Giant Room-Temperature Magnetostrictions in TbFe₂ and DyFe₂[†]

A. E. Clark and H. S. Belson

Naval Ordnance Laboratory, Silver Spring, Maryland 20910 (Received 1 November 1971)

(iteceived i November 1911)

Huge magnetically induced strains (~0.2%) were observed in cubic TbFe₂ at room temperature. An anomalous "positive" temperature dependence for the magnetostriction is found for DyFe₂, yielding a peak in the magnetostriction exceeding 600×10^{-6} above room temperature. The source of the magnetostriction is the large strain-dependent anisotropy of the rare-earth ion situated at the cubic sites in the RFe₂ lattice. The magnetoelastic energy of the rareearth ions in these compounds is estimated to be 2 to 5 times larger than that of the rareearth elements themselves.

We wish to report the discovery of the largest room temperature magnetostrictions ever observed. These occur in the Laves-phase rare-earth-iron compounds TbFe₂ and DyFe₂. Previously all "giant" (i.e., >10⁻³) magnetostrictions were restricted to cryogenic temperatures. The rare-earth elements, for example, have the largest known magnetostrictions near 0°K, ^{1,2} but are not magnetic at room temperature. The iron titanates have a similar behavior. ³ Because of this huge magnetostriction, TbFe₂ and similar compounds may have considerable technological importance.

The origin of the magnetostriction is the large strain-dependent anisotropy of the rare-earth ions situated at cubic sites in the RFe_2 (R = rare earth) lattice. It remains large at room ambients because of the large rare-earth-iron exchange interaction which aligns the rare-earth spins even at elevated temperatures. The magnitude of this interaction is unique to the iron compounds.⁴ In the cobalt and nickel Laves-phase terbium compounds, the Curie temperatures are depressed to -35 and $-227^{\circ}C$, respectively,^{5,6} whereas for the iron compound $T_{C} \cong 430 {\,}^{\circ}C$.^{7,8}

We have measured the magnetostriction of arccast polycrystalline YFe2, TbFe2, and DyFe2 from 78 °K to room temperature. Standard strain-gage techniques were used.¹ The room-temperature magnetostrictions of \mbox{TbFe}_2 and \mbox{DyFe}_2 are shown in Fig. 1. The magnetostriction λ_s of YFe₂ is only ~ 2×10^{-6} , indicating the negligible contribution of the iron ions to the magnetostriction. A comparison of these strains with those of typical polycrystalline metal and ferrites is shown in Table I. The magnetically induced strains in TbFe₂ are over 10 times the largest reported values and 100 times typical magnetostrictive strains. In the interpretation of Table I it is important to note that these are *polycrystalline* values. It is quite possible that higher values of magnetostriction will be found in single crystals of TbFe₂ and DyFe₂.

In some respects, the magnetostriction of $TbFe_2$ and $DyFe_2$ appears similar. However, on closer examination it is seen that the Dy compound is far from saturation, indicating a substantially larger magnetic anisotropy. This leads to an unusual temperature dependence of the magnetostriction. In Fig. 2 we show that at room temperature the magnetostriction $(\lambda_{\parallel} - \lambda_{\perp})$ of DyFe₂ is increasing with increasing temperature, in constrast to the usual negative $(\partial \lambda / \partial T)$. In fact, both the magnetostriction (600×10^{-6}) and its slope $(+3.5 \times 10^{-6})^{\circ}$ K) are huge. As the temperature decreases, a reversal in sign occurs in the magnetostriction. At 25 kOe, this temperature is 112 °K. On the other hand, at the same field, the magnetostriction of TbFe₂ is near saturation at all temperatures. A plot of $\Delta l/l$ vs 1/H for H $\rightarrow \infty$ at each temperature

FIG. 1. Room-temperature magnetostriction of TbFe_2 and DyFe_2 . λ_{II} and λ_{\perp} denote magnetostrictions parallel and perpendicular to the applied field directions.

5

TABLE I. Typical saturation magnetostrictions of polycrystalline metals and ferrites at room temperature.²

	$\lambda_{s} imes 10^{6}$		$\lambda_{s} imes 10^{6}$
Fe	- 9 ^b	TbFe ₂	>1200
Ni	- 35 ^b	Fe ₃ O ₄	40 ^c
Co	- 62 ^b	CoFe ₂ O ₄	- 110°
Tb, Dy	$\sim 0^{d}$	NiFe ₂ O ₄	- 26°
YFe ₂	2	$Y_3 Fe_5 O_{12}$	- 2°

^aAt saturation: $(\Delta l/l) = \lambda_{ll} - \lambda_{\perp} = \frac{3}{2}\lambda_s$.

^bSee R. M. Bozorth, *Ferromagnetism* (Van Nostrand, New York, 1951).

^oSee J. Smit and H. P. J. Wijn, *Ferrites* (Wiley, New York, 1959).

^dNonmagnetic at room temperature.

^eA. Clark, B. DeSavage, W. Coleman, E. Callen, and H. Callen, J. Appl. Phys. <u>34</u>, 1296 (1963).

is linear above 15 kOe. Saturation strains obtained in this way are indicated by the dotted line on Fig. 2.

Callen and Callen⁹ and Callen and Shtrikman¹⁰ have shown that the temperature dependence of the magnetostriction follows the well known $m^{l(l+1)/2}$ power law for magnetic anisotropy¹¹ at low temperatures, and the normalized hyperbolic Bessel function $\hat{I}_{l+1/2}$ ($\mathcal{L}^{-1}(m)$) in the molecular-field approximation at all temperatures. Here *m* is the reduced magnetic moment, $\mathcal{L}^{-1}(m)$ is the inverse Langevin function, and *l* is the order of the spin operator in the magnetoelastic Hamiltonian (for lowest order, l=2.) At low temperatures the hyperbolic Bessel function reduces to the power law. In Fig. 3, we plot the saturation values of the magnetostriction for TbFe₂ vs m_r^3 , where m_r is the reduced magnetization of the Tb sublattice calculated from the magnetization measurements of Burzo.¹² The solid line is the theoretical curve. Note the good agreement. The sole source of the magnetostriction is the rare-earth ions, and its extrapolated value at 0 °K is 4080×10^{-6} . This is of the same magnitude as the magnetostriction of the polycrystalline rareearth elements. The density of the rare-earth ions in Tb metal, however, is 60% larger than in TbFe₂. Thus, assuming equal magnetostrictions for elemental terbium and $TbFe_2$ at 0 °K, the contribution to the magnetoelastic energy of the Tb ions in TbFe₂ is appreciably larger than that in terbium itself. (The presently known largest magnetoelastic energies are found in hexagonal terbium and dysprosium.) Because the rare-earth metals are also soft and have very low elastic moduli (whereas TbFe, is hard), we estimate that the magnetoelastic energy of the Tb ions on the cubic sites of $TbFe_2$ is 2 to 5 times larger than that of Tb ions on the hexagonal sites of the element.

The evaluation of the 0 $^{\circ}$ K magnetostriction of TbFe₂ makes it possible to estimate the saturation magnetostriction in the other heavy rare-earth RFe_2 compounds. We utilize the theory of Tsuya

FIG. 2. Magnetostriction $\lambda_{II} - \lambda_{L}$ of TbFe₂ and DyFe₂. (At saturation $\Delta l/l = \frac{3}{2} \lambda_{s}$ for an isotropic polycrystal.)

FIG. 3. Dependence of the magnetostriction of TbFe_2 on the cube of the reduced magnetization of the Tb sublattice. See text.

3644

TABLE II. Theoretical saturation values of $\lambda_{11} - \lambda_{\perp}$ for $R \operatorname{Fe}_2$ compounds.

<i>T</i> (°K)	$(\lambda_{II} - \lambda_{I}) imes 10^{6}$						
	$TbFe_2$	$DyFe_2$	$HoFe_2$	$ErFe_2$	$TmFe_2$		
0	4080	3920	1490	- 1450	- 3450		
300	2260	1610	520	- 320	- 520		

et al.¹³ For simplicity, we assume that the angular momentum J of the rare-earth ion is a good quantum number and that the elastic moduli of the compounds are equal. Letting α denote the Stevens equivalent-operator cofficient,¹⁴ and $\langle r_f^2 \rangle$ the average square of the radius of the 4f electrons, the ratio of the magnetostriction coefficients for compounds i and j at T = 0°K is given by

$$\frac{\lambda_i(0)}{\lambda_j(0)} = \frac{\alpha_i J_i (J_i - \frac{1}{2})}{\alpha_j J_i (J_j - \frac{1}{2})} \frac{\langle \gamma_f^2 \rangle_i}{\langle \gamma_f^2 \rangle_j} \,.$$

The calculated coefficients for the compounds $DyFe_2$ through $TmFe_2$ are compared to those of $TbFe_2$ at 0 ° K and 300 ° K in Table II. The values of $\langle r_f^2 \rangle$ were taken from Freeman and Watson.¹⁵ The magnetostriction at 300 °K was determined from the temperature dependence of the magnetization,¹² assuming that $\lambda(T) = \lambda(0) \hat{I}_{5/2} (\mathcal{L}^{-1}(m_r))$ and that the iron-sublattice magnetization is temperature independent below

Work supported by the Naval Ordnance Laboratory's Independent Research Fund.

¹A. E. Clark, B. F. DeSavage, and R. M. Bozorth, Phys. Rev. <u>138</u>, A216 (1965).

- ²J. J. Rhyne and S. Legvold, Phys. Rev. <u>138</u>, A507 (1965).
- ³Y. Ishikawa and Y. Syono, Phys. Rev. Letters <u>26</u>,

1334 (1971); J. Phys. Soc. Japan <u>31</u>, 461 (1971).

⁴M. I. Slanicka, K. N. R. Taylor, and G. I. Primavesi, J. Phys. F 1, 679 (1971).

⁵J. Farrell and W. Wallace, Inorg. Chem. 5, 105 (1966).

⁶S. Abrahams, R. Bernstein, J. Sherwood, J. Wernick, and H. Williams, J. Phys. Chem. Solids <u>25</u>, 1069 (1964).

⁷L. Salmans, K. Strnat, and G. Hoffer, Tech. Rept.

No. AFML-TR-68-159, Air Force Materials Lab, Wright-Patterson Air Force Base, Ohio, 1968 (unpub-

300 °K. All coefficients exceed 10^{-4} , even at room temperature. The apparent discrepancy between the measured magnetostriction of 600×10^{-6} in DyFe₂ at 25 kOe and its calculated room temperature value of 1610×10^{-6} is explained by the fact that our measurements were taken below saturation. TbFe₂ has the largest positive magnetostriction coefficient at both absolute zero and room temperature. TmFe₂ has the largest negative coefficient. At 0 °K, the magnitudes of the magnetostriction of TmFe₂ and TbFe₂ are almost equal. However, the reduced magnetization m_{\star} of the heavy rare-earth compounds at room temperature decreases with increasing atomic number; thus the ratio of the 0 °K magnetostriction to the room-temperature value is much larger for the heavier rare-earth compounds.

The authors gratefully acknowledge helpful discussions with J. R. Cullen of our Laboratory.

Note added in proof. The huge magnetostrictions reported here were made on arc-cast polycrystalline samples. We find still larger values for these materials after annealing. For example, the highest room-temperature values for $\lambda_{\parallel} - \lambda_{\perp}$ of TbFe₂ are 2630×10⁻⁶ at 25 kOe and 2940×10⁻⁶ at saturation. The 0°K extrapolated value for annealed TbFe₂ is 5100×10⁻⁶, which is to be compared to the value of 4080×10⁻⁶ that appears in Table II for the unannealed sample.

lished).

- ⁸K. H. J. Buschow and R. P. van Stapele, J. Appl. Phys. <u>41</u>, 4066 (1970).
- ⁹E. Callen and H. Callen, Phys. Rev. <u>129</u>, 578 (1963). ¹⁰H. Callen and S. Shtrikman, Solid State Commun. <u>3</u>, 5 (1965).
- ¹¹C. Kittel and J. Van Vleck, Phys. Rev. <u>118</u>, 1231 (1960).

¹²E. Burzo, Z. Angew. Phys. (to be published).

¹³N. Tsuya, A. Clark, and R. Bozorth, in *Proceedings of the International Conference on Magnetism, Nottingham*, 1964 (The Institute of Physics and The Physical Society, London, 1965), p. 250.

¹⁴K. W. H. Stevens, Proc. Phys. Soc. (London) <u>65</u>, 209 (1952).

¹⁵A. Freeman and R. Watson, Phys. Rev. <u>127</u>, 2058 (1962).