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dispersion relation discussed in Sec. IIA. A simi-
lar expression holds for (k,|9|k,) in the tight-
binding approximation but quite generally can be
expressed as

F. BROUERS AND A. V.

VEDYAYEV 5

0,0 =3 EL(R) (B6)

where Es(k) is the dispersion relation for s elec-
trons.
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Corrections to the Azbel’-Kaner theory of the magnetic-field-dependent surface impedance of
metals have been calculated. The results illustrate the effects of the finite transit time of the
electrons in their passage through the skin layer. The cyclotron-resonance line shapes are
modified from the Azbel’-Kanel results for both the high-(w,7) and low-(w,7) limits. The bear-
ing of these results on experimental determinations of carrier effective masses and relaxation
times are discussed. Finally, the background signals from the nonresonant electrons are cal-
culated for an arbitrary cutoff angle for specular reflection of the electrons at the surface.

I. INTRODUCTION

Azbel’ -Kaner cyclotron-resonance (AKCR) mea-
surements have played an important role in the
study of the Fermi surfaces of metals. - The im-
portance of the technique lies in the precise mea-
surements provided of the effective masses and
lifetimes of the carriers averaged over particular
I_{'-space orbits. Recent advances in experimental
techniques (the development of intense infrared
sources of radiation!'?) and metals theory (the work
on the electron-phonon interaction®) have focused
interest on precise measurements of the frequency

and temperature dependence of the electronic
masses and relaxation rates. As the theoretically
predicted mass shifts are small, careful consider-
ation of line-shape effects are essential to proper
interpretation of the experiments. ?

The general problem of the magnetic-field-de-
pendent surface resistance of a metal has not yet
yielded an exact solution. The Azbel’ -Kaner the-
ory? is valid under the conditions of the extreme
anomalous skin effect (ASE) provided also that the
time of flight of the resonant electrons in their pas-
sage through the skin layer is small compared with
the rf period. This last condition can break down
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FIG. 1. The Azbel’-Kaner geometry in which the mag-
netic field is parallel to the sample surface and the rf
E field is perpendicular to H.

at very high fields where the orbit is totally inside
the skin layer and very low fields where the orbit
curvature is very small. Fundamental contribu-
tions toward an understanding of the high-field
case when the rf E field is along the applied H field
has been made recently by Meierovich.® The im-
portance of the low-field case was first pointed out
by Koch and Kip® as a possible explanation of the
low-field background signals often observed in
AKCR experiments. They argued that a peak in
the absorption might be expected when the time of
flight of the electrons in their passage through the
rf skin layer is one-half the rf period. From the
geometry of the experiment (Fig. 1) the criterion
for the maximum absorption they found was
w?/wyVp=1, & is the skin depth and w, for cir-
cular orbits is wy=eH/m*c, the cyclotron frequen-
cy. Smith” noted that the Koch-Kip mechanism can
also be understood in terms of retardation effects
in the current integrals. Thus, the stationary phase
point is not at the top of the electron orbits as us-
ually assumed but at a later time when v,~ w0,
where v, is the electron velocity z component. Al-
though much of the low-field structure was subse-
quently identified as transitions between quantized
surface levels, ® a broad background absorption
remains that can be related to retardation effects
on the skimming electrons.

In this paper we discuss the effects of the finite
time of flight of the electron through the skin layer
on the surface impedance in the low-field limit,
where the orbit dimensions are large compared
with the rf skin depth 6. We obtain quantitative
results for both-the resonance signals and the non-
resonant background signals. The bearing of these
effects on the interpretation of measurements of
m* and 7 will be discussed. In Sec. II the tech-
nique for calculating the surface impendance is
outlined. In Sec. III the trajectory integrals are
derived and evaluated. The results for cyclotron
resonance and the background signals are then dis-
cussed in Secs. IV and V.

IN AZBEL’ -KANER. .. 361

II. PRELIMINARIES

The surface impedance is calculated by a varia-
tional technique previously used by Prange and
Nee.® We consider a high-frequency E field applied
along one of the principal axis of the surface im-
pedance tensor and write the following functional:

I= (_iZ;w L "z [E'(z)]a+j;wdzE@)J(z)}/[E(O)]:,

where z is measured into the metal and J ) is the
rf current induced by the field E (z) in the metal.

The integral is stationary with respect to E(2)
at the correct electric fields in the metal, where
it takes the value 7= Z™! where Z is the complex
surface impedance.

In an applied magnetic field the surface resistance
is often found to vary only slightly from the zero-
field value. Under these circumstances a pertur-
bation approach for calculating Z(H) may be use-
ful. Following Prange and Nee, the change in the
surface admittance for small changes in the con-
ductivity can be expressed as

Z'H)-Z10)~ J, d2E@R)AJ )

2)
or
~_7%0) [y zE@)AJ () .

In Eqs. (2) and (3) the H=0 rf fields are to be
used and AJ is the change in the current due to the
change in the conductivity. It should be noted that
this method correctly includes the effects of the
first-order changes in E (z) induced by the changes
in the conductivity kernel.

J(z) is calculated from the Chambers formula,
which is equivalent to the Boltzman equation in the
relaxation-time approximation

J(Z’tO):I%ff(/to/dt ;(t)?,f(z’t)e(t~to)/f )

¥ (to)
o) ©
where F(z,t)=-¢eE(z,t) is the force on the elec-
trons due to the rf fields and V() is the velocity of
the electrons from the element dS of the Fermi
surface. The electrons are assumed to have a re-
laxation time 7.

The analysis is greatly simplified by replacing
the true (ASE) fields with exponential fields with
an effective complex skin depth chosen to approxi-
mate the ASE fields

E@)=Eqe™°,

@)

@)

®)
where 6= 0; -0, is found from the ASE surface
impendance from
i4rw E(0) idmw

CZ El(o) - C?

z=- ®)
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III. TRAJECTORY INTEGRALS

In the current integrals the electric fields must
be evaluated as a function of position and time along
the electron trajectories. For simplicity we con-
sider a cylindrical section of Fermi surface of
length K,. The metal is taken to occupy the half-
space z >0. The applied H field is along the y axis
and the rf E field is along the x axis. The equa-
tion of motion of the electrons can be expanded
about the effective peoint (v,=0). For an electron
at z (¢,) with velocity v,=vycosb at {=¢, we have

2 ()22 (ty)+ vosind(t — t)+ 3wotpy (E— 1) . (M)

wy= (eH/c) (vy/K,), where Ky and v, are the radius
of curvature of the Fermi surface and Fermi ve-
locity at the effective point,

The terms higher order in ¢ - #; in the equation
of motion can be neglected for 1z (t)-2z(t,)!/R <1
where R =vy/w, is the real-space radius of the tra-
jectory at the top of the orbit, since the rf fields
are small for z >6 and we have assumed that 6/R
«1. Similarly, to the first order in 5/R the dot

J

POszoJofw dz exp(—:i)/ dx (1 - x®)l2 exp(ét’,:
4

Poy=EqJ, f dz exp( Z) f '”'"
0 -1

where

Jo=e K, Kgvo/4m 0 ,  T=[x- %= x2)2]/w,

)
x¥2=2wp2/v, ,

and
iw=iw+1/7 .

P(8,) is the probability of specular reflection of
the surface electrons which strike the surface with
angle 6,:

sinf = (sin®0 — 2z, wy/vy)! 2 . (13)

For the resonant electrons P,, is readily integrated
using the properties of the complex error function
to give '

e - -
PrszoJo‘;};- g~9%0/wo% [eimtwiwa _ 1] | (14)

2

xZ
x (1 - xz)“gexp(%J 5

|

product v (t) ~f(z, t) can be evaluated at {=1{; as
evyE (z, t)cosé.

The following contributions to the current are
considered: (i) Jg,: the bulk electrons z (fy)

- vy8in®0/2wy = 0 for ty— T/w, <t <ty (nonresonant
contribution); (ii) J,;: the bulk electrons for ¢ </{,

- m/w, (resonant contribution); (iii) Jo,: the elec-
trons which have collided with the surface z ({y)

- v98in?0/2wy<0; (iv) Jos: the specularly reflected
electrons.

The skipping electrons (v, <0) have not been con-
sidered. The quadratures become more compli-
cated and moreover the work of Prange and Nee®
on magnetic-field-induced surface-state resonances
have shown that a quantum treatment is required for
the contribution of these electrons. From Eqgs. (2)
and (3) it is seen that one must calculate the com-
plex power integrals defined as

P= [y dzE@)JE). ®)

Using the Chambers formula for the different
current contributions, the corresponding power in-
tegrals become

0 2
_ Y% X\
>/“ dtexp[ 3,5 </+wo> +zwt] , 9)
0 2
>f dtexp [_ ”;g’" <t+ j—o) +iat] , (10)
2\ (1 1/2 x T Yo Yo
EoJof dz exp(~T>‘/’ dx P(6,)(1 - x?) exp(2 5 )f dtexp[-————
0 Xm 0
i21w (T -22\ (T 2\1/2 vex?\ [ Vg Yo
P, =EyJ, |expl -1 dz exp\-—— dx (1 -x°)"'% exp(- dtexp| -
0 0 6 x 2(-005 S

(l‘ X + 2T> 2+i5t:| , (11)
Wo

x V¥ ]
<t+—> +zth,
Wo

For the other integi‘als above it is convenient to
evaluate the H-field derivatives, which is the quan-
tity usually of most interest in the experiments.
We define Py= Py, + Py, which is the appropriate
power integral for the case of diffuse reflection
of the electrons at the surface.

For P(6,) in Eq. (11) we consider the model in
which the electrons are specularly scattered for
0, less than a cutoff angle 6, and diffusely scattered
for 6 >6,.

After some tedious manipulation of these inte-
grals and making use of the condition §/R <1, one
finds the following results:

aPy _ Jy 6° 2

W 2 [1- V7 be®® erfe(®)? (15)
dPOs J0775 (a+b)2 o

a0 o 0 {_a@+d)le erfc@+d)]
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FIG. 2. The Chambers line shape in the presence of
retardation effects. The retardation parameter is de-
fined in the text. H, is the resonance field for the nth
subharmonic and AH=H —H,,.
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where b =iw(5/20gwo) %, a= y/26w,)/2sinby, and
erfc(t) is the complex complimentary error function
defined by erfc(®) = (2/Vm) fy° e *2dt .

1IV. CYCLOTRON RESONANCE

We first consider the contribution to the surface
impedance of the electrons which return period-
ically to the skin layer. In the weak signal limit
Eq. (14) gives

2 L2 4
AZ=—Z%(0)P,,= (47rw e“K,d

c arn’
Xe-i:zb/wnvo (eizw(&?/wc) _ 1)-1 . L))

Under Chambers line-shape conditions (i. e.,
weak signal and w, 7 > 50), the resonance factor is
usefully expressed as a sum of Lorentzian lines

[ei21r(5/w)_ 1]-1
=3{-1+ (w,7/1) 20 [1+i(w=-nw)7]t}. (@18)

Using Eq. (18) the Chambers result® is obtained
with a complex prefactor due to the retardation ef-
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fects. The retardation factor has the effect of re-
ducing the amplitude of the resonance and mixing
the real and imaginary parts of the Chambers re-
sult. Thus the resonance condition can differ from
the Chambers result by an amount of order AH/H,
~1/w7 and the relation for w7 in terms of the line-
width can also differ somewhat when retardation
effects are considered. The cyclotron resonance
line shape is shown in Fig. 2 for various values

of

mEvg
K,

wd
Vo

Retardation effects on low- (w, 7) data have a
more insidious effect on the line shapes. The
resonance factor in Eq. (17) can be expanded in
powers of e 27@/%d  giving

[ez:ri (@/we) _ 1]-1: f‘/ grizm(@/ug) 19)
n=1
For w,7<10 it is sufficient to keep the first term
in the series so that AZ becomes
2 2 4
AZZ (i’"_;_) ZWIZ(%S =326/ Mo ,-i2rE/wg
(20)

In this case the retardation factor inters the
line shape in just such a way as to cause peak posi-
tion shifts and amplitude reductions that could be
misinterpreted to give erroneous effective masses
and relaxation rates. We can determine the ap-
parent mass m} and relaxation rate 7‘;1 that would
be obtained by analyzing these line shapes in the
conventional way'’:

. *_th[ (_ 1 26y
Mg=m 'é-ﬁ-or 52 1 _((JJT)Z +CUT , (21)

4 _af, wo, K\ w?, kK 1 >
e =T (1 - ﬂm*vﬁ\/ * 2ﬂm*v§0< Ty

22)
For circular orbits (ZKy=m*v,) the apparent
masses and relaxation rates become

m;k:m*{1_—2-§’5—0[52<1_ ﬁ) 2 ]} (23)

R wéz) w?5, ( 1 )
T, =T (1-—————nvo +271v0 1————(w7)2 . (24)

The result is an apparent frequency dependence
of the mass and relaxation rate.

An analysis of AKCR data on bismuth at micro-
wave frequencies appears to confirm these re-
sults.? 7! was determined from AKCR measure-
ments at 8, 28, and 36 GHz on the same sample
of bismuth with HIl binary axis. Since 6« w3 for
the anomalous skin effect conditions, the retarda-
tion effect should produce a w*/3 frequency depen-
dence for 7;!. The microwave results plotted
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FIG. 3. The calculated low-field
structure for copper in the wr>1
limit. The parameters chosen were
F=37.2 GHz, K,=0.373x10% cm™!,
ve=1.11x10%cm/sec, and 5=1.08

x10°cm. 0, is the cutoff angle for
specular reflection of the electrons

at the surface. The arrow marks
the field corresponding to the condi-
tion w?6/wyve=1.
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against w*’® gave a straight line with an increase
in 7' of a factor of 8 between 8 and 36 GHz. At
36 GHz we estimate from the skin depth deduced
from ASE surface impedance data wd,/m V= 0. 04
and w%,/27V,~8%10°. The extrapolated ;' at
zero frequency was ~10° sec™. Thus at 36 GHz
the retardation effect dominates the amplitude de-
cay of cyclotron-resonance subharmonics. No
frequency dependence of m% was observed in these
data; however, the expected shift of ~ 1% was not
significantly greater than the experimental accu-
racy.

These results have particular significance for
the measurements of frequency- and temperature-
dependent masses and relaxation rates recently
reported in the literature. It is clear that careful
attention must be taken of line-shape effects in
evaluating such results.

V. BACKGROUND SIGNALS

Low-{field background signals are often ob-
served along with AKCR signals. Studies by Koch!!
and Khaiken'? have shown that some of this struc-
ture is due to the skipping electrons, which can
be described in terms of magnetic-field-induced
surface quantum levels. However, an additional
broad background signal still remains unaccounted
for. That the retardation effects could account for
low-field background signals was first suggested
by Koch and Kip. ® In the small-signal approxima-
tion we can calculate the nonresonant contribution
of the skimming electrons. The result for diffuse
scattering is

[1- Viber®erfe(d) .

25)
The specular scattering contribution has been de-
termined for an arbitrary cutoff angle 6, for the

daz, (4nw>2 e®K, 6t

dH T\ P W3 H

specular reflection. For specular reflection the
additional contribution is

dAaZ, [4rw\? e*K, md*
aH ‘( 2) g t-e@xd)

c

a*b
x[e(“’b)zerfC(aer)]zﬂ“bﬁ dt [etzerfc(t)]z}- (26)

It is of interest to note that the H =0 limit of
dAZ/dH predicted by Eqs. (25) and (26) is zero
for diffuse reflection and nonzero for 6, #0. Since
the total surface impedance is an even function of
H, it follows that the contribution of the skipping
electrons must be minus dAZ (0)/dH at H=0.
These results are shown in Figs. 3 and 4, where
dR/dH is plotted vs H for the high-frequency
(wT>1) case and the low-frequency (w7 <1) case
for different choices of 8,. For specular scatter-
ing a pronounced maximum is found in dR/dH whose
field position is approximately given by w?5/ Wo ¥y
=1for wr>1and 6 R/I%=1 for wr <1,
Experimental data on the high-frequency back-
ground signals in carefully prepared samples of Cu
have recently been measured by Doezema. !* These
same samples gave rise to strong magnetic-field-
induced surface-state resonances, indicating a high
degree of specularity. Parameters chosen to
correspond to the known Fermi surface of Cu and
the H= 0 surface resistance as measured by Pippard
give good agreement for the over-all line shape and
the peak position. The experimentally observed
peak in dR/dH is 100 G, compared with our cal-
culated peak at 118 G. Experimentally, dR/dH is
found to go negative at high fields, in disagreement
with the present theory. This effect is thought to
be related to the nonresonant contribution to the
surface resistance from the skipping electrons.
Support for this view is given by the theoretical
work of Kaner and Makarov'* and recent experi-
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SPECULAR

FIG. 4. The calculated surface
resistance derivative for copper in
the low-w7 limit, The parameters

DIFFUSE chosen were f=5 MHz, K;=0.373

x10%cm=1, v,=1.11x10% cm/sec,
1=vy7=100 p, and 6=2 p. The ar-
row marks the field correspond-

| 1 1

ing to the condition R6/1%=1.

0 10 20 30
H ()

ments by Sibbald, Mears, and Koch,

It is interesting to speculate that the retardation
effect peak in dR/dH might provide a direct mea-
sure of 6. Doezema’s results would indicate that
5 in Cu at 100 G is 20% smaller than the zero-field
value. From Egs. (25) and (26) we estimate the
total change in the surface impedance due to the
skimming electrons to be the same order of mag-
nitude. Also a decrease in 6 is suggested from
experiments'® and theory'* in the presence of the
surface states of the skipping electrons. How-
ever, further experimental and theoretical work
will be required to confirm this conjecture.

At low frequencies (wT<1), the experimental
data' on highly polished Cu samples do not agree
with the results presented here. In this case the
skipping electrons can contribute much more sig-
nificantly to the surface currents. Since wT<1,
the rf fields can be regarded as time independent
and each electron contributes to the current in
proportion to the time it spends in the skin layer.
The skimming electrons are curved out of the skin
layer and for large enough fields spend less than
their mean free time in the rf field. However,
the skipping electrons always spend their entire
mean free time in the skin layer.

VI. CONCLUSIONS

The above results are indicative of the retarda-
tion effects on the magnetic-field-dependent sur-
face impedance of metals. Although some accu-
racy in the line shapes was undoubtably sacrificed
by approximating the ASE fields as exponential,

40

we believe that the main features are preserved.
The major advantage of the present treatment is
that it gives analytic results with Fermi-surface
parameters, electronic lifetimes, and surface
scattering parameters as adjustable parameters.

Our treatment of the background signals is in-
complete in that we have not considered the skipping
electrons. This is clearly a serious omission but
one we have been unable to rectify. Our results
should therefore be taken as indicative of one class
of background signals that one might observe.

From the retardation parameter 7= |w?/wyv,l,
one observes that retardation effects are important
at high frequencies and low fields. With the pres-
ent activity toward extending the cyclotron reso-
nance studies into the infrared spectral region, it
is clear that work on the line-shape theories will
be essential. In addition to the retardation effects,
one must also consider the consequences of the
more nearly local conditions (6/R,</ <1)and
quantum aspects of the cyclotron resonance. ®

Note added in proof. Retardation effects on
AKCR line shapes have recently been observed in
Ga by Kamgar, Henningsen, and Koch (unpublished).
Both the subharmonics attenuation and the pro-
gressive modification of the Chambers line shape
are clearly demonstrated.
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The Fermi level or electrochemical potential i is considered as a function of concentration

in disordered alloys.

In the case that the perturbation introduced by substituting one type of

atom by another is localized around the site of substitution, 7 is a constant independent of con-

centration.

Localization of the perturbation requires that there be no volume change in alloying

and that the perturbation be shielded so that it decays in an exponential manner away from the

site of substitution.

When boundary conditions between the interior of the alloy and exterior to it

are considered, nonlocalized perturbations are introduced which cause a variation of ' with con-

centration.

However, such nonlocalized perturbations do not change the microscopic properties

of the interior of the alloy but cause simply a rigid shift in energy of the electronic structure.

I. INTRODUCTION

Because of the mathematical complication in
treating disordered systems, it is always necessary
to make some approximations in the calculations of
their properties. In evaluating the validity of any
approximation it is helpful to have as guidelines
some exact results to which the calculation can be
compared. Also, exact results themselves are
helpful guides to suggest appropriate approximation
or even to help directly in the calculation. Our
fundamental understanding of disordered systems,
even in a qualitative way, is still undeveloped, mak-
ing it all the more important to have some exact re-
sults with which any approximate calculation can be
compared.

In this paper it is proved that in a disordered
metallic alloy, where the perturbation introduced
by substituting one type of atom by another is local-
ized about the site of substitution, the Fermi level
or electrochemical potential & does not change with
composition. The constancy of & was proved by
Friedel for the case of very dilute alloys,® but he
estimated that for any finite concentration, the
Fermi level will vary in an exponential fashion.2
The discrepancy between the result proved here and

the previous result of Friedel will be shown to be
due to the fact that Friedel inadvertently varied the
potential origin as a function of concentration. In

a real alloy the presence of a boundary will intro-
duce long-range perturbations which will shift [,
but such an effect causes no change in the micro-
scopic properties of the alloy in its interior, except
for a rigid shift in energy.

Section II introduces some properties of the
Green’s functions which are used in Sec. III to prove
that u is constant for localized perturbations. Sec-
tions IV discusses the effects introduced by consid-
ering boundary conditions. Section V consists of a
discussion of the results, while Sec. VI gives a
summary.

II. GREEN’S FUNCTIONS

To prove the desired result, we will calculate the
change in the Fermi energy Al caused by a small
change in the concentration Ac and show that AT/Ac
-0 as Ac—-0. We prove that such a result is true
for all values of the concentration, thus proving
that U is independent of c.

In the course of proving this result we will find
it convenient to introduce the Green’s function of
the alloy Gz defined as



