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We utilize a Glauber identity to formulate the 9= 2 Ising-model problem. This formulation
provides a concise view of some connections between the molecular field and the constant-
coupling approaches and may provide a useful medium for generating and testing other approxi-
mations.

I. INTRODUCTION

The constant- coupling approximation, introduced
by Kasteleijn and van Kranendonk, ' provides a
method for calculating equilibrium properties of
spin systems. The method attempts to deal with
correlations which the usual molecular field approx-
imations neglect, and some results of the constant-
coupling approximation, e. g. , critical-temperature
values, represent an improvement over molecular
field results.

To gain broader understanding of the constant-
coupling approximation seems a worthwhile goal,
since the approximation is related to the important
general problem' of obtaining reliable reduced
statistical operators for many-particle systems.
It is noteworthy that the constant-coupling approxi-
mation is applied to the two-spin reduced statistical
operator which has inherited its structure from the
exact N-spin statistical operator, whereas the
molecular field method hinges on a variational tech-
nique in which a trial N-spin statistical operator
is written as a product of one-spin operators.

In addition to the original work of Kasteleijn and
van Kranendonk, general cluster expansions for
Heisenberg and Ising systems have been shown to
provide a common framework for arriving at both
the molecular field and constant-coupling approxi-
mations; however, the cluster expansions tend to
be rather complicated and do not seem the most
efficient route toward the particular goal stated
above.

With that in mind we discuss the formulation of
the S= 2 Ising-ferromagnet problem in terms of a
spin probability identity which Glauber presented.
The formulation provides a relatively concise view

of some connections between the molecular field and
the constant-coupling approaches and may provide
a useful medium for generating and testing other
approximations.

II. MARGINAL SPIN PROBABILITY

In this section we develop some techniques which
are model independent insofar as they apply to any
collection of spins of magnitude 2 irrespective of
the Hamiltonian or ensemble.

Consider a system of N spins, each of magnitude
and let s; denote the operator for the g projec-

tion of the ith spin:

s;=+1, i=1, 2, . . . , N.
Qf the 2" spin configurations, focus attention on
those with a. particular value of

m=(l/N) Z, s, (2. 2)

ps(s(, sg,' m) = 4(1+ (s(,' m)~s;

+ (s J m)ssy+ (s( s),' m)~s ( sy), (2, S)

where 1 ~i &j ~¹
For a homogeneous system

m=(s, ; m)„, i=1, 2, . . . , N

so that

p„(s, , s~; m) = 4 [1+ (s, + s ~) m+ s; s, (s, s~; m)s ] .

and iet (;m)„denote a conditional average over
the set M of spin states with the same ~w. Now we
utilize the Glauber identity to write the exact two-
spin conditional probability in the implicit form
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From the definition of (s, +s&, m)„, (s, s&, m)„,
and the normalization condition

5~ p„(s,s&, m) =1,

one easily verifies the representation

(2. 6)

PN(si s Sq s™)
=exp(-P[-A, , —(s;+s, )hB;& —s, s&JC;&]], (2. 7)

where the coefficients A. &&, B&&, and C;& satisfy ZS=Z ZN(m), (3. 3)

where (ij] denotes the set of nearest-neighbor pairs
on a lattice of coordination number q. The mag-
netic field parameter k and the coupling param-
eter J are taken non-negative, and periodic bound-
ary conditions are imposed.

The eigenstates and eigenvalues may be classified
according to definite values of m. With E)q(l„) de-
noting an eigenvalue associated with a particular
m one has the partition function

PkBg~ ————ln 1—1 2m

4 1+ (s(sjs m)N

where

Zs(m)=&~l «P(-PES(f )] (3. 4)

For our N-spin system let g„(m) denote the num-
ber of states with a given m;

or, equivalently,

tanh(2PhB, &)
= 2m/(1+ (s;s&, m)„)

and

(2 S)

gs (m)=N t (N
~ N

= limZ„(m) .
8 "0

(3. 5)

(3. 6)

whereas

(1 —(s(SJ ™)s) (2. 10) We thus have the identity

lnZ„(m)= lng„(m) —f dp'(3C; m)s, (3. 7)

8A() ———ln4+ i2 ln(1 —(s, s~, m)„)
4m'

+ gin 1 —
1 g . 2. 11

The quantities B&&, C&&, and A
&&

in general depend
on N, m, and the undefined parameters P and k.
We relate these quantities to the canonical ensem-
ble by interpreting 1/(ksp) as the temperature,
and regarding kB&; as an effective magnetic field
while JC&& is interpreted as an effective coupling
parameter for a pair of spins. Notice that the sign
of P JC,&

is the same as the sign of the conditional
covariance

(s, s, ; m)„—(s, m)„(s, ; m)„.
The combination

—(s, + s&) hB;& —s, s& JC,
&

is then interpreted as an effective pair Hamiltonian
in the conditional ensemble for a particular m. Ir-
respective of the interpretation, the above results
apply to any uniform system of N spins (each of magni-

tude &) with an arbitrary Hamiltonian a,nd an arbitrary
ensemble describing the system, and for 1 &i (j &N.

We now apply the results to a particular Hamil-
tonian and use the canonical ensemble.

where the conditional average

(X; m)„= 5~ E„(l ) e
'sss

k
= —E E qs, s; ~ —(s; ~ s,.)){fj) s]sg Q'

(3. 6)

p„(s;, s), ) (3 S)

2kmJ'(s;sq, m)„+
{&2]

N
qq(s, s, ; m) + q)sm) .

(3. 10)

(3. 11)

lnZ„(m) = lng„(m)+NPhm+ 2NP Jqm

+ ,NJq f dP'((s—,s» m)„—m') . (3. 12)
0

Now introduce

In reaching the latter result we have utilized the
assumption of a uniform system and the notation
of Sec. II. The uniformity assumption enables one
to write (s, sa, m)„where subscripts 1, 2 refer
to any pair of nearest-neighbor spins s&, s~.

E(luation (3. 7) may be written

III. ISING SYSTEM

Consider the Hamiltonian

R= —J5~ S(Sy —hFj S(
{&i]

kq, , —(„,)),
{&/] Q'

(3 1)

(3. 2)

1
Pfs(m, P, h) -=-—lnZ„(m),

1+m
N N
—lny = —NlnN —N--

2

x ln
2

-N lnN

(3. 13)



Pgs(m, P, ?l) =——ln
rs(m)

m

(3. 14)
ks7

(1 2) 1
1 9 ${m, p, h)

erg eJQ ~Pl

%'here

PP(m, P, 8)= —,'Jq f dP'((sls2; m}-m~). (4. 6)

+ —,
' Jq, up'((s, s„m}„-m'),

4 O

f„(m, P, ?l)=-hm —(-,J'q)m + — — ln
1 1+m 1+m)

The foregoing calculations are all exact and the
flee energy pel spin ls

fs( P, ?1) = —{1/&)inZs

= —(1/PX)ln [Z Zs(m) ],
Which ls obviously

(3. 1'?)

~ —(1/PX) lnZ„(m)= f„(m, P, ?l) (3. 19)

for any m in the set f- 1, —(N —1)/N, —(X —2)/N,
~ ~ ~ 1] .

One thus obtains a rigorous upper bound on the
exact free energy per spin, and the bound may
then be minimized by varying m over the above
set.

Assllnle ttlat $(m, P, ?1) ls twice differentiable
with respect to m and write the minimization con-
d ltlons:

sf(m, p, ?l)
~DE

s'f(m, p, ?l)
~PA

{4.3)

The first condition and second condition, respec-
tively, require that

sl?l m, P, ?l
m =tanh P ?l+ Jqm+ @I

IV. APPROXIMATIONS

As N- ~ it is clear that in[ps(m)/y„(m)]-0,
and it is assumed that limits also exist for I'„,
( ~ ~ ~; m)„, f„(m, P, ?l), and P„(m, P, ?l); de-
note them by P, (. ~ ~; m), f(m, P, ?l), and

P(m, P, ?l), respectively, with m regarded as a
continuous variable in the interval (-1, 1). Then,
as X- ; i. e. , in the thermodynamic limit, ere

get

limf„(p, ?1) =f(p, ?1) ~f(m, p, ?l) .—

It is apparent that to progress one ultimately has
to deal with the quantity (sl s2, m) which is not
generally known exactly. A natural approach is to
approximate p(sl, s2,. m). The advantage of the
results in Sec. II is that they contain the exact
structure of P„(s;, s&, m). Thus, one does not~

have to search for consistency conditions for the
coefflclents A „,8„., and C,„the condltlons ~ere
already utilized in the derivation of Eqs. (2. 8),
(2. 10), and (2. 11). The following examples should
help bring the formalism into focus;

A. Molecular Field Results

Select C12= 0; then Eq. (2. 10) requires that

(sl s3,' m}N m—
which, through Eq. (4. 6), requires that

ltd(m, p, ?l)= 0

(4. 7)

(4. 8)

The variational equations {4.4) and (4. 5) reduce to

m =tanh [P(h+ Jqm)],

ksT/Jq &(1 —m ),
%faith the approximate free encl gy pel spin

f(m, P, ?1) = —km- {Jq)m'

(4. 9)

(4. 10)

(4. 11)
These results are the familar ones associated

with the molecular fieM approximation which may
be cIel ived dllectly from R vRrlRtionRl method.
On the other hand, this formulation does not answer
the question "Does the Kasteleijn and van Kranen-
donk approach, i. e. , the selection of C&&, ultimate-
ly preserve the variational sense of Eq. (4. 1) for
physically relevant parameter values'P"

B. Constant-Coupling Approximation

Select C&z = 1. This "constant-coupling" choice
which KRsteleljn observed to be the leading term
in R high-temperature expansion enables one to
obtain a nontrivial approximate form for (s, sz, m)„
fromEq. (2. 10). With (s, s2, m) expressed interms
of P and m, the quantity P(m, P, ?l) appearing in

Eqs. (4. 4) and (4. 5) may be differentiated with
respect to m and integrated vrith respect to P. The
result is a system of generalized relations which
resemble Eqs. (4. 9) and (4. 10), and were noted by
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Kasteleijn to be equivalent to the quasichemical
approximation.

Rather than explicitly write the constant-coupling
equations, we will derive a somewhat general
expression for the critical temperature in the con-
text of this discussion. The equation will explicitly
yield the molecular field and constant-coupling re-
sults as special cases and will serve to further
illustrate the unifying nature of the present formu-
lation.

and

p

4m/r(m, x') —2m
dg (4. 1V)

The equation for the critical temperature is ob-
tained from Etl. (4. 4) by seeking a nontrivial so-
lution in the zero-field limit, and noting that
r(0, x)= 2x:

Let

e28JC12

C. Critical Temperature

(4. 12)

1= ~c'0+ ~ Jq+ q

12 41

Thus we have

P, Zq = —(2C»/q)-' 1"[1-(2C»/q)], (4. 19)

y = (st ss,' m)

The physical solution to Etl. (2. 10) is

y = [x + 1 —r(m, x)]/(x —1),
where

(4. 13)

(4. 14)

and as C,s/q-0, one recovers the molecular field
result

P,Jq=1, (4. 20)

whereas, as C12-1, one recovers the constant-
coupling result '

&y 4m
sm r(m, x)

(4. 16)

r(m, x)= [(x + 1) —(x —1) —4(x —1)m ] ~

(4. 15)
Assume, as was done in the molecular field and

constant-coupling approximations, that C» is in-

dependent of m, then we have

&.~q = —(2/q)
' »[1 —(2/q)]; (4, 21)

the latter giving a critical temperature of T,= 0
for the linear chain, i. e. , the exact result.
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