones. The com-
mon explanation is that magnetic transitions are
precipitated by short-range forces while most fer-
roelectric phase transitions are controlled by long-
range forces (presumably largely dipola, r in nature),
and the RPA (and in particular the Bragg-Williams
method for the zero wave-vector limit) becomes
exact in the long-range limit. '

Although this last statement is true, it unfor-
tunately has little relevance for dipolar forces
and ferroelectricity since dipolar forces are not
long range in the Bragg-Williams sense. Worse
still, there are indications that the BPA does not
give even approximately correct numerical pre-
dictions ' and is, quite possibly, less quantitatively
reliable in a ferroelectric context than in a mag-
netic one. The fact that it produces the correct
temperature dependence for a number of thermody-
namic quantities near a ferroelectric phase transi-
tion must, in some sense, be fortuitous. The pres-
ent author, for example, feels that theorists under-
stand less why the critical exponent for ferroelec-
tric susceptibility should be unity (Curie-Weiss law)
than why it should be =1.375 for the Heisenberg
ferromagnet. For the latter case, a well-de-
veloped high-temperature-series extrapolation

technique has been defined to indicate the 1.375
exponent with some precision. An equivalent cal-
culation for dipolar forces is completely lacking,

Bandom-phase theories, by neglecting correla-
tions completely, are known to violate the fluctua-
tion-dissipation theorem. One can progress beyond
BPA by statistically approximating correlations in
such a way that they can be determined self-con-
sistently to be in accord with the fluctuation theo-
rem. A lattice-dynamical theory of this type al-
ready exists (the self-consistent phonon approxima-
tion ) and in its simplest form has been used to dis-
cuss structural transitions ' although it has not
yet, it seems, been used to evaluate ferroelectric
critical properties for a dominantly dipolar inter-
action potential. In lowest order, the self-consis-
tent phonon theory statistically approximates cor-
relation terms in the equations of motion to allow
linea, rization in terms of collective (phonon) co-
ordin3tes. The statistical correlations are then de-
termined self-consistently to describe a tempera-
ture-dependent harmonic motion about statistical
equilibrium.

The present paper also statistically approximates
the lattice-dynamical equations of motion to pre-
serve correlations, but in a manner which allows
the self-consistent description of the ionic motion
of individual lattice primitive cells. The proce-
dure, however, does not include any linearizing of
the equations of motion and therefore, unlike the
self-consistent phonon scheme, is not built in low-
est order on quasiharmonic dynamics, but is for-
mally applicable both for displacement and order-
disorder phase transitions right through to the Ising
limit itself. This paper concentrates on static
(time-independent) properties alone and, since the
statistical principles behind the self -consistent
phonon and present approximations are essentially
the same, it seems likely that at least the qualita-
tive form of the present critical findings would re-
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suit also from the former.
The present theory develops a statistical proce-

dure which goes a step beyond the RPA in allowing
for the effect of intercell forces. Intercell corre-
lations are defined in a simple way and are deter-
mined completely by requiring them to satisfy the
fluctuation theorem of statistical mechanics. The
theory can be set out in a rather general formalism
embracing, in a single representation, models of
both displacement and order-disorder ferroelec-
trics, as well as examples in a magnetic context.
In the disordered phase, at least, the results for
the Ising model are equivalent to those obtained by
use of the Qnsager-reaction field or the spherical
approximation. ' Whether this correspondence
holds more generally has not been ascertained.

The resulting theory is pursued in detail for the
case of dipolar interactions. We find that polariza-
tion fluctuations in the nonpolar phase are quite
anisotropic with well-established short-range cor-
relations in chains along the incipient polar axis.
Correlations between chains are quite weak and may
be of either sign. The concept of correlation length
in such an anisotropic situation is discussed with
particular reference to critical behavior. It is easy
to see the manner in which very sizable numerical
errors can be incurred by use of a random-phase
effective-field approximation. In particular, the
Lorentz-field concept may have little to do with the
determination of a Curie temperature. Qn the
other hand, the improvement of the statistical ap-
proximation removes the one great success of the
random-phase theory, namely, the simple Landau
critical behavior. However, the extent to which it
does so is quite small (involving logarithmic terms)
and it is instructive to compare the dipolar case
with the more well-known magnetic situation (Heis en-
berg or Ising ferromagnetism) in the same approx-
imation.

Results are presented for susceptibility, specific
heat, and polarization fluctuations, all in a nonpolar
phase. They are cast in a form which is equally
applicable for displacement and order-disorder
systems (or, indeed, any intermediate situation).
Emphasis is placed on computation of static po-
larization correlations as a function of range and
orientation, both for near neighbors and in the limit
of infinite distance. Some general rules concerning
polarization fluctuations near a ferroelectric phase
transition can be conjectured for the nonpolar phase.
The polar phase has not been pursued in this paper.
It also appears to be much less simple to conjec-
ture about fluctuations in antiferroelectrics, even
those for which dipolar forces may be primarily
responsible.

II. STATISTICAL APPROXIMATION

Consider the many-body Hamiltonian (or, more

specifically, its potential energy part)

~=Z IV(~,)-I, ~, I
—Z...~, ~, , (2. I)

where ~E& is an operator with expectation value at
any instant of time equal to that of 4 —((,) at the
same time (i. e., fully correlated to the motion of
the ith coordinate) and where a is a dimensionless
temperature-dependent parameter with value be-
tw en zero and unity. Thus, the parameter n is a
measure of intercell correlations; o, =0 represents
the random-phase limit and n = 1 represents the

fully correlated limit. %e shall show that n can
be determined completely from the fluctuation the-
orem of statistical mechanics.

The equation of motion for the ith cell can now be
written using (2. 3); it is

s~(i) s V(&,)
Z~ v, ~ ((-&

~ ) + e4$,),8$] 8$]
(2. 4)

where, by definition, ~$& can now be replaced by

$, —($, ), and where p; is the conjugate-momentum
coordinate. We now note that this same equation
of motion would result directly from (2. 3) if b t'&

were replaced by —,'$, —($, ) in the effective Ham-
iltonian. In this way we obtain an effective Hamil-
tonian for ith-cell motion in terms of operator (,.
and ensemble averages alone. Specifically,

&(i) = V(h;) tI; -Z, -v5;(t, )

-~~»~~&~(~&; —(4)) (2 5)

Mathematically, it is simplest to pursue the dis-
ordered phase, and the present paper will be de-
voted exclusively to temperatures at or above the

in which V($, ) is a potential energy involving an
elementary polarization coordinate $, , h, , is an ap-
plied field, and p,.&

is an interaction potential. For
the simplest conceivable model of a ferroelectric,
$, would define the polarization associated with an
individual charged ion. In a more realistic model'

$; labels the normal-mode coordinate for motion
of ions in the ith primitive cell, with the symmetry
of the soft mode. Near to a phase transition in
particular, ionic motion is dominated by the ferro-
electric mode and the single-mode approximation
is valid.

In the conventional RPA, an effective Hamiltonian
X(i) for the ith cell is written by replacing all 4
0 $, by their ensemble averages ($&). Thus

K(i) = V($, ) —k& $&-X»v, &$; ($&), RPA . (2. 2)

In this paper we shall go beyond RPA to allow for
intercell correlations by including in (2. 2) an addi-
tional term proportional to the fully correlated mo-
tion,

X(i) = V(f. ;) —k; $; -+~v;) $; (($))+nh$)), (2. 3)
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Curie point T~. We should also bear in mind that
the single-mode approximation itself may become
less adequate for the description of ferroelectric
phenomena if we venture too far away from T~ in
either direction.

I et us calculate first the ensemble average

(t',. &
= Tr((,.p,.)/Tr(p, . ), (2. 6)

where the density matrix p,. for the ith cell is
e "' ' . In the limit of small applied field h. , we
can expand the exponential to first order in small
quantities to obtain

& t; &
= (& &'; &/k T) P;+Z; (& & r &

—
& $; &) I

(2. 7)
where

the well-known fluctuation theorem. Using (2. 18)
and (2. 13) we find

+» ('r+ o-'vo v») =Br & $» $»)/kT

=N& $; &/kT=N/~ . (2. 19)

Equations (2. 19), (2. 8), and (2. 9) together now

determine n completely as a function of tempera-
ture, and the formal statistical problem is closed.

Conventional BPA theory has n = 0 at all tempera-
tures and the above therefore implies that this ap-
proximation (and, in particular, the Bragg-Wil-
liams method) must violate the fluctuation theorem,
a point which has been made before. ' The viola-
tion is readily demonstrated. From the fluctuation
result (2. 18) we find

&to& Tr(]2e-v' ( i)(/))r)/ Tr( ev' (i()/kT) (2. 8)
Xo =

& $o &lk T = (I/k T) (&
t' ( & + + & 5 ( h r &), (2 20)

(2. 9)

Introducing Fourier transforms with respect to the
spatial lattice assuming translational invariance,
Eq. (2. 7) becomes [since &$,. & of (2. 8) is indepen-
dent of cell site r')

&5 &=(&5 &/kT)l. k +(t )(v -«o)l
using an obvious notation in which K is a recipro-
cal-lattice wave vector (the vector notation being
omitted in subscripts) and where, for example,

(N)-(/2+t iR f (2. iS)

(2. 10)

and

i K ~ (i -i )~z— (2. 12)

/ being the number of cells in the macroscopic
lattice.

The wave-vector-dependent susceptibility now

follows immediately as

X» & ~ &/k»» (T+ Qvo v»)

and, in particular,

Xo
= f) + (c( —1) vo]

where
v = kT/($( ) (2. 15)

and we have taken n to be independent of h~ at
least to first order. But X~ can also be calculated
directly as

with

»(h p)
|)k» Tr(p )

(2. i6)

p= exp'[-Z I'(5;)+ + v;, 5; t'r+Zk» &»VkT} .
(2. 17)

For T & T~ we obtain

k TX» =
& h rc 5 rc&-

while the Bragg-Williams scheme [Eq. (2. 14) with
n=0] gives

X()
=

& (,&/(k T —
v() & ];&), RPA . (2. 21)

The latter, in conjunction with (2. 20), clearly im-
plies nonzero correlations in direct violation of the
initial basic assumption of RPA theory. We note,
however, that n can be eliminated from (2. 13) and
(2. 14) to give

-1 -1
Xz =Xo +&o ~sc ~ (2. 22)

an equation valid in both RPA and the present cor-
related scheme.

It is of particular interest to calculate the de-
tailed correlations & $, $ (,r(& themselves. Using the
fluctuation theorem to relate the correlations to
wave-vector-dependent susceptibility, we have

)= (I/N)Z e' '
&$ $ )= (kT/N)Z„X e'

(2. 23)
from which using (2. 22) we find

&5; k;. )/&5';&=&(R)/I'(0),
where

+(R)=Z»e' '"/(Xo'+ vo —vrc) ~

(2. 26)

(2. 26)

In the more general problem, Eq. (2. 8) is the
major stumbling block in the path of a numerical
quantum-mechanical calculation since it necessi-

&h; 5, ) = (kT/N)Dree' l(X +v —v ) .
(2. 24)

In particular, the ratio of the correlations at dis-
tance R to the self-correlation at the same tempera-
ture follows immediately as a function of uniform
susceptibility Xo alone and is valid for any poten-
tial function V($, ) no matter how complicated. This
is a remarkably simple result in view of the usual
complexity of V($,. ) in real systems; we give it ex-
plicitly as
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tates obtaining eigenvalues of energy for motion in
a temperature-dependent (through o.) potential which
can be, for ferroelectrics, anything between a
quasiharmonic single well and an Ising-like double
well but, unfortunately, appears very often to be
somewhere in between. In LiTaO3, for example, '
V'($, ) for temperatures near Tc appears to have
side minima of comparable depth to a central $, = 0
minimum. This situation would seem to be im-
possibly complicated to treat quantum mechanical-
ly, although classically, of course, the problem is
simpler in principle. The Ising limit with ($, )
= const is the simplest hypothetical situation, in
which case parameter z can be eliminated between
(2. 14) and (2. 19) to give

+r &~I(Xo + vo —v„)= &( $';), (2. 2V)

an equation which determines uniform susceptibility
directly as a function of temperature without more
ado. More generally, the right-hand side of (2. 2V)

is still n dependent through (2. 8) and (2. 9) and one
cannot escape the necessity of solving (2. 8), (2. 9),
and (2. 19) simultaneously for n in order to deter-
mine the temperature dependence of Xp quantita-
tively. It is this unpleasant facet of the general
problem which makes Eqs. (2. 25) and (2. 26) for cell
correlations look so attractive, and we shall pursue
this aspect of the statistical problem in some de-
tail.

Before going on to compute some numerical re-
sults for the case where interaction potential v, &,
at least at long range, is primarily of dipolar ori-
gin, one or two additional comments are pertinent.
First, we have neglected throughout any complica-
tions arising from the presence of electronic con-
tributions to polarization. The influence of the
latter is not difficult to determine ' but is not of
direct concern in the present context. Second, in
order to avoid the complexities arising from the
dependence of vz on specimen shape (when K
is of order one over the sample dimensions) for
dipolar forces, it is convenient to postulate a
needle-shaped sample for which depolarizing ef-
fects are absent. The calculations, however,
are also directly relevant for the conventional
pa, rallel-plate experimental setup (thin-wafer
sample) if in this case 8 is construed as the in-
ternal Maxwell field rather than an external ap-
plied field.

Finally, we note that cell correlations of the form
(2. 3) were introduced earlier by the present au-
thor to enable the understanding of experimental
results for ferroelectric LiTaO, and LiNbO, . In
that paper, however, th correlations were simply
determined by fitting (2. 14), or its equivalent, to
the experimentally measured pp It was found that
in spite of Curie-gneiss-like behavior, correla-
tions, as measured by n, were very strong near

Tc but with little if any temperature dependence.
Thus the earlier theory was not of closed form,
having n as a free parameter to be determined by
fitting experimental data. The present paper re-
moves that degree of arbitrariness enabling o. to
be determined theoretically from a knowledge of
the form of the intercell interaction forces and
hence, hopefully, eventually leading to some under-
standing of the empirical results obtained for
LiTa03 and LiNbO~.

III. DIPOLAR INTERACTIONS

For ferroelectric systems the intercell potential
e, &

will be very largely of dipolar origin at l.ong
range although, of course, for nearest-neighbor
cells in particular, contributions from other
sources will be important. There is, however,
another reason why v,.&

will differ from classic di-
polar form for near-neighbor cells. This results
from the fact that $, is a normal-mode coordinate
defining the motion of all ions in cell i and hence
describing a charge displacement which has a very
considerable spatial extent. The familiar point-
dipole expression for dipolar energy therefore be-
comes appropriate for v,.&

only at long range.
Close enough to a phase transition, ionic motion

is dominated by the ferroelectric soft mode by
simple virtue of its low excitation energy. This
mode is, in general, strongly polar and therefore
defines elementary dipoles g, per cell. As 7- Tc
the ionic motion is increasingly dominated by long-
wavelength polar excitations which define a direc-
tion X, the incipient polar axis. (This does not
imply, of course, that the motion of all, or even
any, individual ions is necessarily in this direc-
tion. ) In many cases, X is defined unambiguously
simply by the symmetry of the soft mode (e. g. , the
A& soft mode in LiTa03 or LiNb03 with polar motion
along the unique hexagonal axis). " In other cases
A. may be degenerate to a finite degree. For cubic
structures in particular soft-mode energy is iso-
tropic in the K-0 limit, ' ' but this infinite degen-
eracy is quickly lifted for nonzero K, allowing us,
even here, to think of polar motion as becoming in-
creasingly restricted to the incipient polar axis
(e. g. , a cubic axis in BaTi03) as 7- Tc

In the analysis below of the approach to the phase
transition from a nonpolar phase we shall there-
fore effect the enormous simplification of restric-
ting polar motion to a, direction X, thereby justify-
ing the use of a scalar formalism in Sec. II. The
approximation is best for systems of low crystal-
lographic symmetry, but it should have some rele-
vance, at least qualitatively, in a more general
context. The long-range dipolar nature of v;& con-
trols the long-wavelength form of v~ which may
now, by virtue of the above restriction, be identi-
fied with the single matrix element g~ ~ The well-
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known form for the continuum limit' '" is

(1/N) (vo —.i;;) = 4vK~/K (3. 1)

where K~ is the component oi wave vector K in di-
rection A.. For a discrete lattice it is necessary
to add structure-dependent terms. For mathemati-
cal simplicity we retain only a lowest-order lat-
tice-dependent term, in the form

(1/N) lim(no —u&) =4n (K,/K )+8K a, (3. 2)
K 0

where P is a structure-dependent dimensionless
parameter and a is a primitive cell dimension.

It is now possible to use (3. 2) in conjunction with
the theory of Sec. II to investigate critical proper-
ties, to the extent that they are dominated by the
long-wavelength excitations.

IV. SUSCEPTIBILITY

Substituting (3. 2) in (2. 27) one readily verifies
that

(N(~', ), /uT, ) —(N (~', &,/uT)

is dominated by long-wavelength contributions and

may therefore be evaluated explicitly from the
knowledge (3. 2) to give

(N((;&r /kTc) —(N(((&r/kT) = —,'y '(47r8) 3t In(Py)

(4. 2)

in the limit T- Tc~ X- ~, where X=XXo is the uni
form dielectric susceptibility per unit volume, and
where ($,. &r refers to an ensemble average at tem-
perature T.

For the case of an Ising potential function V($, ),
the ensemble average ($, )r is independent of tem-
perature T and can therefore be set equal to a con-
stant, say, =. For this case the left-hand side of
(4. 2) becomes equal to N 't/kTc, where t = T —Tc,
and the equation has a solution for the temperature
dependence of susceptibility of the form

- t/ln(l /t), t —0 (4 3)

to lowest order (neglecting terms smaller by a fac-
tor In[in(1/t)]/In(I/t)). More generally, ($2& is
both temperature and n dependent via (2. 8) and

(2. 9). For the more general case of arbitrary V($, )

we find

lnX -At+ Bt — t - 0-1 dQ

dT
(4. 4)

where the derivative is taken at T = Tc, and where
A and B are constants. Using (2. 14) it is possible
to rewrite this as

X ~lnX= Ct+Dt dX

where again C and D are constants. This equation

also has the solution (4. 3) to lowest order since

the derivative of g
' from (4. 3) goes to zero as

T- Tc. The relationship (4. 3) is therefore valid in
the present approximation for arbitrary V(4); that
is, for displacement and order-disorder ferroelec-
trics.

We note in passing that the Curie temperature
Tc is given by

N($ ) /kT =Q (g — „) (4. 6)
which is not determined by the long-range form of
v~ alone but requires explicit knowledge of v~
throughout the Brillouin zone. In the Ising limit,
for which ( (, ) r is independent of the correlation

C
parameter n, we can compare Tc from (4. 6) with
the equivalent RPA (or Bragg-Williams) Curie tem-
perature T "to obtain

T',"/T, =
N

Q ].I —(v~/vo)] ', (4 7)
K

which is, in general, greater than unity. We have

evaluated this ratio for the case of an fcc lattice
of interacting dipoles constrained to a z direction.
Using values of v~ = v~8 calculated by Cohen and
Keffer' for representative points throughout the
first Brillouin zone (with @0=-4'/3) we compute

Tc /Tc = 1.40 for this case. Tn other words, simple
random-phase theory overestimates Tc by 40/z in

this instance. Moreover, this deviation may well
be relatively small compared to other possible
situations. The fcc lattice has P of Eq. (3. 2) of
order 0. 5 and has no antiferroelectric dipolar ar-
rangements close in energy to that of the ferroelec-
tric array. It is well known that for some lattice
structures (the simple-cubic lattice is one example)
dipolar forces favor an antiferroelectric array. It
is therefore quite conceivable that for other ferro-
electric lattices vo —v~ might well approach small
values at a number of other points (related by sym-
metry) in the Brillouin zone as well as at K-O.
This situation (or, perhaps, a smaller value P)
would produce very much larger discrepancies than
the 40% of the fcc lattice between the random-phase
and the self-consistent correlation theories. As a
result, it would seem unwise to associate the I o-
rentz-field concept too closely with Curie tempera-
ture.

V. SPECIFIC HEAT

once again, close enough to the critical point,
we can obtain information concerning the (critical)
behavior of specific heat from a knowledge of the
limiting behavior (3. 2) of vr alone. Consider the
internal energy (K) of the many-body system. It
is, in the limit of zero applied field,

(&&=N(V(k&)& —~N2 g&;g(h;kg&, (6 1)

and, using Eq. (2. 24), this can be rewritten as

(&& =N( V(k;)& -—
32 8v „y '+N '(vo —v~)

(6. 2)
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where the integral is over the first Brillouin zone.
This equation, in turn, can be rearranged as

(8C)=N(V($;))+ —,'NkT —
o 8 o (X +N vo)f,

(5. 3)
where I is the Brillouin-zone integral

X
'+ N '(~o ~r)

(5. 4)

Cq=A. —B — —CX +Dt, t 0dX

dt
(5. 6)

where A, B, C, and D are constants and in the Ising
limit C =D=O, A= Nk, and B= ,'N ($', -). With the
knowledge (4. 3) of the limiting behavior of recipro-
cal susceptibility we derive, for arbitrary potential
function V($;), a critical form

Cq = A —LB'/1n(l/f)], f —0 . (5. V)

This represents a logarithmic approach to a finite
value at Tc and is to be compared with the RPA
result'6 of a logarithm-':. c divergence of C, as t -0.

It is of interest to note the equivalent results for
an isotropic (e. g. , exchange) interaction potential
v& for which v0 —v& -K as K- 0. For this case
RPA predicts X

' ~ t and a divergence of specific
heat at Tc as t '~o (see, for example, Brout').
The self -consistent correlation theory for this case
shows X

'o: to (the spherical result) and a linear
approach A —B't of specific heat to a finite value
at the Curie temperature. For magnetism, ex-
perimental results prefer a behavior between these
two extremes for both X

' and C „with a possible
logarithmic divergence of specific heat as t - 0
and a critical index between 1 and 2 (of order 1. 3)
for susceptibility.

VI. CORRELATION PARAMETER n

Combining Eqs. (2. 14), (2. 15), and (2. 2V) it is
possible to relate the correlation parameter cy di-
rectly to susceptibility in the form

1 N
-1 -1 -1 -1 (6. 1)

+ N (no —er) X. + N vo(l u)

which, using (2. 27), transforms to I= 8 oN($;)/kT
to give

(K) = N( V($;))+ ,'NkT ——,'N ($;—)(X +N 'vo) .
(5. 5)

The specific heat is now obtained as the first
derivative with respect to the temperature of (K).
Assuming that ( V($, ) ) and ( $, ) can be expanded in
a Taylor series about Tc (this assumption is, of
course, not necessary for the Ising limit in whic h

case these quantities are both temperature inde-
pendent), we find a specific heat C, with leading
terms of the form

where X = NX0 is the susceptibility per unit volume.
This relationship (6. 1) is valid for arbitrary V($;).
We notice in particular that the correlation ac at
the Curie temperature follows from

Q (vo —v~) (6. 2)
K ~o 1 oc)

and is therefore nc = 0. 28 for the fcc example cited
in Sec. Iv. There is evidence that values of ac
larger than 0. 9 can be found in some more realistic
situations.

It is simple to verify from Sec. II that a tempera-
ture -independent n in a paraelectric phase leads to
a Curie-Weiss uniform susceptibibty. Since (ex-
perimentally) quasi-Curie-Weiss behavior is often
found near ferroelectric phase transitions, this
would indicate, at most, a very slowly tempera-
ture -dependent n. This has already been stressed
in Ref. 2. Nevertheless, from (6. 1) and (3. 2) we
can show that n cannot be truly temperature inde-
pendent in the self -consistent, theory.

Writing (6. 1) for T = TG+ f, then again for T = Tc,
and substracting one equation from the other leads
directly to

( — ) =-' (~o/N) (1 —n )'(4vP) "'X '1 (PX),
(6. 3)

In conjunction within the limit X —~ (i. e., t-O).
(4. 3), this implies

t-0 (6. 4)
An equivalent result is easily established for an
isotropic (exchange) form of interaction potential
with

lim (go —vr) ~K
K 0

It is

VII. CORRELATIONS (g.~.,
In the theory of Sec. II detailed intercell corre-

&c & X (6. 5)
from which, using the fact that X

' ~ t for this
case, we again find a linear relationship between

c —n and t in the limit T- Tc
Thus, using n as a measure of correlations, we

are struck by the similarity in qualitative behavior
between the two systems (exchange and dipolar)
rather than the differences. However, there are
other more informative scalar measures of cor-
relation (usually a correlation length in units of
cell dimension) and they shall be discussed below.
Since a single scalar correlation parameter can in-
dicate only a single gross aspect of the detailed
correlations ($, $„~), different definitions can lead
to seemingly conflicting statements conc e rning
critical behavior. Such confusion already exists
in the literature on ferroelectrics '7' where, as
we shall see below, it is difficult to define a critical
correlation length in an unambiguous manner.



lations (&, $;,8) are expressed explicitly as a func-
tion of vo —vx and Xo by (2. 25) and (2. 26). A knowl-
edge of the limiting long-wavelength form of vo —vx
[Eq. (3. 2)] then dictates the form of the correlations
as A- . A mere glance at the equations and the
symmetry of vo —v„ in (3. 2) tells us that these de-
'tailed cox'r61at1OQS ax'6 extreDlely anlsotx'oplc. %6
shall investigate the limiting form of ( $, $„„)as
A- ~ along the A (or 8) axis (longitudinal correla-
tions) and also for R perpendicular to X (the x or
y axis; transverse correlations).

Using (3.2) and (2. 24) we can write

X(t,. g, ,„)=(nr/A)Q, 8*"'

X [X-I+4II(ff2/ff')+ PC'a']-I (V 1)

to the extent that the summation is dominated by

the limiting long-wavelength contributions (i. e.,
for R- ~). Replacing the summation by an equiva-
lent integral, the mathematical problem for longi-
tudinal correlations at quasi-infinite range becomes
formally an evaluation of

envisaged by Comes et al. ' ' Rnd involves only

dynamic disorder with both charge motion (fluctua-
tions) and correlations being dominantly along the

same incipient polar direction.
Fox' transverse correlations, the negative sign

in (V. 4) is noteworthy. It is quite unusual for nega-
tive corxelations to be found in a system which
orders positively. It is true (see Appendix A) that
additional positive transverse correlations going
as exp(-Ay '~') are also present, but these cannot
compete favorably with (V. 4) except possibly in the
limit X

—0 itself. From the numerical computa-
tions below it mould appear that some transverse
correlations do actually xetain a negative sign right
into the phase transition. The limiting situation
as R ~, X- ~, has not been resolved for trans-
verse cox relations.

The critical behavior for the dominant longitudi-
nal correlations is easier to assess. The rela-
tionship (V. 3) holds for nonzero X l. At the Curie
point itself (see Appendix A) the correlations go
ov6x' to

(V 2)
where x~=x =ya+za, where R is here and hence-
forth measured in units of "cell dimension, " and

vrhere the integral can be taken over all x space.
The equivalent expression for transverse correla-
tions is obtained by replacing e' ' by e' " on the
right-hand side of (V. 2). These integrals are dis-
cussed ln Appendix A.

From (V. 2) we find that when X
' is nonzero but

approaching small values

Iim ( )I )I~s ) kT g /(8 Iv) (lollgl'tlldlIIR1),

(V. 3)
which 1s to b6 contrasted with the faII1111Rx" 01Qsteln-
Zernike form (I/A) exp(-Ax I~') for isotropic (ex-
change) llltel'Rctlolls. The eqlllvR18II't I'esult fol'

transverse correlations is (Appendix A)

lim ($; g;.8)- —kTyl~'/(It lJV) (transverse),
(V. 4)

which is again to be compared with (I/8) exp
&& (RX ) fol' lsotl'oplc llltel'Rctiolls. Thus the
ratio of longitudinal to transverse correlations as
7."-T' goes as X~~~, indicating that the polarization
correlations are enormously concentxated in the
incipient polar direction. For cubic systems the
incipient polar direction mill be degenerate by sym-
metry and the corresponding correlations will be
along several equivalent directions (e. g. , the cubic
axes in BRTi01). This type of behavior has already
been observed in the nonpolar phase of some perov-
skites, ' ' although our interpretation of the phe-
nomenon dlffex's from the stRtlc dlsox'de1 p1cture

lim (&; &;++)-kT/RPN (longitudinal, T=TC),

(V. 5)

indicating, in particular, a divergence as P-0 (for
which case Tc;-0 corresponding to the dipolar con-
tinuum).

To get some feel for near-neighbor correlations
we have evaluated (V. I) numerically by computer
assuming a simple-cubic-lattice geometxy, P= —,

'

(a value typical for the ferroelectrically stable
cubic lattices), and taking the long-wavelength form
of eo —e& to be valid over the entire Brillouin zone.
Numerical results for ($, $;,II)/($2) as a function of
uniform static susceptibility alone are computed
for near-neighbor 8 in both the longitudinal and

transverse directions. Results are displayed in

Figs. 1-3. Since for any real ferroelectric system
vo —ez will almost certainly differ markedly from its
long-wavelength form away from the zone center,
the figures are only meant to indicate a very qual-
itative picture. Nevertheless, some gross features
are obviously worthy of comment.

First, the longitudinal correlations are well be-
haved in the sense that they are uniformly positive,
decl eRse DlonotonlcRlly w'1th incl eRslng R Rnd with

increasing temperature T —T~, and extrapolate
smoothly to the limiting I/R behavior of (V. 3). The
transverse correlations are quite a different story.
They are almost nonexistent (less than of order 2/q)

except for nearest neighbors. They are also, in
general, not a monotonically decreasing function of
A or T —T~, and they show a tendency to oscillate
in sign, with second-, fourth-, sixth-, etc., neigh-
bor correlations being of negative sign.

We are now in a position to discuss the concept
of correlation length L,, For correlations with a
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limiting exponential decay, an unambiguous defini-
tion (in the sense of static-scaling theory) can be
made by writing the decay as e ~. Thus, in the
exchange force context, L,™y' and for an iso-
tropic system this enables us to write

)(» - 1/(L, ~+ K ~) (exchange forces), (7. 6)

kT/L, - k T)('/L', , (7. 7)

in the long-wavelength limit.
For dipolar interactions (S. 2), )(» reduces to the

form (V. 6) only for wave vectors perpendicular to
the z(A. ) axis. Since these perpendicular (x and y)
directions dominate the quasielastic neutron scat-
tering at long wavelengths, Yamada et al. ' have
defined a correlation length for BaTiO~ using (7. 6)
and hence quote an L, -)('~2- (T —Tc)'~3 for the di-
polar system. It is difficult to see the physical
significance of such a correlation length. It is ob-
viously associated with the exp(-R)( '~

) contribu-
tions to transverse correlations referred to above
but can have little relevance as far as the dominant
longitudinal correlations are concerned. For the
latter, a valid concept would be to define a (longi-
tudinal) correlation length L, as the distance for
which (as R and )( become large) correlations (V. 2)
and (7. 5) become of comparable magnitude. That
is,

defining L, from

lim & $, $,,s)/& $, ) - (L,/R)~,
R

(V. 8)

which, from (7. 2), leads to p = 2 and L, -)(»~' for
the dominant correlations. Yet again, from (2. 20)
one might conceive of a correlation volume V, de-
fined by

kT)(0=Kg&i»t's)=(V/6) &&&) (7. 9)

kT»= V~&Pg), (V. 11)

where & is the dielectric constant. Equivalently,
we can express this as

~here v is the volume of a primitive lattice cell. In
terms of macroscopic units, defining P, = $,/v, Eq.
(7. 9) becomes

kTX= V, &P() .
Since ($f) (or (P &)) remains finite as T- Tc, this
leads to t/', -y. In short, in the absence of an ex-
ponential correlation decay, a unique definition of
correlation length is difficult, if not impossible, to
find.

A rather practical definition of a correlation
volume has been made by 'temple and co-work-
ers~a ~ which bears outwardly a strong resemblance
to (7. 10). They write, for a disorder phase,

or L,- y. However, a case can also be made for kT)(= (V,'/4w) &Pg) . (7. 12)
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as= f)'(P,'), (7. ia)

where 8' is an interband polarization potential '
measured by probing with a uniform applied field.
Since 4E controls the critical temperature varia-
tion of many measurable electronic properties,
their anomalous behavior as T- Tc can be cast,
through Eqs. (7. 12) and (7. 13), in terms of V,',
which proves to be rather insensitive to tempera-
ture T —T~ and of order 10 —10' A in the

In these equations, (P~) is that mean-square po-
larization which controls the shift n, E in energy (as
one approaches the critical region) of interband
electronic oscillators through the equation

perovskite -oxide ferroelectric s.
It is evident that V,' (or more truly U,'/4p) is a.

volume over which fluctuations are closely cor-
related in some sense, and that (P~) (differing
from (P, )) is some fluctuation average over this
volume. However, the precise mathematical form
for (P~) in terms of microscopic correlations must
await a careful analysis of the statistical mechanism
by which the band edge reacts to polarization fluc-
tuations. At this time we note only from Fig. 3 that
it is difficult to conceive of any transverse dimen-
sion L, for such a correlation volume differing sub-
stantially from -2a. It is now difficult not to com-
ment (whether it is relevant or not) that an obvious
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FIG. 2. Computed near-neighbor data
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plotted in a manner demonstrating their
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linear measure of longitudinal correlations, name-
ly,

(7. 14)

(see Appendix B) combines with L, = 2a to describe
a volume L, L', which, if associated with U', /4m,

gives for the range y -10 -10 and for perovskite
oxides (a =64 A') the result U,'- (2. 5-3)x10' A'

in order-of-magnitude agreement with the findings
of Refs. 22-24.

VIII. SUMMARY

Polarization fluctuations have been determined
self-consistently using a correlated effective-field
theory of ferroelectricity. Assuming an interac-
tion potential between primitive cell polar displace-
ments $,. which goes over to a classical dipolar
form at large intercell distance, the critical be-
havior of dielectric susceptibility y, specific heat

C, , and polarization correlations ($,. 4,~) have

been calculated for a paraelectric phase as t= T —T~
-O. We find y

- [ln(1/t)]/t and C, -A —[8'/ln(1/t)],
where A and B' are constants. Polarization cor-
relations take the form of well-developed ferro-
electric linear chains in an incipient polar direction
with a decay along the length going as ( 4 $ „z)

-y'/R in the limit of large R. Correlations be-
tween chains are extremely small by comparison
and can be of either sign. The lack of an exponen-
tial decay for correlations makes a unique defini-
tion of correlation length or volume very difficult
and has led to conflicting statements in the litera-
ture concerning the presence or absence of "criti-
cal behavior" for such a concept.

The critical behavior found for y and C, differs
only slightly in functional form from the Curie-
Weiss y and logarithmically diverging C, predicted
by conventional RPA theory. However, numerical
predictions of relevant amplitudes, Curie tempera-
ture, etc. , can differ very markedly between the
two theories. The form calculated for the polariza-
tion correlations is in qualitative agreement with
x-ray and neutron-diffuse-scattering findings for
the ferroelectric perovskites.

The theory of the present paper would suggest
that highly developed linear correlations in an in-
cipient polar direction should be a general property
of a wide class of ferroelectrics in a nonpolar phase
as T- T~. The equivalent situation for an antifer-
roelectric is more difficult to ascertain since the
lattice instability occurs away from the center of
the Brillouin zone and we have, at present, little
a Priori knowledge of the form of the interaction
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FIG. 3. As Fig. 1, but com-
puted for near neighbors along an
x {or y) axis. Again, the contin-
uous curves are merely guides to
the eye, and the data are again
valid for arbitrary V{]~) of {2.1).
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potential Fourier transform p~ except as K-0. It
seems reasonable to surmise, however, that for
crystal structures which tend to exhibit ferroelec-
tricity (e. g. , perovskites) there will be a fairly
low-lying strongly polar mode even in those ex-
amples which actually become antiferroelectric.
In such a case the characteristic chainlike correla-
tions of the incipient ferroelectric will still be pres-
ent (now in addition to the critical correlations as-
sociated with the antiferroelectric transition itself),
although they will not exhibit any critical behavior
as the temperature is lowered towards the antifer-
roelectric instability. Evidence for the coexistence
of two quite distinct types of correlation in an in-
cipient antiferroelectric (NaNbO, ) has already been
found ' using x-ray diffuse-scattering techniques.
One type of correlation is indeed chainlike and non-
critical and presumably results from the form po
—vz of Eq. (3. 2) for a. low-lying strongly polar mode
which, in NaNbo, , does not trigger the phase tran-
sition. The other type of correlations is ob-
served ' to be planar and critical. These are
therefore probably associated with a different optic
mode of vibration which is going soft at a point away
from the zone center. Since, at present, we know

nothing of the form of p~ for this soft mode in the
neighborhood of its condensation, it is not possible
to comment on the planar form found experimentally
for the associated critical correlations.
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z = f [(X
' p'/c)+ (I«'8p'/c')]"' (A4)

to terms in p inside the root. Now, from the the-
ory of residues, (A2) can be directly reduced to

I,=(k T/ c') J p'e " dp/q"', (A5)

where

q =- (y '/c) + (16m' pp'/c') (A6)

and we have neglected terms p exp(-Rpq' ) in the
numerator because (A5) is dominated by contribu-
tions as p-0.

If y
' is nonzero, (A5) reduces in lowest order

p'g"' exp(- Rp/c"'g"') dp

(y &O, R-~) . (AV)

If, on the other hand, y
' is zero (T= Tc), then (A5)

becomes

k&

o
pexp[ —Rp (P/4v) ] dp=

BpRP

(y '=0, R- ~) . (A8)

Transverse Coi relations

Consider now the integral

in which c = 4m+ y '.
The dominant contributions to I, (as R- ~) are,

in general, those for which z-0; i. e., from solu-
tions to (AB) for which z-0. Now Eq. (A3) has solu-
tions as z-0 only for the upper sign and for p-0.
Expanding the root in (AS) for p «1, the upper
solution is

APPENDIX A

Longitudinal Correlations

kTI =----
38n g„

e""[y '+4m(z'/ -)x+ gx'] 'dxdy d;,
(A9)

Consider the integral

AT I
I~ its [ -1I, =-

z
'

~
e'"' [y +4m(z /~ )+ px ] 'dxdydz

(Al)

ot Eq. (V. 2), in which R- ~, xz=x +y yzz,
integral is over all space. Transforming to cylin-
drical coordinates p, z, 6), it becomes

4~' „,, „p(pz+z') +4' +y '(p'+z~)
(A2)

Consider first the integral over z. It can be re-
placed (to the extent that I, is an analytic function
of R) by the integral taken for complex z from —~
to ~& along the real axis and then around the semi-
circle at infinity in the positive half-plane. The
integrand in (A2) has poles at

z = —p —(c/2f}) (I 5[1+(167rPp /c )] ~ j, (As)

again taken over all space, where x = x +y
+z . We perform first the integral over x, replac-
ing it by an integral taken for complex x from —~
to ~ along the real axis and around the semicircle
at infinity in the positive half-plane. The integrand
has poles at

x ' = —
I
y'+ z'+ (X '/28) ] + [(X '/2P)' —(«z'/0) ]"'

(A10)
The dominant contribution to (A9) as R- ~ comes

from x-0. Equation (A10) has solutions at arbi-
trarily small x when y

' is nonzero, only from the
upper sign and for y —0, z - 0, in which case

x'= -y' —z' —(4''/y ')+O(z') . (Al 1 )

However, unlike the case for longitudinal correla-
tions, the lower-sign solution can also take on ar-
bitrarily small values as y '-0 since for y=0, z
= 0 the pertinent solution oi' (A10) goes as x- i
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x (X
')'~' and therefore gives rise to correlations

(contributions to 1„) going as exp(-Rx '~'). These
correlations are small compared to those arising
from (All) (which, below, will be shown to go as
1/R') for any finite y

' as R- ~, but may eventually
become the dominant transverse contributions in
the lament X 0~ T l c

For nonzero y ', using (All) and the theory of
residues, I„reduces in lowest order to

~ oo

kTy'
~

z'exp[ —R(y'+gz')'~'I dy dg
2v „i „. (y'+gz')"'

(A12)
where g= 1+4my. Equation (A12) is a form which
can be integrated directly using coordinates r =y
+ gz, 8 = tan '(g ~ z/y) to give

&TX a -zr &TX
e " dr = — S,T2- . (A18)2g „o Rg

In particular, for 4vX»1, we find I„goes as
—kTy'~'/R' and therefore that the ratio I,/f„of
longitudinal to transverse correlations at infinity
is proportional to X, exhibiting the very marked
anisotropy of the dielectric correlations in the vi-
cinity of a phase transition.

APPENDIX 8

(y = 0): 0. 482, 0. 226, 0. 162, 0. 116, 0. 096, 0. 078,
0. 069, 0. 05S, 0. 053, 0. 046, 0. 043, and 0. 038.
These are plotted in Fig. 2, from which we see that
the series is tending to go as 1/R, in agreement
with (A8).

For values of X approaching zero, but finite,
these near-neighbor values are essentially un-
changed. However, from (A7) we know that the
correlations for T c Tc must eventually go as 1/R'
as R- ~. Let us define a. correlation length N, (in
units of cell dimension a) for which, as R- ~ and

y '-0, correlations (A7) and (A8) become equal.
Thus

2k T y /N, = k &'/8vPN, ,

which is N, = 16mHX . We now consider the sum

S= Q ($; $;,„,)/($;) (longitudinal),
n=i

and we shall sum it using the following approxima-
tions. For n =. 1-12 we use the computed values
given above; for n= 13 to N, we continue in a series
going as 1/n; and finally, from n=N, to ~ we con-
tinue in a series going as 1/n . Thus, writing
($; $;,„,)/($~) —= T„, we have

Longitudinal correlations ( $t $,,s) for near neigh-
bors R=na along the z axis of a simple-cubic lattice
can be calculated directly from (2. 26) and (2. 26)
using a computer for the approximate numerical in-
tegrations required. We have taken an interaction
potential (1/N) (no —g~) = 4v(E,/E ) + 8K a, with P
= —,', to be valid over the entire Brillouin zone and
have computed directly out to n = 12, beyond which
the increasingly rapid oscillation of the integrand
makes numerical accuracy increasingly difficult to
obtain. Results for longitudinal ($, $,,~)/( $,. ),
R=na, v=1, 2, . . . , 12, are as follows for T= Tc

which sums to

S = 1.38 + 12T,2 ln(N, /12) + 6 Tgg .

Noting from above that T&~= 0. 038 and that, for g
=-,', N, =5X, we calculate

5= 1.21+0.46lnX .
It follows immediately that

= 2S+ 1 = 8. 4 + 0. 9 in' .
(&';)
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Acoustic Attenuation and Frequency Shift in Ferromagnetic Insulators at Low Temperature
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The propagation of an acoustic wave in a ferromagnetic insulator at low temperatures has
been investigated theoretically. Two models describing the interaction of the spin system with
the acoustic wave have been considered, namely, (i) the modulation of exchange interaction
and (ii) the .modulation of single-ion magnetostriction, due to lattice vibrations. The attenua-
tion and frequency shift of acoustic waves in a simple cubic system have been considered for
two-magnon-one-phonon processes arising from these interaction mechanisms. It is found
that because of the magnon-phonon interaction the phonon frequency is renormalized even at
absolute zero for the process in which either the two magnons fuse to produce a phonon, or a
phonon is destroyed to produce two magnons. In addition, for a single-ion magnetostrictive
interaction, the above process exhibits the result that the first derivative of the renormalized
part of the frequency with respect to wave vector q has a logarithmic singularity at l q+ L (

= 2k~, where k is the magnitude of the maximum wave vector for the magnons, and L is a re-
ciprocal-lattice vector. The results obtained have been compared with those of other workers.

I. rNTRODUCTIOW

The spin-phonon interaction in ferromagnetic
insulators and its effect on acoustic propagation
through these materials at low temperatures have
been of considerable interest for a long time. '
A variety of models for the interaction and also a
number of theoretical methods have been used in
this connection.

The spin-phonon coupling in ferromagnetic in-
sulators can be described in terms of two types of
interaction, ' namely, (a) the volume magnetostric-
tive interaction and (b) the single-ion magnetostric-
tive interaction. At low temperatures both these
interactions can be described in terms of scattering
and absorption processes involving different num-
bers of magnons and phonons. The one-magnon-
one-phonon process in these was considered by
Kittel„Schlgmann, and Akhiezer et al. The two-
magnon-one-phonon process occurs in the next
higher order, which is composed of two parts:
(i) the sca.ttering of a magnon with the annihilation
or the creation of a. phonon and (ii) the annihilation
of a phonon with the simultaneous creati. on of two
magnons, and the reverse process.

For the volume magnetostrictive interaction, the
process (i) was considered by Tani, ' Pytte, and
Kaganov and Chikvashvili. ~ Process (ii) was in-
vestigated by Silberglitt. ' Silberglitt's results,
however, are valid only at T = 0 K, since the ir-

reducible self-energy diagram considered by him
is of the lowest order in both the spin-phonon in-
teraction and the density of spin waves. For single-
ion magnetostrictive interaction, process (ii) was
studied by Kaganov and Chikvashvili. They started
with a phenomenological interaction Hamiltonian
and calculated the phonon damping using the rate-
eguation approach. Process (i) for this particular
mechanism has not been considered so fa,r.

Here we study processes (i) and (ii) for each of
the two mechamsms (a) and (b), but we present the
details only for the single-ion magnetostrictive in-
teraction. The reason is that the recent experi-
mental data on acoustic wave attenuation suggest
single-ion magnetostrictive interaction to be as
important a,s the other one, which has been previous-
ly treated only in part. The results of the volume
magnetostrictive interaction are also given to
facilitate a, comparison of the relative importance
of the two mechanisms. %e also note that our re-
sults are valid for T+ 0 'K.

The functiona]. -derivative technique "has been
used to calculate the phonon Green's function in the
presence of the magnon-phonon interaction. The
real part of the self-energy gives the frequency
shift (or velocity shift), and the phonon lifetime is
obtained from the imaginary part. The acoustic
attenuation is obtained in the lowest order of the
magnon-phonon interaction from the phonon life-
time. Section II contains a. description of the


