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Magic-Angle NMR Experiments in Solids
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The time dependence of different interaction Hamiltonians of nuclear spins as encountered
in NMR experiments where the external field is applied at the "magic angle" in the rotating
frame is treated with the average Hamiltonian theory. First- and second-order correction
terms of the average Hamiltonian are obtained for symmetric and antisymmetric cycles. New

types of pulsed "magic-angle" experiments are treated in detail and experiments are performed
to show their capability to resolve chemical shifts in solids. It is shown that such magic-angle
methods, employed with applied fields of high duty factor, in principle offer advantages in the
high-resolution NMR of solids over resonant multiple-pulse schemes. The problem of observ-
ing the nuclear-precession signal during applications of the strong fields is solved by "nesting"
an observing cycle of low duty factor into the continuous or quasicontinuous irradiation se-
quence.

I. INTRODUCTION

The magnetic dipolar Hamiltonian Ã& of nuclei
with spin I can be expressed as a scalar product
of two second-rank tensor operators' represent-
ing its spatial and spin symmetry, respectively.
Experiments have been performed utilizing this
symmetry in which one operates on one or the other
tensor in order to cancel out the dipolar Hamilto-
Dlan.

The first class of experiments involves spinning
the sample ' with the rotation axis tilted by an

angle 8 with respect to the magnetic field Ho,

whereas in the second class, irradiation with strong

rf fields produces an effective field H,«, which is
titled by an angle P with respect to Ho. ~ ~ In both
cases the Hamiltonian becomes time dependent in
a periodic fashion with a certain period or cycle
time t, . In case the cycle time is short enough to
allow coherent averaging, the Hamiltonian of the
system can be replaced by an average Hamiltonian,
expressed as a sum of different correction terms:

where
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and X stands for the corresponding Hamiltonian
divided by N throughout this article.

Considering the secular part of the dipolar Hamilto-
nian,

$C~ = -5 be(3', fg~
—I) l~),

b, ~
=y% r, ~~-,'(3 cos—ae,~),

this means that in the sample-spinning experiments
the average has to be taken over the time-dependent
spatial part b&(t), whereas in the strong-rf-field
case the spin part becomes time dependent, as will
be shown in Sec. IV, and has to be averaged. If
the spinning angle 8 fulfills the special condition

cos em

which is the case for the so-called "magic angle"

during the rf irradiation, any finite pulse width
leads to a decrease in resolution in the line-nar-
rowing experiment. To a certain degree the effect
of finite pulse width can of course be compensated;
nevertheless, as short as possible a pulse is de-
sired. Especially if one approaches very short
cycle times t, in order to reduce the leading sec-
ond-order correction term K'2' [Eq. (2)], a very
high Hj field, i.e. , very strong rf power, has to
be applied.

A different way to obtain short cycle times would
be to perform the experiment in such a way that
coherent averaging is obtained also during rf irra-
diation. This would even allow us to apply a con-
tinuous rf field, where the cycle time is now deter-
mined by the rf field alone, thus obtaining much
shorter cycle times with a given rf power or the
same cycle time as in a multiple-pulse experiment
with much less power. In order to observe the
nuclear magnetization, the rf field can be turned
off every few cycles for a few microseconds.

An experiment of this kind would be complemen-
tary to a multiple-pulse experiment, since it ex-
hibits a high duty factor 5 which is the ratio of the
average rf power during a cycle to the rf power
during rf irradiation. A general aspect of this fact
is that, considering a given average rf power P,
the ratio of the cycle times t, of two experiments
with different duty factors 5 is given by

(tcl~tca)p=conet (bi~bi) (3)

(bo ),, vanishes and so does the average dipolar
Hamiltonian. Since the spin part of the dipolar
Hamiltonian shows the same symmetry, its average
vanishes if the effective field is tilted by the "magic
angle" compared to Ho.

We would like to contribute to the latter class of
experiments by describing a few experiments per-
formed by actually applying different kinds of time-
dePendent fields at the magic angle. Since strong-
rf-field irradiation is much more under the experi-
menter's control than macroscopic manipulations of
the sample such as sample spinning, these kinds of
experiments have proven to be very successful in
cancelling the dipolar Hamiltonian and unravelling
other types of information, such as chemical-shift
tensors in solids. ' ~ We shall begin by showing
that the application of fields at the magic angle,
continuously or at least with high duty factor, offers
advantages in principle over the use of trains of
short pulses applied at exact resonance.

As an example one may consider a four-pulse ex-
periment, which can be successfully operated with
a duty factor of about 0. 2 and a Lee-Goldburg (LG)
experiment, where 6=1, which leads to a reduction
in cycle time by a factor of V5 in the I,G experi-
ment according to Eg. (3).

Since experiments with a duty factor 6 = I do not
allow for observing the nuclear magnetization one
would like to implement for n cycles, an observing
cycle containing at least one "window. " This nest-
ing procedure should be done in such a way that the
average dipolar Hamiltonian vanishes over the entire
cycle,

t, =nt, t+t o

where t,~ is the cycle time of the continuous-irra-
diation cycle and t,o is the cycle time of the observ-
ing cycle. In case K' '(t, o)=R' '(t,~)=0 andK '(t, o)
=Ru'(t„)= 0 the leading correction term X'~'(t, ) can
be expressed as

II. CONTINUOUS COHERENT AVERAGING

In the multiple-pulse line-narrowing experiments
ments ' rf irradiation is considered to be applied
only during short pulses (5-function-pulse assump-
tion). Since no coherent averaging is obtained

x'~'(t, ) = (nt~~A + tsoB)/(nt„+t,o),

where

In order to estimate the efficiency of the nesting

(4)
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FIG. 1, Gain 6 in resolution due to
a decxease of the second-order cor-
rection texm ~(2~ vs p=t«/t«(see
text). g is the number of fast cycles
per observing cycle.
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procedure we assume A=8, so that Eq. (4) be-
comes

3C'"(t,) = t.'„&,
with the effective cycle time

t 33=(nt 3+t O)/nt 3+t O)

which fulfills the condition t,&
& t„,& t,o.

The ratio p= t,3/t, 3 determines how much more
effective in decreasing X' '(t, ) the implantation of
n fast cycles is compared to applying only the ex-
perimentally limited observing cycle.

In order to parametrize the gain in resolution
due to a decrease in 3C'3'(t, ) obtained by the nesting
procedure we introduce a gain factor

3C"'(t.,) ntI, +1
3C"'(t,) np3+1

Figure I shows a plot of 6 vs p, for different num-

bers n of fast cycles. As one can see, there is an
optimum value of p, for a given n. Thus, a con-
siderable reduction in the second correction term
~&f the Hamiltonian ean be achieved by the implanta-
tion of fast continuous rf cycles as demonstrated
in Fig. l.

III. SYMMETRY OF CYCLES

In order to calculate the second correction term
of the Hamiltonian X"'(t,} in nested cycle~ proposed
above, it is useful to consider the behavior of the
different correction terms due to the symmetry of
the time-dependent Hamiltonian X(t) during a cy-
cle. 33 33 It has been shown previously33 that 3Ct3'(t, )
=0 for a symmetric cycle, i.e. , 3C(t) =X(t, —t).
Furthermore it will be proved here that this is true
also for an antisymmetric cycle 3C(t) = —X(t, —t).
Thus

X"'(t,) =0 a X(t) =+3C(t. - t) (8

even though 3C'3'(t, )e 0 (proved in Appendix A 1}.
As shown in Appendix A2, the antisymmetric

cycle has a further interesting feature, namely,

3C"' (t,) = 0 if X(t) = —X(t, —t),

whereas X'3'(t, ) v 0 for a symmetric cycle. But
there arises a simplification in the calculation for
3C (t,) in a symmetric cycle, since

3C'"(t,) =3C"'(-,'t, ) H X(t) =X(t, —t). (10)

Since cycles can in general be separated into a sum
of a symmetric and an antisymmetric cycle it is
appropriate to study the behavior of the correction
terms for such a mixed-symmetry Hamiltonian,
l. e ~,

Other terms do not vanish and have to be evaluated
separately. The symmetry relations derived in

Appendix A 2 can of course be used in obtaining

simpler formulas. For example, all the integrals

X(t) = 3C,(t) +X„(t),
where the subscript 8 stands for symmetric and
A stands for antisymmetric.

The second correction term X'3'(t, ) contains in
its integrand all possible combinations of 3C$(t) and

3C„(t) However, since their integral vanishes if one
supposes that the average Hamiltonian 3C'3'(t, ) van-
ishes for the symmetric and the antisymmetric part
separately (see Appendix A2), the following combina-
tions do not contribute to X'3'(t, ):

(X~(t3)X (t3)3C~(ti)) %$(t3}3C$(t3)3C (t36
(12)

($CQ(t3) 3C $(t3)3C $ (t3 )$ Q $(t3)XQ (t3) X $ (t3))
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containing

(Ks(f3)K~(i2)K~(t))j and (3Cs(&3)Ks(f2)3Cs(fl))

(is)
have to be evaluated only over the time —,'t„since
they fulfill a symmetry relation, such as

3C(2)(f ) 3C(2)lf

over these integrands.
On the other hand, no further simplification is

possible for the integrals containing

where, for example, but not necessarily, Kp(t) may
be thought of as the Zeeman interaction and K)((t)
as the interaction due to the rf field.

As with E(l. (18), the time evolution operator
Ll(t), which is due to the external fields, may be
separated into a part which is due to the main in-
teraction Lp(t) and a part which describes the motion
in that arbitrarily chosen representation:

L, (f) = L.(f)L.(f),
where

3C„(f,) 3C„(I,) 3C, (i,))I and (3C„(f )K (&2) 3C (I )] ,

(14)
and their integrals have to be evaluated over the
full cycle time t, .

IV. INTERACTION HAMILTONIAN IN CYCLIC rf FIELDS

A, Genera1 Discussion

With the total Hamiltonian of the spin system as
a sum of an external and an internal part,

and

Lp(t)= T exp[-i f dt'Kp(t')]

with

3C.(f) = Lp'(f) K.(f)Lp(f).

p= —Ig p

Is(f)= Texpf- f dt'Ks(t')],
(19)

L(t) = Texp(- i f di'[K, „t(t')+3C),t(f )]], (is)

ext +t+int s

we solve the equation of motion for the spin-density
matrix p(t) in the usual way

p(f) = L(f)p(0) L'(f),
with

the above more general procedure corresponds
to the "rotating-frame" representation.

I)t(t) again may be written as a product of oper-
ators if this is suitable, thus separating the dif-
ferent transformations. What one wishes to estab-
lish is of course a simple expression for L, (t), so
that the different types of transformations can eas-
ily be carried out. To clarify this point we choose
the following external-field Hamiltonian:

where T is the Dyson time-ordering operator.
In order to separate the part of the motion which

is due to the external fields, we choose the follow-
ing interaction representationip

Kext (t)IA+ 2+3 t:

where

p=yHp and w&=yH&.

(2o)

L(f) = L, (f) &(I),

where

L&(t) = T exp[-i f d&' K,„t(&')]

with

Z(t) = T exp[-i f, dt'K(f')],

g(f) e (Ntx-
where K is given by Eq. (1).

Again K,„t(t)may be expressed by a sum

K(t) = L,' (f)K„,L,(t).

As shown previously we consider cyclic rf
fields with

L)(i)t't, ) = 1

and use the Magnus expansion

(is)

According to E(l. (20), L&(t) can be written as

L((t) = e'" &'L„(t), (21)

where L)t(t) is defined in E(l. (19) with

3C)t(t) = ((t) —(d p) I,+ (d, I„+(d, (i„cos2(dt +I, sin2(dt) .
(22)

If the time dependence of K„(t)with the fre(luency
2p) is neglected [which corresponds to expressing
3C)t(t) by its average Hamiltonian K~+)], Ll(t) can
be written as

L)(t) = exp(i(d Ig) exp(- i[((t) —(dp)I, + p))I„]f]. (23)

According to the above rules, L)t(t) may again be
expressed by a product of operators as

exp(- i[((d (dp)I, +(d, i„]f)I=8 t"~e-t"'"e"", --
where

P = tan )
P) 3/((d —(d P)
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(o = (& —o)o) +&s ~
2 2 2

In this sense, the applica, tion of an rf field with
arbitrary phase can be represented by a rotation
about a certain axis in the rotating frame as follows:

(t) e-()'(()~ '(
(25)

where y(t) =(d, t and

(j)
~g, o

= ~me +o p

P( ~( = +(1/)t2 )(o + ~&by )o)o

In a similar way we can express the dipolar Hamilto-
nian2

(30)

n=n, i+n, j+n, k, I =«„i+«„j+«,k,

with the unit vectors i, j, and k defined in the ro-
tating frame. If the time dependence of I(.'z(t) is not
ignored in Eq. (22), then the first-order correction
term, according to Eq. (1), leads to'~

where

Too (3) (31s(fsj I(IJ)~

To+( + (fglfsJ+Isgfa i)l

&2.2= «.~ «.g

—(()(T) 1 ~o) I 1 (d(((d —Q)o)

2 X & (28) &o e = (—,
' w)" ' y'«(g I"g',"g,

where T = 2((/(d, so that the Hamiltonian is averaged
over one cycle of the applied rf signal &. At reso-
nance, co=~o, this first-order correction to the
average Hamiltonian is called the Bloch-Siegert

8

Neglecting this shift in the further discussion,
L„(t)can be written in general as a product of
operators:

L„(t)=R,(n)R, (P)R,(y(t))R„'(P)R,'(n), (2V)

where

R,(n) = e-' '*, R,(p) = e ("~, -

and the angles (n, p, y) are the Eulerian angles
which describe the transformation from the "ro-
tating frame" to the double-tilted rotating (DTR)
frame. Thus the whole problem of applying an ex-
ternal field to the spins « is written as a product
of operations on the internal Hamiltonian:

L,(t) = L,(t)L,(t)

=R,'((dt)R, (n)R„(P)R,(y(t))R, (P)R, (n), (28)

which leads to a simple algebra when evaluating the
time dependence of the Hamiltonian X„,(t).

In the discussion of the internal Hamiltonian
X„,we encounter two different types of Hamilto-
nian, those expressed by first-rank tensor opera-
tors T~„orby second-rank tensor operators T~
of the spin variables. As an example we can write
the chemical-shif t Hamiltonian as

where
j=1 or 2 (31)

&'el, (n, p, y)=&ii(f'
I
Li'(n»y)

I
&M)

By using Eqs. (28) and (31) we can write

L, (t)T,,„L,(t)=T,'„e

T,"„=L„'(t)T,„L„(t).
So far no separation of the Hamiltonian into sec-

ular and nonsecular parts has been made. If we
now truncate the Hamiltonian, meaning that we
neglect oscillating terms with the frequency co and

Kd, where & is close to the Larmor frequency, we
obtain for the truncated tensor operator T &o.

.

Tyo = l~i'(t)TgeLR(t) l~.o (34)

and, according to Eq. (31),

with the spherical harmonics F2 „.
The quadrupole Hamiltonian and the pseudo-

dipolar Hamiltonian assume the same form as the
dipolar Hamiltonian in Eq. (30), where only the
factor Bo „hasa different form than in Eq. (30).
Since we discuss operations on the spin variables
of the internal Hamiltonians only, everything to
be derived for the dipolar Hamiltonian is of course
true also for those others.

Operations to be considered are of the form

L) (t)T,k(L((t)=E Tq„,D„".I((n, p, y),
N'a«g

~, .=QQ (-1)"S) e T(e, (29) T,"o= & Tge~d"o(n, P, y) (35)

where

&go=- «.g ~

T, „=+(1/v2)f„

where

D(J) (n, p, y) can be easily evaluated for any set of
(n, p, y) by maldng use of the matrix elements
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d„'&,)„(P)= (~~
~

e-"'
~
fM & (36)

&s"o(~, P, r) =do~ (P)e '"' . (39)

Combining Eqs. (32)-(39), T&o can be most con-
veniently expressed by

as given in any standard text;. If we use the nota-
tion of Lz(t) as given by Eq. (28), which represents
the interaction in the rotating frame, we obtain

Dsj'o(o, P, r) = e '" ~„d~s"~(P)do~'(P)e '"' (37)

where the symmetry relations of the d„'~,'„(8)have
been used.

It is very convenient to express the interaction
in the DTR frame, with

I,„""(f)=R,(r)R,~(P}R,t{o.),

which leads to

2TL 3~L 4~L

(a)

t -2' tc

(b)

FIG. 2. Timing of the effective frequency &, for (a)
the I G cycle with the cycle time &z, and (b) the FFLG
cycle with the cycle time 2~1, .

Jo= (40)

T'"'= »gs dse~(»d'o~(P)e '""

gg (t) Q ~(M)e-)N)'&')) (42)

-e(M)=,Z Z .„T,„,d„",'.(P) d,'„'(P) -™a

in the rotating frame or
' = Tyre oz'(P )

in the DTR frame.
We arrive at very simple expressions for the

interaction Hamiltonians in strong rf fields with
the time-dependent chemical-shift Hamiltonian as x(t)=Z z(~)e- (44)

where (d, is given by the effective field II,« in the
rotating frame, we obtain for the average Hamil-
tonian, Eq. (l), over one LG cycle, vo = 2v/o), ,
immediately

the different symmetry of the Hamiltonians ex-
pressed by the d„'~.~.

B. LG Experiment and its Modification

In the LG experiment a constant rf field with the
frequency ~ 4 ~o, where ~o is the Larmor frequency,
is applied to the spin system as indicated in Fig. 2(a).
With the general time-dependent interaction Ham-
iltonian in a strong rf field IEqs. (42) and (43)]

i No=-g

in the rotating frame or

X(m) = ~oZ; o„,. T,„do'5)(P)

(43)

in the DTR frame, and the dipolar Hamiltonian as

x (f) = Z x(M)e-* "'

~")=(&Ir.)f, 'df k(f')=~(0) .

According to Eq. (43) this leads for the dipolar
Hamiltonian in the DTR frame to

&n" = —~ &o,'o'dao'(P) Too,
i&j

(45)

+2

&(~)= —~~ +~ &o,'o' To~ A"~(P) doe'(P)e '"
j&j h/~=-2

in the rotating frame or

V(M) = —Z Bo'~()'

Toledo~~'(P)

in the DTR frame.
Note that the basic expression for the time-de-

pendent interaction Hamiltonians, Eqs. (42) and

(43), is the same except for the range of the index
M; thus, they can be ".reated most generally in the
same fashion. Differences occur only because of

doo'(P) = Po(cosP)

from which it follows that&~ ' vanishes if P is the
Dlaglc angle p~ with cos p~ = 3.

For the average chemical-shift Hamiltonian in
the DTR frame we obtain, using Eqs. (42) and
(45),

+c ~ ~ko+esi Tiodoo (P)(oi M (&i

do'o~'(P) = cosP

In order to calculate the first correction term to
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the average Hamiltonian, we use the above-derived
symmetry relations and utilize the fact that X(t)
of Eqs. (42) and (43) can be written as a sum of a
symmetric and an antisymmetric Hamiltonian:

x(t) =x, (t) +x„(t),
where

Xz(t) =Z)(X(M) cosM+, t
(43)

X„(t)= iZ„X(M)sinM~, t

Due to the derived symmetry relations (Appendix
A1) the part of the first-order correction term of
the Hamiltonian, which contains the commutators

[Xg(tg), Xg(t, )] and [X„(t,), X„(t,)],
vanishes, thus leaving only the terms with the in-
tegrands

[X„(t), X (t ) ] and [X (t ), X„(t,) ]

which leads immediately to:

x"'= ——' Z (2[x(M), x(0)]
sseo

+-,' [X(-M), X(M)]) . (49)

This, together with Eqs. (42) and (43), allows one
to calculate the first-order correction for any
angle P in the LG experiment.

In the case of the magic-angle condition P = P

X(0) vanishes for the dipolar interaction and Eq.
(49) is consistent with the result as cited in Ref.
10.

The first-order correction term to the chemical-
shift average Hamiltonian, Eq. (47), is easily ob-
tained from Eq. (49) as

& Z !.[ 2W.;+(l '
'P)&., ] . (50)

This correction term to the "ordinary scaling
factor" cosP for the chemical. shift in magic-angle
experiments is very small if ~Do'2~t, /2w«1, which

is usually the case.
The first-order correction term to the average

dipolar Hamiltonian, however, is rather big, thus

leading to a fast decay or broad lines in the LG
experiment, which makes the LG experiment not
very useful for line-narrowing experiments, where
one wants to observe small chemical shifts in
solids. ' -'2 There is still, of course, the cross
term between the chemical shift and dipolar Hamil-
tonians in the first correction term to be consid-
ered, which is easily evaluated, according to Eq.
(49), but is of no further interest here. However,
the first correction term can be made to vanish
identically if one produces a symmetric or anti-
symmetric cycle as shown in Sec. II. This can

be utilized in the so-called flip-flop Lee-Goldburg
(FFI 0) experiment, where the phase of ~, is
switched by w after each 2)T cycle [see Fig. 2(b)1 ~

According to Eqs. (42) and (43), X(t) is given by

x(t) =P, x(M) 8 for 0 & t&7~

x(t) =Q x(M) -'"""'-'~'

where

2+lp (dg7 J 2'
It follows immediately that

x(0) =x (0),

for wl, & t& t,

Thus, 3C' ' in the FFLG experiment is the same as
in the LG experiment.

Again we express the time-dependent interaction
Hamiltonian X(t) as a sum of a symmetric and an
antisymmetric part. Using the symmetry rules
established in Appendix A 2, we find

2

x"'(t,) = ——™-,— L" fx(M, )x(M,)x(M, ))
u3Sr2~, ~O

x n'(MSM, M,), (52)

where the parameters 6 (MsMzM, ) are numbers
which depend on M„.M2, M„and are given in Ap-
pendix B1.

Even though the FFLG experiment seems to be the
ideal magic-angle experiment theoretically, the
major drawback in practice is that the magnetization
can be observed only after a number of FFLG cy-
cles at the end of the rf burst, thus measuring the
decay point by point. In Sec. IVC we shall discuss
possibilities for overcoming this obstacle.

C. Six-Pulse Experiment with Finite Pulse width

The six-pulse experiment" [see Fig. 3(a)] can be

thought of as a stepwise FFLG experiment, where
after every 120' rotation, which is produced by each
pulse P, of width v~, a window of width ~ is applied

as in the LG experiment. Furthermore, it is
evident that X(t) is symmetric, which leads to

g(1) 0

independent of the tilting angle P and which type of
interaction Hamiltonian is considered. This in-
dicates the value of the FFLG experiment for l.ine-
narrowing purposes.

If the magic-angle condition is fulfilled, the lead-
ing correction term is BC'2', which can be evaluated
using the symmetry relations (Appendix A 2) as fol-
lows: Since the interaction Hamiltonian X(t) in the
FFLG experiment is symmetric, we only need to
evaluate R' ' over half the cycle time, namely,

g (2) (t ) x(2) &t
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sumption was derived in Ref. 10. In the case of
finite pulse width it is far more complicated, but

can be readily obtained by using the symmetry rela-
tions, as derived in Sec. III.

Again symmetry allows us to consider only half
of the cycle, since 3C(t) is symmetric. Assuming
the magic-angle condition P= P, we obtain
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where v'6 = ,' t„x= v'„jv—'~, X = v'~/v'„x+ X= —,', and the

parameters 4" (MSMzM, ), etc. , are numbers depend-

ing on M39 M3, M, which are given in Appendix B2.
The first part in Eq. (55), which contains 6"(M~
M&M, ), corresponds to the 5-function pulse-as-
sumption (7'~ -0), whereas the last part [b (M,
M&M, )] corresponds to the FFLG experiment (7' -0).
Equation (55) allows one to evaluate R'a for any
pulse-width-to-window-width ratio.

V. NESTED CYCLES

A Type I (Precessing Window)

FIG. 3. Timing of the effective frequency ~~ for dif-
ferent types of magic-angle experiments: (a) six-pulse
experiment; (b) nested-cycle type I with n-fold LG cycle.
(c) nested-cycle type I with n-fold FFLG cycle; (d) nest-
ed-cycle type II where Tp is the pulse width correspond-
ing to a 120' rotation, &q is the width of the window (see
text).

k"' = X'(0) and gi(1) 0 9

as in the FFI G experiment. Thus finite pulse width

causes no problems in the six-pulse experiment as
it does, for example, in other multiple-pulse ex-
periments.

The second correction term R ~ '(t,) for the six-
pulse experiment under the 6-function-pulse as-

in order to observe the magnetization.
The interaction Hamiltonian again can be written

according to Eqs. (42) and (43) with y(t) = v, tP, (t)
during the pulses i, and y(t) =+ 3', k = 1, 2, . . . , 6
during the windows, where the + holds for k =1, 2, 3
and the —for k =4, 5, 6. Thus the magnetization is
precessing stepwise during the windows ("preces-
sing window "). Using the relations derived in Secs.
IVA and IVB, a straightforward calculation shows that

Figure 3(b) shows the field timing of the precess-
ing-window type-1 nested cycle, where an LG cycle
is attached to each pulse of a. six-pulse experiment
or, the other way around, a six-pulse experiment
is implanted into a FFI.G experiment. Thus, this
experiment is expected to show the combined fea-
tures of the FFI 6 experiment and the six-pulse
exper iment.

The interaction Hamiltonian K(t) can be expressed
according to Eqs. (42) and (43), with

y(t) = &u, tI'~(t)

during rf irradiation and

y(t) =+ (n+ —.
'

k) 2v

during the windows where the sign is + if k= 1, 2,
3 and —if k=4, 5, 6.

The interaction Hamiltonian K (t) is again sym-
metric, and the average Hamiltonians are readily
obtained as

g(0&

which vanishes if the magic-angle condition is met,
a,nd

independent of the fulfillment of the magic-angle
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FIG. 4. Decay of F in CaF& as observed in a nest-
ed-cycle type-I experiment. Horizontal: 50 psec/point,
window width & =4. 5 @sec, cycle time 1~=85 IMsec. The
decay time is approximately 5 msec, corresponding to
a linewidth of 68 Hz.

g( & [l/(l )jg(2& (55)

where m=nr2/(~ +7'~). Equation (55) indicates the
advantage of the nested cycle compared to an ordi-
nary six-pulse experiment. In a practical case,
where, for example, 7'~=6 JL(,sec, 7'~=2 p,sec, &

=4 p, sec, one finds m =n, i.e. , the increase in

resolution due to X ' is equal to a+1, where n is
the number of implanted LG cycles.

Even in a simple case, where n= 1, the gain in
resolution may be appreciable if other effects such
as phase transients, etc. , contribute more to the

condition.
The second correction term $C' ' can be obtained

as in the six-pulse experiment by using the sym-
metry relations. As shown in Appendix C 1, we ob-
tain

linewidth in multiple-pulse experiments than the
second correction term. For example, the phase-
transient effect, which occurs during the rise and
the fall time of the pulses, is proportional to the
number of pulse edges per unit time. Since the
number of pulse edges per time is considerably
smaller in nested-cycle experiments, a gain in
resolution is expected.

Experiments were performed using a tilted-coil
arrangement and a video pulser as described in
Ref. 19. The magnetization was sampled every
cycle in one of the windows, digitized, and stored.
Figure 4 shows the off-resonance decay in CaF~,
which corresponds to a linewidth of about 68 Hz,
indicating that the coherent averaging in this ex-
periment is quite effective. Figure 5 shows a plot
of the beat frequency during the rf burst vs mag-
netic field offset and demonstrates the expected
1/VS scaling factor according to Eq. (47).

In order to prove that small chemical shifts can
actually be resolved, Fig. 6 shows the power spec-
trum of a decay obtained from a tetrafluoroethylene/
per fluoromethylvinyl ether copolymer (TFE/
PFMVE) sample. The OCF, peak and the broad
CFz line are very well separated. The shift dif-
ference of the peaks equals 4. 25 kHz at 54 MHz,
which corresponds to 77 ppm as reported in Bef.
20. Figure 6 also indicates that no further resolu-
tion can be obtained since the sharp line exhibits
the same width as the T„spectrum at zero frequen-
cy. Thus the resolution obtained is 7» limited
in this sample.

Since the first correction term &"' in the LG
cycle [Eq. (49)] leads to a decay after a certain
time, it is not advisable to increase the number n
of LG cycles in the nested-cycle type I arbitrarily.
It is suggested instead to implant ~ FFLG cycles,

2.0

O
Z'
LLI

C3
LLI

0.0

LLI

C3
LLI

m -2.0
LLI
CA

CQ
O

FIG 5. Resonance offset shift
of F~ in CaF2 as observed in the
nested-cycle type-I experiment.
The slope is close to the ex-
pected value of 1/4.
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I
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~~O.o~

~ 2.0
LLI
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decrease in K' '. In practical cases, where M = 3
for n = 10, a gain G- 3 is obtained. Qf course many
other cycles can be invented, by permutation of
the ones described here, but there is no need to
discuss this further.
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APPENDIX A

1. First Correction Term

The first correction term 3C"'(t,), Eq. (1b), can
be written as

(Al)

rather than n LG cycles [Fig. 3(c)].
The average Hamiltonian and its first correction

term are the same as before, i. e. , coherent aver-
aging of the interaction Hamiltonian is assumed,
whereas we obtain for the second correction 3,*' '

a similar result, namely,

where

G(t, ) = f, 'dt, [K(t,), 3C(t, ) ] .

Expressing the symmetry of the Hamiltonian K(t)
by a symmetry parameter P, , we can write

(A2)

K",,'=[1/(1+ 2m)]R,'",
where &n is given in Eq. (55).

B. Type II (Observing Cycles)

(55) where P; =+1 or —1 depending on whether K(t,) is
symmetric or antisymmetric.

With t', = t, —t;, G(tz) can be expressed as

Another possibility for constructing a nested cycle
is presented in Fig. 3(d). An n-fold FFLG experi-
ment is followed by an observing cycle in order to
observe the magnetization. The average Hamilto-
nian and the first-order correction term are not
altered compared to the cycles described above;
however, the number of pulse edges per time is
considerably reduced.

The second correction term X,' ' can be expressed
in terms of its six-pulse counterpart as

(As)

where P,2 = P& P» which leads, using simple alge-
bra, to

G(t ) = P, f ' dt', [K(t'), 3C(t', ) ] —P, G(t') . (A4)

The integral over the first part in Eq. (A4) vanishes
in Eq. (Al), since

—
(2) n+ M

'Ksrr- nM2+M3
'K6

where

which leads, together with Eq. (Al), to

3C"'(t,) = —P&23C" & (t,) . (A5)

M=re/r = I 3+v /7'r,

and under the assumption that X~ '=$C~ 'for the
same cycle time (see Appendix C 2). An experi-
ment of this type was considered in Sec. II when
calculating the effect of nesting. Therefore, the
factor in Eq. (57) can be conveniently expressed
as a nesting gain, "

G = (nM +M )/(n+Ms) (58)

which accounts for the gain in resolution due to the

Thus 3C "&(t,) = 0 if P,2=+ 1, which is the case
whether K(t) is symmetric (P, = P2=+ 1) or anti-
symmet~ic (P, = P, = —1). In general,

and

K "&(t,) = 0 if G(t, ) = —G(t,') (Ae)

3C (t ) =3C t if G(t )= G(t') ~

2. Second Correction Term

(A7)

The second correction term K' '(t, ) in Eq (1b).
can be written as



MAGIC -ANGLE NMB EXPERIMENTS IN SOLIDS

X"&(t,) = —t(6t, )-' f, 'dt, F(t,),
where

F(t3)= f dt2 f dt&{X(t3)X(t3)X(t1)}.

(A8) =P,2=+1, since both integrals in Eq. (A13) vanish
in this case, as shown in Appendix A1. Thus, it
is shown that R& '(t, ) vanishes for an antisymmetric
cycle (P, = P3 = P3 = —1).

Using the symmetry parameter P, as in Appendix
Al, F(t,) can be expressed as

F(t,)=P„,f 'dt, f, 'dt, {X(t,)X(t2)X(t,)},
(A9)

where P»3= P, P,P„which leads, using simple
algebra, to

F(t,) = P„,[{x(t,') x"& (t,) x "&(t,) }t,2

—f, 'dt', {x(t,') x(t,') x"' (t,)}t,

—f 'dt,' f 'dt,'{X(t3')X(t'2)X(t',)}+F(t,) ] .
(A10)

Analogous to Eqs. (A6) and (A7), it is easily shown
that

X&'&(t,) = 0 if F(t,) = F(t,')—

APPENDIX 8

1. 3.'~'~ in LG Experiment

From Eq. (1b)

g&'&=-t(2t, )-' j 'dt, f 'dt, [X(t2), X(t,)],
where t, =~L, we obtain

+&1&=-t(2t ) 'f 'dt,

x.f ' dt, {[X„(t,), &,(t,)]+ [fC,(t,),fC„(t,)]},

(»)
since parts with [R2(t2), X3(t1)] and [XA(t2), XA(t1)l
vanish for symmetry reasons.

Using Eqs. (42) and (43), Eq. (Bl) yields

K"'= —(2t, ) 2 [x(M ), K(M )]f dt,

x&'&(t,)=x"&(-,.'t, ) if F(t,)=F(t', ) .
(A11)

t t2x f dt1 (slnM2& t2 cosM1&&&et1

F(t3) P&23 F(t3) ~

In this case

X (t&)=0 1f P123= 1

(A12)

X' '(4)=X' '-. 4 1f P133=+1 ~

It can be further proved that the condition SC&3&(t,)
=0 is not necessary. According to Eqs. (A8) and

(A10), one can write

x "& (t, ) = t(6 t,)-' I„,
x[f 'dt,' f 'dt3{X(t3)X(t3)X"'(t,)}t,

+ f "dt', J' ' dt', {x"& (t,) x(t,') x(t', ) }t, ]

+P„,Z&'& (t,) . (A13)

If X&3& (t,) vanishes this leads, of course, immedi-
ately to

x "& (t,) = p„,x&" (t,),

Thus we distinguish the different cases of Eq. (A10)
where Eqs. (A11) are fulfilled.

in the case Xe&(t,) = 0 and P,2= 1 the first three
terms in Eq. (A10) vanish, leading to

which leads to

+ cosM2&u, t2sinM1&u, t1), (B2)

—{2[x(M),x(0)]+—,
' [x(-M), x(M)]}.

2&~~0 M

(B3)

{KS(t3) A(t2) A(t1)} s

{XA(t3)XA(t2) X2 (tl)}

{xA(t3)x,(t,) x„(t,)}.

If we assume the average Hamiltonian to be zero,
which is true for the dipolar Hamiltonian at the
magic angle, we obtain

2. X~2~ in LG Cycle

'K' ' is, for symmetry reasons, the same in
the LG cycle as in the FFLG cycle. Since the LG
interaction Hamiltonian can be written as a sum of
a symmetric and an antisymmetric part, we can
apply the rules established in Sec. III, leaving us
to evaluate only those integrals over the following
commutator expressions over the LG cycle time
7L ~

with

X (t&) = 0 1f P&33 = —1

(A14) X&2&= Q {X (M,)X (M2)X (M1)}X(r ),
6~L N3M2N1~0

(B4)

Equation (A14) is also true if X' ' (t, ) v0, but P,2 where
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&(v )= f, 'dt, f, 'dt, f,"dt,

x(sinM, &dots sinM3(u, tgcosM, (g,t,

3(d~t3 cosM2~, 3t2 synM&~ t&

+ oosM~+, ts sinM2&u, ta sjnM&&u, t~). (B5)

The following symmetry relations can be easily
established:

obtain

x,"8 2» Z (x(M, )x(M,)x(M, ))
e3+2e&XO

x &"(MSM~&), (B7)

where &"(M,M&M&), given in Table I, obeys the
following symmetry relations:

(MSM~~) = b (M~M~3)

(x(M, ) x(M, ) x(M, ))= (x(M, ) x(M, )x(M, )] and (B8)

and (B8)

(x(M, ) x(M, ) x(M, ))= ——,'(x(M, )x(M, )x(M, )).

Using these relations and evaluating Eq. (B5), we

(MgM~)) = 6 (-Mq —M~ —M~).

3.3{.'{ ~ in Six-Pulse Experiment

Using Eqs. (1), (42), (43), and (52), we obtain

(X(MB)X(M3)X(M))3 7' 6 (MqM~))+ 2
r~ &P& (MgM2M~)

2 3

+ —v r~b. (M, M2Mg)+ —r~v& (MsMaM, ),2 C 3 F

(B9)

~blare g~ (M,M M, ) is the same as for the FFLG and the LG exPeriment (Table I). All other 6 Parameters
obey the same symmetry relations IEq. (B8)j as z (M,M2M, ). We obtain &"(M,M&M, ) independent of Mz and

if Mq -—Mq,' Ms+My= +I but M~4Mq
otherwise.

gs(MSMpg~) and bo(M~Mpf() are given in Table II.

APPENDIX C

j.+{»for Nested-Cycle Type I

As in the six-pulse experiment,

R~~~= —— 5 (X(M~)X(M3)X(Mq)) r~& (MSM+1))+ r (nr~+rq)b, (MOMUS()

2

+ (, r (nr~+r~) 6 (MSMqMq)+ — —

(nest, +r~) v& (MsM~))

(Cl)
with nr~+r~= (3n+1)v~ and t, =2r„

(x(M, )x(M, ) x(M, ))67'c ~ ~p, »o
3

TABLE E. Values of 6 (MSM2M&) for Eq. (B7).

M2=+1 M2 =+2

—2
—1

1
2

0.0

4
3

0.0

3
4
4. 0

—2. 0
5
4

3

—2. 0
—0.0

1

0.0
5

4

4
0.0

—2
—1

1
2

1.0
1.0

—1.0
1

1.0
3
2
1
2

Q. O

—1.0
1
2
1
2

0.0

1
2

0.0
0.0
0.0
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TABLE II. Values of (a): 6 (M8M2M~), and (b): 4 (M3M2M~) for Eq. (89).

M2=+1 M2=+2

1~32

213~3

0.0

2

(a}

—-~37

4

~3

~1

l~
~8

~S

1J2.

0.0

27
16

—9.0

9
4

45
4

0.0

0.0

9
4

277
27
8

45
f6

27
8

9.0

277
9
4

—9.0

37
8

45
16
9
8

27
T

0.0

3 3 2 3 3
&& ~.' t "(m~~, )+ 7a—~,t '(M pc~, )+ —~.7,'~'(M, M~,)+ —r,'~~ (Mpc pS,),

2m 2w 2m
(C2)

which is the same expression as in the six-pulse
experiment except for

7, = 3(n r~ + ~„+r,)

instead of ra= 3(v~+ v~). Thus

where t, = 2nv J. + 2v'e. If

R~ = —v'L, A(2) 2

SCe =-&e(2) 2

(cs)

+(2) ~~ g(2) ~(2)
1+m e '

C

where m =nvz/(v +,7'~).

2. 3Q(') for Nested Cycles of Type II

(C3) we obtain

K~,', = —(no~ A+ r', B)/(nr~+ r,). (c6)
In order to make an estimate, we assume for
simplicity A=B, i. e. , R~g'=ncaa' for vl, =ra. We
obtain

+le find

3 ~sxz(to) = (1/t )(2nrsÃP + 2rgC (c4)
X,",', = [(n+m')/(~'+M')]R, "&,

where M = ra/rI, =1+3' /rz, .
(cv)
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