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The coherent-potential approximation (CPA) of the conductivity theory of disordered alloys
is generalized in order to calculate and to discuss the static conductivity of a two-s-d-band-
alloy model relevant to noble- and transition-metal alloys. The vertex corrections are calcu-
lated and can be expressed in the CPA as a sum of single-site contributions. As in the one-
band model and for the same physical reasons, these vertex corrections vanish if the potentials
are short ranged. Three contributions are obtained for the electrical conductivity. They
correspond to the propagation of a pair of s electrons, a pair of d electrons, and two hybridized
s-d electrons. The scattering of s electrons is viewed as indirectly caused by the randomness
of d levels acting through the hybridization interaction s-d. Two limiting cases are investi-
gated and compared with previous treatments. In the weak-scattering limit, the present theory
is shown to be equivalent to the Boltzmann approach. In the dilute-concentration limit, it is
possible to reduce this formalism to previous calculations of the impurity-induced resistivity
by defining in that limit an effective s-d scattering potential. A numerical application is pre-
sented. It is not directly related to any particular alloy but the physical parameters are rea-
sonably chosen such that the computed resistivity reproduces qualitatively two types of devia-
tions from the Nordheim behavior observed in some transition-metal-based alloys: (a) a
change of slope of the resistivity-versus-concentration curve correlated with a minimum of
the specific heat, and (b) an asymmetry of the resistivity curve with a peak in a range of
concentration where the influence of s-d hybridization is dominant.

I. INTRODUCTION

The coherent-potential approximation (CPA)
which has been applied by a number of authors' 3

to provide a description of the equilibrium proper-
ties of elementary excitations in disordered crys-
tals mas recently extended in order to be applied
to the transport properties. A theory of the linear
response of electrons in substitutionally disordered
binary alloys consistent with the single-particle
CPA was presented in Ref. 4. In that paper the
static electrical conductivity of a single-band model
with short-ranged random scatterers was shownto
be exactly soluble in the CPA. The solution gives
the exact formulas in the limit of meak scattering
and of dilute alloys and satisfies the energy and
particle-number conser vation conditions for all
impurity concentration and any range of scattering
strength. In tmo subsequent papers, '6 the frequen-
cy-dependent conductivity of the same model was
calculated for all frequencies and the CPA, was ex-
tended to more general transport coefficients where
a diagrammatic way of calculating transport prop-

erties is needed.
The purpose of this paper is to extend the CPA

theory to the calculation and the discussion of the
static conductivity of a tmo-band model introduced
by Levin and Ehrenreich. ~' This model, which con-
tains some of the features of noble- and transition-
metal alloys, emphasizes the effect of s-d hybrid-
ization and neglects the structure of the d band. The

pure metals A and B are assumed to contain one s
band of finite width and two resonant d energy
levels P or q„. These two d levels hybridize with
the s band. In the alloy A„B, „the d-level energy
&~ at a given site n may be e~ or c~ corresponding
to whether the site n is occupied by an A or B
atom. The unhybridized s bands and the hybridiza-
tion constants are treated in the virtual-crystal
approximation. By contrast, the d bands whose po-
tentials are not expected to be weak are treated
self-consistently in the CPA. In Ref. 8 the con-
figuration-averaged density of states of this model
was calculated for alloys of arbitrary concentra-
tion and reasonably strong scattering strengths and
the limiting cases such as dilute alloy and split-
band limit were investigated. In the theoretical dis-
cussion and the numerical calculation, Levin and
Ehrenreich have neglected the width of the d levels
due to d-d hopping. As a result of this approxima-
tion the alloy density of states exhibits hybridization
gaps at the d levels. This feature of the theory had
no importance as far as a discussion of the concen-
tration dependence of the optical absorption edge
was concerned. For our purpose, however, it was
necessary to avoid these gaps and the model has
been generalized to account for the width of the d
level.

In contrast to previous theories ' which mere
concerned with the effect of s-d scattering on the
resistivity of transition-metal alloys, the theory
of residual resistivity that we present in this paper
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is not restricted to dilute alloys and can be used
for the complete range of concentrations. It pro-
vides, therefore, a useful tool for investigating pos-
sible deviations from Nordheim's" x(1 —x) law
behavior of the resistivity of transition- and noble-
metal alloys as well as the influence of s-d hy-
bridization.

Mott' has emphasized that in transition metals
and transition-metal alloys the resistance is mainly
due to scattering processes in which an electron
makes a transition from the s to the d band, the
probability of such a transition being proportional
to the density of states in the d band. With this
picture, Mott has explained qualitatively the striking
deviation from Nordheim's behavior of the residual
resistivity in transition-noble-metal alloys which
exhibit a Matterhorn-type behavior for rather large
concentration (50-70%). Until now no detailed cal-
culations had been performed to substantiate this
explanation. On the other hand, deviations from
Nordheim's rule have been observed in the small
concentration region. Nellis et a/. ' recently mea-
sured an abrupt change in the slope of resistivity
at about 7. 5% of U in Pd, which is correlated with
a minimum in the susceptibility and specific heat.
It will be seen that with the formalism presented
in this paper one can, at least qualitatively, ac-
count for these two types of behavior.

The paper contains three parts. The first part
(Sec. II) generalizes Velicky's formalism to the
two-s-d-band model. The second part (Sec. III)
discusses two interesting limiting cases, the weak-
scattering limit and the dilute-concentration limit.
The third part (Sec. IV) is an application of the the-
ory to a model which shows deviations from Nord-
heim's rule observed in some alloys and is in agree-
ment with Mott's prediction.

In Sec. II A, the two-s-d-band model is charac-
terized. The most interesting feature of this two-
band model is that the energy spectrum and the
transport properties are determined by the scatter-
ing of s-d hybridized electrons by the random d
levels. The self-energy corresponding to this
scattering is then calculated self-consistently in
the spirit of the CPA. This paper is restricted to
nonmagnetic alloys, and therefore the model Hamil-
tonian is spin independent. The generalization to
ferromagnetic alloys will be considered in a future
paper. In Sec. II B, following Velicky, we express
the Kubo-Greenwood formula of conductivity in a
form suitable for CPA calculations. In Secs. II C
and II D we derive in the CPA expressions for (G)
and (GG) the average one- and two-particle Green's
functions. We establish a condition for the disap-
pearance of the hybridization gap and then calculate
the s and d density of states. The most important
result of Sec. II C is the proof that, as in the one-
band model and for the same physical reasons, the
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"random" vertex corrections in (GG) vanish. Phys-
ically this is equivalent to the vanishing of backscat-
tering within a Boltzmann-equation context which re-
sults from the assumption that the scattering is
short range and therefore isotropic. In a diagram-
matic sense there are "hybridization" vertex cor-
rections in the conductivity. They are included
automatically in our forma1ism by defining "renor-
malized" ss and sd Green's functionswhich enter
into the definition of the conductivity. In Sec. IIE
we use the results of Secs. IIC and IID to derive
the expressions for the three contributions to the
conductivity, o„, o~, and o~„. The mixed term
o,„comes essentially from the hybridized s-d
character of the eigenstates of the model Hamil-
tonian. When the width of the d level is zero, the
contributions o.,„and 0«vanish.

Sections IIIA and III B deal with a discussion of
two limiting cases. In Sec. IIIA, we discuss the
weak-scattering limit and the formal equivalence
of our formalism with the Boltzmann-equation ap-
proach is proved. The vanishing of the vertex cor-
rections of the backscattering in the collision term
of the transport equation are physically related. In
Sec. III B, the dilute-concentration limit is investi-
gated. Our point of view is essentially different
from the localized-impurity approach. Host and
impurity atoms are treated on the same footing and
the s-d mixing of both atomic constituents is taken
into account. However, it is possible in the dilute-
coneentration limit to reduce our formalism to pre-
vious calculations of the impurity-induced resis-
tivity by defining in that limit an effective s-d scat-
tering interaction.

The numerical application we present in Sec. IV
is not related to a particular alloy but the physical
parameters reasonably chosen are such that the
computed resistivity can reproduce qualitatively
two types of deviations from Nordheim's rule ob-
served in some transition-metal alloys. The cal-
culation and the comparison of the three contribu-
tions to the conductivity for different values of the
Fermi energy illustrate the strong influence of
s-d hybridization on the electrical conductivity of
transition-metal-based alloys.

II. CALCULATION OF STATIC CONDUCTIVITY

A. Model

We want to calculate the configurationally aver-
aged electrical conductivity of a completely disor-
dered binary alloy A„B, „whose Hamiltonian has
the form
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x (~ k, ) (n, ~

e""» + c.c. ), (1)

where BZ means Brillouin zone and

t' =N'E ~ (k)e'"'"--"'. (2) xTr (p 5(ii —H)p 6(ii —H)) (5)

The lattice is assumed to be monatomic with N sites
in a large volume Q. Each site n is occupied at
random by an atom of type A. or B, respectively,
with probability x and 1 —x. There are c electrons
per site. The crystal is supposed to have one s
band and we assume the d band to be made of five
independent and equal subbands. The two first
terms represent the kinetic energy of the system.
The function E,(k) is the dispersion relation of s
electrons. Its interaction with the Brillouin-zone
boundary determines the width 2', of the unhy-
bridized s band. The matrix elements t"„are the
hopping integrals in the Wannier representation of
d electrons. They give rise in the Bloch represen-
tation (2) to the dispersion relation of d electrons
e~(k). The width of the unhybridized d band 2w, will
be calculated as in a nearest-neighbor tight-binding
band and will have the general form

e„(k) = w„s(k)

Here e and m are the electron charge and mass, re-
spectively, and we use units in which A = 1. Greek
letters refer to the Cartesian coordinates. The
operators p and p~ are components of the linear
momentum. The two spin orientations are taken
into account by an extra factor of 2. The average
over all configurations of the system is denoted by
the brackets (~ ~ ~ ). The function f(Z) is the Fermi-
Dirac distribution function

where the chemical potential Iu and P = (kT) ' are re-
lated to the number of electrons per site c by the
normalization condition

Trf(H) = cN .
In the model described by Hamiltonian (1) the mo-
mentum operator is configurational independent.
Using the identity

with ~(q —H) =(2vi)-'IG(q —iO) —G(q+iO)], (8)

—1& s(k) &1.

Alloying is supposed to leave these two terms un-
changed except for the bottom of the s band I'„
which is supposed to be calculated in the virtual
approximation

I i —xFi +(1 —x)I, .
The third term is the only random term of the
Hamiltonian which will be calculated self-consis-
tently. The resonance energy of the d level &„" can
take one of two values depending on whether an A
or a B atom is at site n. The last term describes
the hybridization between s and d electrons. The
coupling constant y(e„') is assumed to be k indepen-
dent. Moreover, we will suppose that it is eval-
uated at the average d resonance energy

6»=xc» +(1 x)E»

The hybridization is thus reduced to the coupling
of a d electron localized on site n with the s Wan-
nier function of the same site n due to the average
of sites o n (see Appendix B).

The model represented by Hamiltonian (1) can be
regarded as appropriate to the investigation of
binary noble-metal alloys and paramagnetic transi-
tion-metal alloys.

B. CPA Kubo Formula

We start from the well-known Kubo-Greenwood
formula~4

we can, following Velicky, put Eq. (5) in a form
more convenient for calculation in the CPA:

with

I''(i), q) = (4~ ) 'Trf, pC(i)', f„q )+H(q, f „q')
—SC(il', P„ il') —Ii(ii-, P„ il-)]

g'=g~i0 .
The quantity to be averaged is a product of three
operators (wherever possible, the argument z„
z~, and p will be omitted):

K(z„P, s, ) = (G(z, )PG(z, ) ) .
To calculate K we will need the averaged Green's
function

(12)

C. CPA for G, s, and d Density of States

The averaged Green's function G(z) is supposed
to be diagonal in the Bloch representation and can
be determined in the CPA as usual by defining a
k-independent self-energy operator. In the present
case the self-energy has to be defined in the space
of d states P,Z„(z) I k~) (k„I and G» can be written
as a 2 x 2 matrix in the basis ( I k, ), I k, )]'
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(z -Z, (k) —y
Ga =/ —y z —eq(k) —Zq )

(13)

The three Green's functions G„(k, z), G«(k, z), and

G„(k, z) = G~, (k, z) are determined from (13):

G„(k, z)=/(z-Z, (k)-y'[z-Z„-~, (k)] '] ', (i4a)

G„(k, z) = fz —Z, —a, (k) —y'[z —Z, (k) ] ']- ',
(14b)

G„(k, z) = yI [z —Z, (k)][ z —Z, —~„(k)]—y'] ' .
(14c)

Following the standard procedure, the unaveraged
propagator for the electrons in the alloy is ex-
pressed in term of G by defining a scattering oper-
ator T(Z):

—y' [z —Z, (k)]-'j-', (24)

where 0, is the unit-cell volume.
To evaluate the function F«(z, Z„) we will assume

that in the pure metal both s and d unhybridized
bands have the same shape and are related by a
scaling factor n. We choose the energy origin such

A "B A B
that e& = ~5 and e„=—~5, where 6 =c„—e& is
the scattering strength parameter. In the pure
metal (6 = 0), the center of the unhybridized d band

is located at the energy origin, while the center of
the unhybridized s band is located at a&. We there-
fore have

Z, (k) = ~,(k)+~,

and

G= G+GTG . (i6) &, (k) = o.~,(k) (26)

The self -consistent condition

(T)=o (16)

with a & 1. With these assumptions we can rewrite
(24) in the form

(0000
(o i" 0 E ln, )q„"(n,() ' (av)

is obtained by averaging (15). The multiple-scat-
tering theory is used to express matrix T in the
form of a sum of single-site contributions product
of the atomic scattering matrix t and an effective
wave factor. In the present case, the scattering
matrix T is defined in the basis ( In, ), In, )) by

E„(z,z, )=n, (mw) 'f d').
BZ

6 (Z —~,(k))
z-Z„(z) —uZ-y'(z-Z-~, )

g dZ . 26)

This expression can be simplified by defining the
density of states (per site) in the unhybridized s
band

with
p„(E)= n, (2v) ' f„d'k6(Z ~.(k)), (2'/)

(16)

In the average of Q„, the CPA neglects statistical
correlation bebveen t„and the effective wave, and
the self-consistent condition (16) is reduced to

(f„"&=0,

with

and its transform

+0,(z)= f p„(&) (z Z) 'dZ. - (26)

Equation (26) can be expressed in terms of Eo,(z)
as

S,„(z)=[a(Z, —Z )] '[(z —~, Z.)S„(Z.)—
—(z —S, —E )P„(E )], (29)

and

t'„= (e —Z, ) [i —(~", —Z„)Z„(z, Z, )]-' (2o) with

1 -( Z z p 1/z

8 =- g-g + ~ I g-z — +4--
2 1 ~ )( 1 0.'

Z. (z) —e, —(»' —Z, ) Z„(z, Z, )(&, —Z,),
where

(22)

E«(z, Z~) =N 'Tr~G(z)

=x 'z„(k,
i Gik, ) = (n, =oi Gin, =o& .

(2i)
The CPA condition (19) yields the self-consistent
relation for the self-energy

Quite similarly, the function

Z„(z) Z, )=X-' 5 (k, ~G(z)~k, & (so)

can be shown to be expressed in terms of Eo,(z) as

Z„(z)=(Z -Z.)([(z-Z)/n-Z, ]Z,.(Z.)

—[(z —Z)/o. —Z ]Z„(Z )} . (3O')

f)( = x»(( + (1 —z) t~g

Equation (21) can be written explicitly as

S'«(z, Z, )=n, (2v) 'f d'k(z-Z, —~„(k)

(23)
When n-0, i.e. , when the d levels are supposed
not to overlap, Eq. (29) reduces to Eq. (2. 24) of

Ref. 8:

Z„(z) (n=O)=(z- Z)-'+P(z-Z) '
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x F„[z—y'(z —Z„)-'] . (sl) ator I'"d is now a sum of single-site contributions:

and

p, (Z, Z„) = —27' ImE„(Z +io, Z')

p„(Z, Z„)= —10@ 'ImF«(Z+io, Z~) .

(32)

(33)

It can be verified from (29) and (30') that the two
functions F«(z, Z~) and F„(z, Z~) are both analytic
everywhere in the complex z plane except for
branch cuts on the real axis, and because Fo, (z)
—z ' as z-+ ~, the asymptotic behavior of F„(z)
and F«(z) is z ' for z-+

The density of states of s and d electrons is de-
rived from the discontinuity of E„(z, Z„) and F«(z,
Z„) across the real axis. The average density of
s and d states per atom are written, using Eq. (13),

with

I « —(Z'«K I'«) (T "G I'«G Z'«)

Equations (41) and (42) together with

(41)

(42)

&iiulKI n~ &= (na GpGIiiu&+ &iisl G~+r" Gln, &

(43)
represent the CPA approximation for the quanti-
ty K.

The solution for (n~ IKI nd ) can be found as in the
one-band model by expressing the operator T„""and
1 „"" in the %'annier basis of d electrons:

n„&t„' (n I, r„"= In„ & r„'(n„I .
From the CPA definition of Z~(z), Eq. (22), and
the asymptotic behavior of F«(z) one can verify
that

Equation (42) becomes

I'„"= 2 (n~ I Kl n~),
with

(44)

Z„(z) —e„-xy6 z ' as z- ~, (s4)

and because of the analyzity of Zd in both half-
planes, the following dispersion relation for Z„(z)
can be derived:

Z„(z) = e +v ' J dZ(Z —z) 'ImZ„(Z+ io), (35)

from which one can obtain a family of sum rules,
the two first of which are

x[1+F«(z,) (t„'(z,)t'„(z,))F (z,)] '. (45)

Substituting (44) into (45) yields the relation

+2 ZF„(z )F „(zz) (m„lKlm, ) . (45)

ii
' 1 ImZ„(Z+io)dZ= —xy5

Zlmz (Z+ iO)dZ = xyZ5

D. CPA for E

(35)

(37)
This equation is solved by Fourier transformation
and the solution analogous to Eq. (101) of Ref. 4 is
given by

We will generalize the CPA determination of E
discussed in Ref. 4 to the two-band model described
by Hamiltonian (1). If we use expansion (15), the
expression defining K can be written in the form

(~, IKI ~„&= l)t-'&~ e'~»~, (I - s'~„) ',
with

(4V)

(4S)

K= GpG+ GI'G,

where

r= (rGpGT) .

(ss)

(s9)

and

5 e-iiiii» F ((E(

old

(49)

In the first term of the right-hand side of (38), the
two Green's functions are averaged independently.
The second term is the so-called vertex correc-
tion due to the correlation in the motion of two par-
ticles appearing in K. In the ( In, ), In~ &) basis,
the operator I' is written as

0 -dGPG-d =
0

-d (4o)

The CPA expression for r" is obtained by replac-
ing the scattering matrix T« in (40) by (I 9) and
(18) and by neglecting in averaging the statistical
correlations of the atomic t matrices and the ef-
fective wave factors for different sites. The oper-

To determine the vertex correction the important
quantity to calculate is

(nial

GOLGI n~ &=N 'Tr, (GpG) . (5o)

In the model described by Hamiltonian (1), where
the hybridization coupling constant is k independent,
it can be shown (see Appendix B) that the momentum
operator is defined by

(5~(~5 ~5 )=5v5 m( )v~(5)=mvi(5) (51)

with indices i and j taking the two values s and d.
Since G is diagonal in the Bloch representation, we
can rewrite (51) in the form
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&~. I
G~G

I ~, &

=~'5'~ &k, l Glk~ &&k~lulk & &k~lGlk & (52)

As in the one-band model, it can be shown that
this quantity vanishes identically. By time-rever-
sal symmetry one has

e, (k) = ~, (- k), (53)

and consequently [cf. Eqs. (14a)-(14c)]

&k~ I
G

I k& &
= G„(k) = G (- k), (54)

while the velocity operators are such that v,"(-k)
=—v';(k). The integration of (52) over k gives zero,
and looking back to Eqs. (42), and (4V}-(49), we

see that P„'=0.
In Sec. IIIA the vanishing of the vertex correc-

tions will be shown to be directly related to the van-
ishing of the backscattering because the atomic
scattering potentials are short ranged in the pres-
ent model.

22
v', (k) [ImG„(k, q+ iO)]',

vQ i dvi&,

(5Va)

22
o«=10 I dq

I

——Zv (k) [ImG ~(k, q+io)]

(5Vb)

o« = o„=v'10 v 2 dq I-—Z v, (k)v„(k)
2e ( df
m'0,

x [ImG„(k, q+io)p . (5Vc)

Different coefficients appear in Eq. (5V) because
the total volume of s and d bands contain 2 and 10
electrons. These three terms represent the elec-
trical conductivity corresponding, respectively, to
the propagation of a pair of s electrons, a pair of
d electrons, and two hybridized s-d electrons. The
randomness of the d potentials acts upon the con-
ductivity through the quantity Z„contained in the
four Green's functions t"„. It is appropriate to
introduce the function defined between —1 and +1:

E. Expressions for s-s, s-d, and d-d Conductivity

With the vertex corrections identically equal to
zero, expression (9) for the electrical conductivity
in a cubic lattice (n=P) reduces to

y(Z) =N-'Z, v', (k)5(Z —e, (k)) .
Using this function and the assumption (25),

e, (k) = ne, (k},

(56)

c = dq
I

——Tr(vlmG(q+ io)vimG(g+ io)),
2e' f df
mQ I, dg

the three expression (5V) can be written more ex-
plicitly as

+ = Oss+Ouu+ &su +ass ~

where

(56)

(55)

In the (Ik, &, Ik, &] representation the operators v
and G of (55) are 2x2 matrices. The trace is cal-
culated and account is taken of relation (51). We
obtain the following three contributions for the
electrical conductivity:

20e ( df 6'„(q)
m'Q,

I dg

The three functions F are given by

(59a)

(59c)

S„(q)=y Z, (q) dZ4 2 y(E)
f[(q-Z-~, )(q-Z, —nZ)-y'] +[(q-Z-~, )Z,]]2 2 2 (6Oa)

6' (q) = n'Z'(q) dZ (n —E - ~,)'y(E)
([(q -Z- ~,)(q- Z, —nZ) -y']'+[(7l -Z —~,)Z,]'}' ' (60b)

+1 2

6'„(q) = ny'Z', (q) dZ (n E~,) y(E)-
([(n-E- ~,)(n-Z, — E) -P]'.[(q-E- ~,}Z.]']' (6Oc)

We have made use of the explicit expression of
G„, G«, and G~, derived from definition (13), with
Z~(e) =Zg+iZ2.

In the limit n = 0, the function y«(q) and 6'«(q)
are identically zero and it is possible to simplify
the form of 5'„(g) by defining formally an s-elec-
tron self-energy Z, = y /(q —Z~), a quantity directly

related to the relaxation time. For that reason we.
will use that limit for the discussion of two limiting
cases in Sees. IIIA and IIIB. When a&0, however,
such a definition for Z, is not straightforward and
we have to use the three integrals (60) to obtain
the various contributions to the electrical conduc-
tivity.
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III. DISCUSSION OF LIMITING CASES

It is interesting to investigate the usual limiting
cases (weak-scattering and dilute-concentration
limits) and to compare our results in these limits
with previous treatments. The discussion is car-
ried out for n =0 without lack of generality if we
consider alloys whose Fermi energy E~ is far from
the hybridization gap. In that case the function
(60a) takes the simple form

~„(q)=f, day(Z)

HYBRIDIZED ss GREEN FUNCTION
G&& ( k, ~)

ELECTRON FIELD INTERACTION ss

~ ~ ~ ~ ~ EFFECTIVE SCATTERING INTERACTION

~ ~ ~

x(im[(q —z —z, ) —y'(vy —z„) '] '}' . (61)

A. %leak-Scattering Limit (Comparison with Boltzmann Equation)

In the weak-scattering limit it can be shown from
Eq. (22) that Z2 is proportional to 6 and that Z,

The quantity y /(q —Z, ) in the denominator of
(61) can be viewed as the self-energy Z, of s elec-
trons. Since

FIG. 1. Diagrammatic representation of the velocity
correlation function Q(4') in the weak-scattering limit.
The part of the diagrams under the dotted line defines the
operator X~s(z) which satisfies an integral equation repre-
sented by the diagrams of Fig. 2.

In the weak-scattering limit the self-energy Z„ is
equal to

ImZ, = y'Z, [(q —Z, )'+ Z', ]-', (62) Zg —Eq +zZ2 (66)

we can use in the weak-scattering limit the formu-
la (122) of Velicky's paper4 provided y/(g —e) & 1.
In that limit the s conductivity is thus

with

z, =rmz, (z)=~«qVx-'Ks(~ —~, —
~„,-)

y'

k' z-Z, k'

where

with

2

dq ——b, ImC (q —i0)l g ~(„), (63)
C de

(64)

(69)
To calculate the electrical conductivity it is useful
to introduce the function X~"(z+ f0, z —i0) which
represents the sum of diagrams of Fig. 1 without
the upper electron field interaction matrix element.
This enables us to write for 0„

e(z) =(vX) 'J, dZ(z -Z-)-'y(Z) (65)

being a function analytic in both half-planes and
decaying as z ' for z- ~. In (65), only the low-
est-order term (-62) is kept and the exact criterion
for thi s approximation is the inequality

y (7J —q)
' —Ime (q —iO) «Ime (7/ —i0),

Bg

which is equivalent to the I,ondon-Peieris criterion
for the applicability of the transport equation to
Hamiltonian (1).

It is therefore of interest to compare this result
to the solution of the Boltzmann equation in the
hybridized model (1). We start from the velocity
correlation function

o„((u) = —~ '~~, G, (q+fo) G, (7i —io+(o)

x&~"(q+i0, q —i0)v„(k) as &u-0 (VO)

which can be reduced for co=0 to

( )
~,~ )f df v„(k)X~'(q+jO, q —i0)

~i cd 2 1lmz, (q) I

The function X,"(q', q ) has to satisfy the integral
equation (cf. Fig. 2)

~"(&' & ) = v-(k)+y [4"(»n')]'2
I &kl ~- U k')

I

'
k'

a„((u) =(e'/i~n)&(~+io) as (u-o. (67)
X [O,„(k', q )]' 8,". (q ), ('72)

X)(z) can be represented by a sum of diagrams in
the ladder approximation which is valid in the weak-
scattering limit (terms to order 52) (Fig. 1). We
use for the Green's function of s and d electrons the
expressions derived in Sec. II C, with a=0. In
this approximation the Green's functions are equiv-
alent to the corresponding expressions in Ref. 8.

where U is the scattering potential p„e„"
I n„) (~& I

and G„""is the norhybridized interacting d Green's
function. Equation (72) can be written more ex-
plicitly:

&, (q, 7l ) = v„(k)+ 2v, „xy—~ASS + y 6 ~~ X~, (q', 7l )
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The electrical conductivity becomes simply

o = 5 dq ——r(k) v' (k)6()7 —e,(k))
2e

c
(vs)

or
HYBRIDIZED dd GREEN FUNCTION Gdd (k, z)

HYBRIDIZATION INTERACTION y
NH

NON HYBRIDIZED d GREEN FUNCTION Gdd (k, z)

FIG. 2. Diagrammatic representation of the integral
equation defining operator Ak (z).

I

——~()7) imC (q+ iO),
2e2 ( df
n, ) dq

which coincides with Eq. (54) if, as is obvious
from Eqs. (62), (69), and (77),

~ '(k) =2limz, (q(k))l .

(vo)

(so)

2

x5 g —E~ — (- . 73

If we introduce the notatioris

ASS
gs k

2IImZ, I

'
gtf (I

2llmZ, I

' (v4)

we obtain the usual Boltzmann equation

v-(k) =+~ &.a(» k ) (f ) ff ) )-
k'

(v5)

where the function W,„(» k') is the probability of
scattering of an s electron with wave vector k into
a d state with wave vector 0':

=2. y'
&~(» k')I.,(2)=~= ~ (

— 2& (q —&„)

xxy6 5 g —&„—,— . 76

(k) I e &2) = z
= 2mxy6

'L'g &y)

The k independence of (kI U- Ulk') due to the short-
range order of the scattering potential and the con-
dition v„(k) = —v„(-k) makes the backscattering
vanish. A current-relaxation time can be intro-
duced:

8. Dilute-Concentration Limit

It is also of interest to compare the dilute limit
of the CPA hybridized s-d-band model with the ex-
pressions of the conductivity derived by Go~es'
in dilute alloys of transition metals taking into ac-
count the s-s, d-d, and s-d scattering at the im-
purity.

In the dilute-concentration limit (A„B, „, with

x-o), the expression for the s conductivity can be
written in the same form as Eq. (63):

2e2, t'

o =
) dq ——7 'ImC ()7 —io)

Qc 3 dn
7

where the transport relaxation time 7 is defined by

~ '(n) =2l ~l =2r'(n ~;) '~, (n) . (82)

(81)

If we use definition (22) for Z, in the dilute limit
(82) ~ ' takes the explicit form

~ '(7i) = 2r'5'x(q —a„) 'ImZ«(g+ iO, eg)

x[I —6z„,(q+io, ~,')] '. (83)

In (83), the function E«depend osnly on the pure-
host d resonance energy &„. When g is close to the
energy resonance of the d level of the impurity &"„,

we can, using expression (31) for I'«, write the
relaxation times as

-1 g2 PQ.[n r'/(n ~—;)]
(9 ~ ') b1 ~ r Re+QQ[ (0 ~)f )]]'+12vr PQ

/

[P7(0 ~d')] ]'

If we now introduce the resonant density of d states of the impurity A near e„[see Eq. (2. 45) of Ref. 8]
we obtain

(s4)

(s5)

The transport relaxation time of s electrons may
be written in a form similar to Eqs. (12) and (13)
of Gomes'Q (provided V„=O, since we do not con-
sider direct interaction between s electrons):

2

(ss)

if we introduce an effective matrix element for the
s-d scattering potential,
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p„(Z)=2(vw', ) '(u', -S')'", —u, &Z&w, . (88)

In the formalism of the present paper the depen-
dence of s-d scattering on the electron energy ap-
pears explicitly in the definition of V,"~f.

The discussion was restricted to Q. =0, and there-
fore expression (87) for V;ff~ is not valid for q

We will see, however, in the numerical ex-
ample presented in Sec. IV that when a 40 the ef-
fective scattering potential is indeed maximum when
the Fermi energy lies in the vicinity of the d reso-
nance levels a~ or d~.

IV. NUMERICAL EXAMPLES

The formalism presented in the preceding sec-
tions has been first applied to the calculation of
the d-scattering-induced resistivity of the Levin-
Ehrenreich model for Au-Ag discussed in Ref. 8.
Here the d bands are filled and the s-d hybridiza-
tion is not believed to affect significantly the be-
havior of the residual electrical resistivity of al-
most pure s electrons. As a matter of fact, the
calculated curve of resistivity versus concentra-
tion shows only slight deviations from Nordheim's
law. A quantitative comparison with experimental
data, however, would require the calculation of the
contribution to the resistivity produced by the direct
s scattering mechanism due to the small difference
in the position of the two s bands, which is not in-
cluded in the present theory.

Instead, we mill here focus on a more interesting,
although purely theoretical, example which exhibits
striking deviations from the linear dependence of
resistivity versus concentration for small concen-
tration and from Nordheim's x(1 —x) law for higher
concentrations. As discussed in the Introduction,
these two types of deviations have been observed in
some transition-metal-based binary alloys. The
maximum deviations to the x(1 —x) rule are expected
to occur when the two d-band peaks in the alloy are
split and when the d bands of the two constituents
are unfilled. With increasing concentration the
Fermi level moves from one d band to the other
and crosses a region of minimum density of states.
This minimum is expected to have some influence
on the resistivity-versus-concentration curve, while
the effect of s-d hybridization is expected to be im-
portant for concentrations such that the Fermi level
lies in a region of large-d density of states. The
artificial-alloy model presented hereafter exhibits.
these features. We shall now characterize this
numerical example and first summarize the param-
eters describing the pure systems of the two con-
stituents.

(i) For convenience the unhybridized s-band den-
sity of states is assumed to have the Hubbard semi-
elliptic density of states

The half-bandwidth is zo, = 7 eV, which is a reason-
able choice for noble and transition metals. Here-
after ge, will be taken as the unit of energy (w, = 1).
The unhybridized s band is flat and broad. It is not
too different from a free-electron band for Fermi
energies appropriate to most transition metals.
We shall suppose that the s-band bottom is the
same for the two constituents, and therefore we
neglect the direct 8 scattering.

(ii) The unhybridized d band is assumed to have
the same semielliptic shape as the s band with a
scaling factor a=0.05. This is a value about two
times larger than a „calculated in Appendix A
and not inconsistent with band calculations of transi-
tions metals.

(iii) The scattering parameter is taken such that
5/w, =8n. This corresponds to a rather strong
scattering (2. 8 eV), although the conditions for the
split-band limit defined in Ref. 8 are far from be-
ing fulfilled. In the units u, =1, and taking the en-
ergy origin such that d~ = —,'5 and e, = ——,'5, the scat-
tering parameter has the value 5 =0.4. The differ-
ence between the bottom of the s band and P~ is
chosen to be 8 eV. This value lies between 8' and
q~" and is not far from the d resonance level gen-
erally attributed to Pd.

(iv) The hybridization constant is taken to be y
= y "(e,/q, ")=0. 814m, when the values for Cu are ob-
tained from Ref. 16. The scaling of y based on
the Cu value is here quite reasonable, since &„"
lies between e,' and e,

(v) The function P(E) in Eqs. (80) is supposed, as
in Velicky's paper, to have the free-electron form

y(Z) =Z„v'(A. )5(Z- ~ (a)) o. (1 —Z')'" (89)

and for simplicity we will put T=0 in (59).
The numerical results of this model are sum-

marized in Figs. 3-5. In Fig. 3, the impurity
concentration g is fixed and has the value x=0. 15.
The alloy d density of states corresponding to this
concent. "ation is the lower curve of Fig. 5(b). The
three curves o„, cJ~, and o«corresponding to the
three contributions to the dc electrical conductivity
[Eqs. 59(a)-59(c)] are plotted for a Fermi energy
varying continuously from —0. 3', to 0. 3',. The
total conductivity is represented by the dotted line.
A logarithmic scale has been used for o and the
unit is chosen such that o,~ =1 for E =0. Far from
the peaks of the two d subbands centered on d~ and

&~ there is one order of magnitude difference be-
tween the three conductivities. When the Fermi
level lies in a region of large-d density of states
in the vicinity of the two d resonance levels, o,
o,„, and o«conductivities are of the same order
of magnitude, while the total conductivity is mini-
mum. In the majority band, o~ and o«can even
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that a self-consistent CPA-model theory of the
residual electrical conductivity can give a qualita-
tive explanation of some features observed in tran-
sition-metal-based alloys and is a useful starting
point for further investigation of the transport
properties of this type of alloy.
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The transform

E„(z)= J p, (E)(z —Z) 'dE

yields the explicit form

Foe, (z) = (2/w2) [z —(z' —w,')'"] .
Using expressions (Al) and (A3), Eq. (20) for
E~„(z) becomes

(A2)

(A3)

(A4)

The condition for the disappearance of the gap in
pure metal (Z =

&~
= 0) is simply

ImF „(0)&0 .
This condition is equivalent to IE, I & M, or

y'& nw, (w, +n, ) .

(A5)

(Ae)

APPENDIX B: CALCULATION OF VELOCITY MATRIX
ELEMENTS

In this appendix we show that the model Hamil-
tonian (1) implies the vanishing of velocity matrix
elements (k, lvlk, ) and (k~lvlk, ) and that as a con-
sequence we can write Eq. (51)

(k
l lk;)k=ll, ,il, , m( —„)k,.(k) ™&';(k),

i

where i and j can be either s or d.
To derive Hamiltonian (1) in the tight-binding ap-

proximation, one first solves the Schrodinger
equation

nfl 4 &=(T+Z, v() I 4 &

where V; is the atomic potential at site i, by ex-
panding Ig) in terms of atomic s and d orbitals,

The second step is to neglect matrix elements
(n~ I $,&~ V, I m~ & or (n~ I g, » ~ V, I m, ) with three differ-
ent site indices and to keep only the off-diagonal
hopping integrals t = (n„l V„l m~) and the diagonal
hybridization constant y= (n, l P» „V, ln~ &. This
interaction represents the hybridization of s and
d electrons on site n due to the crystal field pro-
duced by all other atoms on sites m&n. Because
off-diagonal matrix elements are neglected in the

definition of y, the hybridization constant is k in-
dependent in model Hamiltonian (1).

We can now define the velocity operator for the
two-band model by generalizing a method used by
Matsubara22 to calculate the electrical conduc-
tivity of doped semiconductors. The spatial vari-
ables appearing in Hamiltonian (1) are site coor-
dinates. The position operator in Wannier space
is defined by 3

R=&~.R. ln. &(n. l +R. ln. ) (n. l, (Bl)

with

(B2)

v, (k) = t
—, s(k),

where w„ is the ordered d bandwidth and s(k) is the

The velocity operator is determined by using the
equation of motion

v = t[H, R] = t(HR -RH) . (B

After calculating the commutator, it is straightfor-
ward to show that because of (B2) and the k indepen-
dence of y, the matrix elements (k, I v!k, ) and

(k„ I v I k, ) vanish, while

(ku I
v

I ka ) = t~+ t„„R e'" ""=—2 t„„e'
mg n mAn

(B4)
with R„„=R —R„.

If we restrict the summation over m and n to
nearest neighbors, Eq. (B4) defines the group ve-
locity of an electron of kinetic energy (w~/2)s(k),
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dispersion relation discussed in Sec. II A. A simi-
lar expression holds for (0, I & I k, ) in the tight-
binding approximation but quite generally can be
expressed as

~,(u) = —, z,(a),

where E,(k) is the dispersion relation for s elec-
trons.
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Retardation Effects in Azbel'-Kaner Cyclotron Resonance
H. D. Drew
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Corrections to the Azbel'-Kaner theory of the magnetic-field-dependent surface impedance of
metals have been calculated. The results illustrate the effects of the finite transit time of the
electrons in their passage through the skin layer. The cyclotron-resonance line shapes are
modified from the Azbel'-Kanel results for both the high-(~, T) and low-(cu~T) limits. The bear-
ing of these results on experimental determinations of carrier effective masses and relaxation
times are discussed. Finally, the background signals from the nonresonant electrons are cal-
culated for an arbitrary cutoff angle for specular reflection of the electrons at the surface.

I. INTRODUCTION

Azbel' -Kaner cyclotron-resonance (AKCR) mea-
surements have played an important role in the
study of the Fermi surfaces of metals. The im-
portance of the technique lies in the precise mea-
surements provided of the effective masses and

lifetimes of the carriers averaged over particular
K-space orbits. Recent advances in experimental
techniques (the development of intense infrared
sources of radiation' ) and metals theory (the work
on the electron-phonon interaction ) have focused
interest on precise measurements of the frequency

and temperature dependence of the electronic
masses and relaxation rates. As the theoretically
predicted mass shifts are small, careful consider-
ation of line-shape effects are essential to proper
interpretation of the experiments.

The general problem of the magnetic-field-de-
pendent surface resistance of a metal has not yet
yielded an exact solution. The Azbel' -Kaner the-
ory4 is valid under the conditions of the extreme
anomalous skin effect (ASK) provided also that the
time of flight of the resonant electrons in their pas-
sage through the skin layer is small compared with
the rf period. This last condition can break down


