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scopic probe of the host-lattice electronic system.
Experiments are now under way to study the tem-
perature and pressure dependence of the Eu ' and

Gd ' resonances in SmS, hopefully through the semi-
conductor-metal transition in order to obtain in-
formation about the nature of the metallic state.
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Quantum-Mechanical Treatment of the Abnormal Stopping Power for Channeling
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A quantum-mechanical method for the calculation of the abnormal stopping power of ion chan-
neling is proposed. It is concluded that the abnormal stopping power is not proportional to the
local electron density. Numerical calculations are performed for 3-MeV He ions in the Au

crystal.

I. INTRODUCTION

The trajectory of ions channeled between crys-
tal planes is governed by their interaction with the
interatomic potentials of the atoms making up the
plane, and the energy loss of channeled ions de=
pends upon the detailed stopping power (1ocal
stopping power) it has encountered along its path.

The energy-loss spectra produced in beams of
energetic He and I ions transmitted through thin

gold monocrystals in directions lying very nearly
in low-index crystallographic planes have been re-
ported recently. ' Robinson made a quantitative
comparison of his anharmonic-oscillation model
with the experiment of Datz et gl. and concluded
that the channeling stopping power S~'(() is rep-
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S~'($) = s, coshb$ . (2)

In a previous paper, '~ we presented a semiclas-
sical theory of channeling stopping power and con-
cluded that the stopping-power function S~(($) is
written approximately as Eq. (2) at the small $
but not at the large $. In this paper, by consider-
ing the detailed transition probability of ionizations,
we give a quantum-mechanical treatment account-
ing for the transition probabilities of bound elec-
trons in the crystal.

II. WAVE FUNCTION

We take the position of the beam as (x„O, a),
where z is the direction of moving ions. Here we
~'sume the wave function of the beam is a wave
pa'cket localized at (xo, 0) and moving with the
velocity V in the direction z, z = Vt.

Thus we obtain

qr= —q&(x, y)e' ', (3)

where L is the normalization constant in the direc-
tion z and q)(x, y) is the normalized minimum wave
packet described as

q (x, y) = (2m&x &y) "'

y' (x -xo)'
4&y 4 &x

„.()'.&*'&)',&v) (4)

resented as

S~'($)=s~cosh2b] .
Here f is the position of the ions under considera-
tion measured from the midpoint of two planes of
separation 2l and sj is an arbitrary constant.

This conclusion could not be interpreted by the
usual assumption that the stopping power is pro-
portional to the local density of the atomic elec-
trons and the ionization probability, which is rep-
resented a,s

and g =Ep K &p and K are wave vectors of ion
beams in the initial and the final states, respec-
tively.

III. STOPPING POWER

When we consider the ionization energy loss, the
interaction Hamiltonian H is described as

I Z~e

, [(x -x,)'+(y -y, )'+(z —a,)']"' (7)

where (x&, y&, a,) is the position of the atomic
electron and Z& e is the charge of the incident ion.
Inserting Eq. (7) into Eq. (6), we obtain

(fg'~f)= " x„, ,

Z' '
~E=- ." L(z.-z,&)x„,)'o(q- ""')dq,

(10)
where Scu„o=E„-Ep, the energy loss in the excita-
tion to the nth states. Noting that Eq. (9) is re-
written for large L as

00

e tgg

[(x() x,)'+y—', + (a —z, ) ]"'
= 2Z e"*JKO(p;q),

where p, = [(xo x&) +y&-] ~ and K,(p&q) is the
modified Bessel function of the second kind. If
we replace 8&v„, in Eq. (10) by the average ioniza-
tion energy I, we obtain

Etz„-z,))x„,)'o (q- "')
n

I zIz
q ———XX -XX

IzV 2 pp

where

ef Qg=z
[( ) ( )] ()

/ 2

The energy loss per unit time is written as

We note that the probability density ~ q)(x, y) I

a

may be approximated by 6 functions when the wave
function q)(x, y) is well localized at (x„O):

iq(x, y) ~'=&(x-x,) b(y) . (5) where

I
VsX; V)Xj~ oo ~Vl

If we consider the matrix element of an interaction
Ha, miltonian H, we obtain

&fuff ~i) =
&J q&*(x, y)e ' 'If„'Oe' ()'q&(x, y)dxdyde

H„oe" 6 x —xo 5 y dxdydz p 6

where II„p is the matrix element between the gth
excited state and the ground state of the crystal

X;= 2e("&Ko(p, q)

and m is the electron mass.
Inserting Eq. (12) into Eq. (10) and norma, lizing

to unit flux, we have

2Z2 4

r)E= — '
a q [Ko(qp)+Kq(qp)]p(x, y, z)dxdyde,

S2 4

(13)
where p(x, y, e) is the density of the atomic elec-
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trons and p = [(xo-x) +y ] ~ .
IV. CHANNELING STOPPING POKER FOR CONVENIENT

ASSUMPTIONS

30—
present results

First we derive exactly the stopping power of
ion beams with the impact parameter go by one
atom from Eq. (13):

4 + fO 2f

nE(xo) = —
o dz, d0

I PdP
2Zie
mV 4 p ~m~n

xq'[Ko(qp)+ifto(qp)] p((z'+p'+xo —2xop cose)'~').

(14)
It is worthy to note that when the density p(x, y, z)

is constant the energy-loss function &E(xo) be-
comes

4mZge
'

2m Vp» -- —y dz,mV I

c 20

10—

0.0 0.5

on

1.0

2g2 4

&E(xo) = —
ornV

dz p((z'+ xo')'i ') ds

which is the usual Bethe-Bloch formula, and y is
Euler's constant.

Qn the other hand, if we assume that the density
function p(x) changes slowly at small p compared
with Ko (qp) and Kt (qp), we may put p(x) in front
of the integration. Thus we obtain

FIG. 1. Abnormal stopping power S~' ($) as a function
of the distance $ from the midpoint between the channeling
planes for S-Mev He iona in the Au {100}channel. The
solid and dashed curves are our exact calculation and the
local-electron-density approximation, respectively. The
dotted curve is the result from the semiclassical calcula-
tion of our previous paper (Ref. 6) and the dot-and-dashed
curve is Robinson' s result.

p
min

p dp q' [&o(qP)+&t (qp)] (16) the atom. Inserting Eq. (18) into Eq. (14), we ma, y
obtain the planar-channeling stopping power as

Since the factor f „dzp((z'+xo)'~ ) is proportional
to the "string density, "we may conclude that the
stopping-power function is proportional to the local
electron density.

It is easy to obtain'~ the planar-channeling
stopping power S(yo) in terms of the energy-loss
function &E(xo) [Eq. (14)],

S(yo) = —— &E((yo+a')"')da,
0'

where 0 is the area of the unit mesh in the atomic
plane and yo is the distance from the wall.

However, this assumption is not good in our
case. Then we perform calculations [Eq. (14)]
directly.

V. CONCLUDING REMARKS

We consider the electron-cloud distribution in
the atom by Moliere formula

p(r)= (0.35e "+8.8e "+40e "), (18)4m

where 5 =0.3/a», a» is the Thomas-Fermi
screening length, and Za is the atomic number of

S '($)=S(l —()+S(l +/) .
Numerical calculations of S~'(f) are performed

for 3-MeV He ions in the Au {100}channel and
shown in Fig. 1 compared with the local-electron-
density approximation given by Eq. (16). It is
concluded that the local-electron-density approx-
imation [Eq. (16)]is not valid at larger (, as ex-
pected.

At smaller $ the local-electron-density approx-
imation is in very good agreement with our exact
calculation, which means that the abnormal stopping
power S~'($) is represented by Eq. (2). However,
as shown in Fig. j., we could not distinguish the
difference between expressions (1) and (2).

We could not explain the difference between the
Robinson's expression and our result at large $.
It is noted that the experiments by Datz et al. used
by Robinson were performed for relatively low in-
cident velocities compared with the core-electron
velocities. Therefore, our perturbation theory
[Eq. (10)] cannot be applied for lower-level core-
electron excitations. In order to explain the Rob-
inson's expression at large $, numerical calcula-
tions without perturbation theory are now in pro-
gress.
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In order to determine the properties of single magnetic impurities in the Kondo state and
the effects of these single magnetic impurities on the host-conduction-electron spin system,
the Fe-impurity contributions to the Cu 3-host nuclear-magnetic-resonance (NMR) linewidth

~&, and spin-lattice relaxation time T~&, have been studied over a wide Fe-concentration
range (0 &g & 1260 ppm) in CNFe. The NMR-linewidth measurements made from 1.65 to 77'K
and in magnetic fields from 2 to 16 kOe and in some eases up to 60 kOe, show the anomalous
behavior of the slope S=d~&/dH originally observed by Heeger eg g&. and studied for a 480-
ppm CuFe alloy by Golibersueh and Heeger exists over a wide Fe-concentration range. This
anomalous behavior, which consists of the transition from a constant slope at low fields, SI,
to a smaller magnitude slope at high fields, SH, occurs in a relatively narrow range of fields
about some critical field H~. This behavior clearly results from the single-impurity contribu-
tion to the NMR linewidth as evidenced by the linear concentration dependence of both S I, and

S~ and also by the concentration independence of Sz/SH. Sz has the same (T +29) tempera-
ture dependence as the bulk susceptibility, while Sl, is enhanced for H &H~ and T & T~= 6'K.
At 1.65 'K, SH = (1.50 + 0.10) & 10" g, SL, = (2. 83 + 0.10) && 10 eg (g in ppm), and Sl,/SH = 1.9. These
results show that the Buderman-Kittel-Kasuya-Yosida-like oscillatory conduction-electron
spin polarization existing about an impurity for T» Tg is either enhanced for T & T~ and H &H~,

or else an additional long-range oscillatory spin polarization is formed in the Kondo state.
From the inverse concentration dependence of H~ we conclude that long-range interactions of
sufficient strength exist between Fe spins via the d-d double-resonance mechanism to effective-
ly saturate the extra oscillatory spin polarization in successively smaller applied fields as the
Fe concentration increases. The impurity-induced host relaxation rate is linear in Fe concen-
tration up to at least 300 ppm, decreasing from T&&~ =2.3 &10"eg (g in ppm) for 2.65 kOe to T~~~

=2.5 X 10"4g for 15 kOe at 1,65'K. The low-concentration data follow a single curve when
plotted as T(gT&&) vs T/H (0. 1'K/kOe&T/H&1. 0'K/kOe). Comparison of this curve with the
existing high-temperature (T» T&) theories would imply that the spin-lattice relaxation in the
liquid-helium temperature range is dominated by a dipolar coupling of the nuclei to longitudinal
dipolar fluctuations of the impurity spin. These results are discussed in the light of the T»
data for T & Tz which does not appear to be consistent with this mechanism suggesting that none
of the T»Tz relaxation mechanisms may be simply extended to the region T & TE.

I. INTRODUCTION

Dilute alloys of magnetic impurities in a non-
magnetic host metal ha.ve for several years been
the subject of considerable experimental and theo-
retical investigation. ' The nature of the ground
state or Kondo state of the magnetic impurity and
the form of the correlations between the impurity
d spin and nearby host-conduction-electron spins
for temperatures below the Kondo temperature T&
have been of particular interest. The host nuclear
magnetic resonance (NMR) has proved to be a

particularly useful probe for determining the effects
of the impurities upon the host-conduction-electron
system, because the impurity spin induces a
Ruderman-Kittel-Kasuya- Yosida (RKKY)-type spin
polarization in the conduction-electron system
vrhich is sensed by the host nuclei via the contact
interaction (AI o). Information about the magni-
tude and form of the oscillatory spin polarization
may then be obtained by observing the field and
temperature dependence of the host NMR proper-
ties.

Several detailed investigations of the effect of


