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Measurements of the high-field transverse electrical and thermal conductivities 0 and g„„
of a high-purity tungsten single crystal are presented for the temperature range 1.5-6 K.
The magnetic fie1.d dependences of the conductivities conform excellently to the predictions of
high-field semiclassical magnetoresistance theory, provided that thermal conduction by the
lattice is taken into account. The results show that the lattice thermal conductivity is propor-
tional to T, as expected for a pure metal in which the phonons are scattered principally by the
conduction electrons. The temperature dependence of the high-field electrical conductivity
0-, and the corresponding electronic contribution (z~)„„to the thermal conductivity w„„are also
measured. Theoretical expressions for these quantities are derived from semiclassical mag-
netoresistance theory, allowing estimates to be made of the temperature dependence associated
with possible low-temperature scattering mechanisms. Difficulties in interpreting previous
zero-field measurements in terms of electron-electron or electron-phonon scattering are dis-
cussed.

I. INTRODUCTION

In a previous paper we reported measurements
of the low-temperature electrical and thermal re-
sistivities of tungsten in the absence of a magnetic
field. ' Like many other transition metals, p and
WT (p and W are the electrical and thermal resis-
tivities, respectively) exhibit a predominantly Ta

dependence at low temperatures, suggesting that the
dominant low- temperature scattering mechanism
is electron-electron scattering. However, only a
small amount of independent evidence exists to sup-
port this interpretation. Therefore, we felt that it
would be useful to investigate the temperature de-
pendence of the electrical and thermal conductivities
of tungsten in a strong magnetic field to provide
further information about the low- temperature
scattering mechanisms.

In this paper we present measurements of the
transverse electrical and thermal conductivities cr„„
and &„„ofa high-purity tungsten crystal oriented
with the magnetic field along the [001j direction.
The measurements span a range of temperature
from 1.5 to 6 K and a range of magnetic field
strength from 2. '7 to 18.6 kG. Extensive use of
high-field semiclassical magnetoresistance theory' '
is made to separate the lattice and electronic com-
ponents &~ and (a,)„„from the total thermal conduc-
tivity &„„, and to interpret the temperature depen-
dences of the electronic conductivities o„„and (~,)„„
at high fields.

To provide the framework for analyzing these
measurements the relevant aspects of the high-field
theory are presented in Sec. II. In Sec. IIA we
summarize the magnetic field dependence of the
conductivities predicted by the high-field theory.
As shown by Lifshitz, Azbel, and Kaganov (LAK), '

these results reflect the topology of the Fermi sur-
face and do not depend upon the nature of the scat-
tering mechanism. In Secs. IIB and IIC we review
and extend the LAK treatment to investigate the
temperature dependence of o„„and (x,)„„, which,
unlike the magnetic field dependence, is determined
by the scattering mechanisms. In particular, it is
shown that at high fields, with the magnetic field
directed along a high-symmetry axis, each scat-
tering mechanism contributes in a strictly additive
fashion to o„„and (v,)„„. In this respect, high-field
measurements of g„„and (e,)„„should be less am-
biguous than zero-field measurements of p and W,

' for which the additivity of the contributions of dif-
ferent scattering mechanisms (Matthiessen's rule)
'is only approximate. In addition, simple expres-
sions for the contributions of various scattering
mechanisms to o„„and (x,)„„arederived, allowing
estimates of the temperature dependence of each
contribution to be made. In Sec. III, the experi-
mental results are presented, and this is followed

by a discussion of these results in Sec. IV. Diffi-
culties in interpreting both the previous zero-field
results and the present high-field results in a con-
sistent manner in terms of electron-electron or
electron-phonon scattering are discussed. Lastly,
a comparison of the results reported in this paper
with similar recent measurements in tungsten by
Long is made.

II. THEORY

Section IIA consists of a general consideration of
the magnetic field dependence of the high-field elec-
trical and thermal conductivity tensors v(H) and

V, (H). The discussion is specialized to those cases
in which the magnetic field H is oriented along a
high-symmetry direction (threefold, fourfold, or
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sixfold symmetry axis), and to metals, such as
tungsten, in which the sheets of the Fermi surface
are closed. It should be emphasized that these re-
sults are applicable to any scattering mechanism
and do not depend upon the existence of a relaxation
time. In Sec. IIB the explicit dependence of the
conductivity tensor elements o„„and (z,)„„upon the
nature of the scattering mechanism is considered.
Finally, in Sec. IIC, the relationship of the high-
field conductivities to the zero-field resistivities is
explored, and estimates of the temperature depen-
dences of the high-field conductivities are made for
several scattering mechanisms.

A. High-Field Conductivity Tensors 5'(H) and z (0)

It is simplest to discuss first the field dependence
of the electrical conductivity tensor v(H). With the
magnetic field along a high-symmetry direction, the
conductivity tensor o(H) assumes the simple form:
o„„(H)=o„(H), o„„(H)= —o~(H), and o„,(H) =o,„(H)
= o„(H)= a„(H) = 0. These relations, coupled with
the Onsager relation v,&(H) = o&,(- H), require that
o„„(H) and o„,(H) be even and odd functions of H,
respectively. According to semiclassical magne-
toresistance theory, if the Fermi surface is closed,
the tensor elements cr„„and o„, have the following
asymptotic form at high fields:

o„„-a„„(T)/Ha, a~- (n, —n„)ec/H+a„, (T)/H,

where n, and n„are the number of electrons and
holes, respectively, and a„„(T)and a„,(T) are gen-
erally temperature-dependent quantities that depend
upon the nature of the scattering processes in the
metal. Since tungsten is compensated (n, =n„), it
follows that v„„-a„(T)/H . At high fields, inver-
sion of the conductivity tensor gives

1/p„„-o„„-a„„(T)/H

where p(H) is the electrical resistivity tensor.
Equation (1) is valid at fields strong enough such
that ~a„Q/a~~a» 1, or in terms of directly mea-
surable quantities Ip»l » Ip»I .

The thermal conductivity tensor x, (H) can be
treated in a similar manner. '7 At high fields the
tensor elements (z,)„„and (v, )„,have the following
asymptotic form:

(K.)..-A, (T)/H',

(~,)„,- L,T(n, n„)ec/H+A„, (T)/H—',
where Lo= 2. 44x10 ' WQ/K is the Lorenz number
and A„„(T)and A„,(T) are generally temperature-
dependent quantities that depend upon the nature of
the scattering processes in the metal. These quan-
tities and their electrical counterparts obey the
%iedemann-Franz .law if the scattering is elastic;
that is, A„„/Ta„„=Laand A~/Ta„, =Lo. If the scat-
tering is not elastic, these ratios will generally be

larger than the Lorenz number I-o.
At this point only thermal conduction by the elec-

trons has been considered. In fact, some heat is
conducted by the phonons (lattice) in addition to that
conducted by the electrons. Assuming that the two
conduction mechanisms are independent, the con-
ductivity tensors for electron and phonon conduction
simply add to give the total conductivity tensor
z(H). Thus, at high fields in a compensated metal,
we have v„„-v~(T)+A„„(T)/H and ~~-A„,(T)/H,
where &, is the thermal conductivity of the lattice.
Letting W(H) be the thermal resistivity tensor, in-
version of the thermal conductivity tensor at high
fields gives

1 ~~ ~~ A (T)/T
(2)

Expressions for a„„(T)in Eq. (1) and A„„(T)/T in

Eq. (2) are derived in Sec. IIB, showing the ex-
plicit dependence of these two quantities upon the
scattering mechanism.

B. High-Field Expressions for o, and (z, )„

In a metal with several valence electrons, por-
tions of the Fermi surface will generally be distrib-
uted among one or more bands and will therefore
occupy one or more Brillouin zones. The portion
of the Fermi surface belonging to a single band may
consist of one or more surfaces or sheets, which
we assume to be closed. In the presence of a mag-
netic field H along the z axis, an electron on one
of these sheets will move on the orbit formed by the
intersection of this sheet with a plane perpendicular
to the magnetic field. Following the semiclassical
theory of LAK, the motion of the electron in mo-
mentum space can be described in terms of its
component of wave vector k, along the magnetic
field, its energy e, and a coordinate P that mea-
sures its position on the orbit. For a given orbit
(specified by k, and &) P is defined by

P = —&u, (Sc/eH) J dkg/vg, (3)

calculated from an arbitrary point on the orbit. In
this expression, dk, is an element of arc along the
orbit taken in the direction of motion and v, is the
component of velocity perpendicular to the magnetic
field. (v, is taken to be positive if directed outward
from the orbit. ) The cyclotron frequency &u, is de-
fined such that one full orbit corresponds to a
change of Q by 2v. In general, &o, will have a dif-
ferent value for each orbit and therefore will be a
function of k, and &.

In the semiclassical theory, the electric and mag-
netic fields are assumed not to cause interband
transitions, ' but interband scattering is allowed.
However, because the inclusion of interband scat-
tering into the theory only complicates the formal-
ism without altering the principal results, we shall
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&u, = ——V„+ W(qE),
8 gE Bf~

(4)

where W(7l) is the collision integral. For the scat-
tering of an electron from the state k to the state
k' by an impurity or a phonon, W(q). is given by'

1 1
W(q) = — —,-

I (fk' (g —g') P(k, k'),
k~T 4p g

where

(6)

consider initially only intraband scattering in this
section. Thus, each band can be treated indepen-
dently. For simplicity we assume that the band
under consideration contains only a single sheet of
the Fermi surface. Finally, at the end of this sec-
tion we discuss the results that are obtained when
these restrictions are relaxed.

In the presence of an electric field E along the
x axis, in addition to the magnetic field H along the
E axis, the steady-state distribution function f will
deviate by an amount eE„qE from its value fo at
equilibrium. In terms of g~ and the orbit variables
k„E, and P, the linearized Boltzmann equation for
electrical transport is

&c ~~a 8 0 g ~(0)

(
g~ (2)

(10)

(see Appendix A). The constant is determined by
the condition that the total number of electrons be
conserved. This condition is satisfied only if the
constant is zero. Thus C~ = 0.&0)

The solution of Eq. (10) is

Equation (9) has the solution qE
' ——CE ' (k„e). Each

coefficient must be a single-valued function of Q.
Thus q

" is single valued, provided that

fW(CE ') dP =0, (12)

where use has been made of the fact that f v„dQ = 0
for closed orbits. For either choice of the collision
integral given by Eq. (5) or (7), the solution to Eq.
(12) is

C = ——& const(O) @ 0

e~

and the integration extends over the Brillouin zone.
P(k, k') is related to the scattering rate Q(k, k')

through

P(k, k') =f (& )[1 —f (E ') ]Q(k, k') = P(k', k).

For the scattering of an electron from the state k,
to the state k', by an electron which is scattered
from the state kz to the state kz, W(q, ) is given by

IV(&,)=
k (jm) J(dkif ~"(J~dks

x (g, + g, —())', —P', ) P(k„k„k'„k,') . (7)

In this case P(k„k2, k'„kz) is related to the scat-
tering rate Q(k„k» k', , k~) through

P(kg, k~; kg, k~) =f0(&()fo(e~)[1 —fo(e', )] [1 —fo(e3)]

xQ(k(, k2, ki, k~)

= P (ki, kq, kg, k2).

Following the treatment of LAK, at high fields the
solution 7lE of Eq. (4) can be written as a.series in
powers of 1/H:

&, = &
"'+ (1/H) aE"+ (1/H') nE" + ~ .

Inserting this series in Eq. (4), assuming that the
scattering rate Q does not depend upon 0, and
equating coefficients of the same power of 1/H,
yield

The function CE is determined within a constant by
the condition that g&

' be single valued, that is

f W(q(") dy = 0 . (14)

In general, this equation has no simple solution.
Equation (14) and the condition that the total number
of electrons be conserved determine p~" uniquely.
Finally, the solution of Eq. (11) is

q'~'= —C'0'(k„k)+~' 1V(q"')d(') .
c

0

The function C~ ' can be determined by following the
same procedure used to determine C~ ', but is not
needed in this treatment.

Once p~ has been determined, the conductivity
tensor element O„„can be calculated from

o„„=(e'/4m') f dkv„qE, (16)

where the integration extends over the Brillouin
zone. If several bands are present, the results for
each band should be summed. Using Eq. (8) for qE,
Eq. (16) for &,„,and the fact that dk = (- eH/Actor,)'
xdk, dad()'), one obtains a series expression for o„„
in powers of 1/H. The term proportional to 1/H
vanishes by virtue of the fact that $v„dP f~~ v„dP'
= 0. The term proportional to 1/H does not vanish
and is given by

e' fdk, ~(Z„„3g
—

)(
— (f& () (f(f& 'L)„4FS cg (d~ ~
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x — W(qs ') dy'. (17)
c„

n(1) d I —C(1)+()v d

d ' Wq&" —C&"+~ v„d . 18

The first term on the right-hand side of Eq. (18)
vanishes by virtue of Eq. (14). Direct substitution
of Eq. (18) into (17) and a change of variables back
to Cartesian coordinates yields the simple result

a„„=(e'/4~') j dk [- W(q,"')y,"'], (»)
where a„„is the coefficient of the 1/H term in o„„,
and gs" is related to (7s" by Eq. (6).

A similar expression for A„„/T can be derived in
the same manner. With a temperature gradient
(- V„T) and zero electric field, the linearized Boltz-
mann equation is

— uv„+ W(11r),
S1lr Sf,

(20)

where u = (& —g)/ksT and (- ksV„T)'gr =f—fo. Using
the defining relation

(((,)„„=(ks T/4((') fdk uv „1)r,
one obtains

(21)

kxx & dk [ W(1l(1))q(1)]

where A„„is the coefficient of the 1/H term in
(((,)„„, and gr(' is related to 17r1' by Eq. (6). The
quantity p~

' is given by

(22)

'g~ = ——Q Cz t(!&& 6 + v&d

The integral over Q can be simplified by integrating
by parts:

(Id/ v„— W(q(I ')d&f&'

In the remainder of this section, it is assumed
that H is directed along a twofold symmetry axis.
This will naturally also include the case in which
H is directed along a fourfold symmetry axis, cor-
responding to the experimental situation considered
in this paper. The E and T subscripts on g can be
dropped temporarily, for the arguments given here
are identical for electrical and thermal transport.
With each orbit possessing twofold symmetry about

H, it follows that v„(P + (() = —v„(P), and it can be
shown (Appendix B) that the solution to the Boltz-
mann equation must also have the same property;
in particular, 17"'((t +(() = —q "(Q), or equivalently,

j1l"'(y) dy = 0 .

This condition determines p
"uniquely. Since

W(q"'(y+ ~)) = —W(q"'(y)),

(25)

Eqs. (14) or (24) will be automatically satisfied by
the choice of (7

"that satisfies Eq. (25). ' Using
Eqs. (13) and (23) for (7s" and 1)r", and the fact that

v„dQ = (-Sc(d,/eH) dk„one can readily show that

~(1) ~(1) 0 C
(26)

where 0, is the y component of wave vector mea-
sured from the center of symmetry of the orbit.

If several scattering processes are present si-
multaneously, the collisionintegral W(1i) in the Boltz-
mann equation should be replaced by the sum of the
collision integrals for each scattering mechanism.
Since 1lz" and pr" given by Eq. (26) do not depend
upon the scattering mechanism, it is clear that the
high-field conductivities, given by Eqs. (19) and

(22), will be the sum of the conductivities for each
scattering mechanism, as if each acted separately.

Having established the additivity of the high-field
conductivities for different scattering mechanisms,
it is possible to consider the contribution of each
mechanism separately. Using Eqs. (19) and (22)
for a„, and A„„/T, Eq. (26) for 1i~

' and 1lr ', and

Eq. (5) for W(1i), one obtains

and the function C~ ' is determined by the condition

f W((7"') dP = 0 .
and

SCa„„=, dk~t dk' (k, —K', )'P(k, k')

(2'7)

To calculate a„„and A„„/T from Eqs. (19) and (22)
for a specific scattering mechanism, it is first
necessary to determine p~" and g~ '. In general,
both quantities will depend upon the scattering
mechanism through C~ ' and C~ '. Ho~ever, if the

magnetic field is oriented along a twofold or higher-
symmetry axis, and each orbit possesses this same
symmetry with respect to the rest of the zone, then
p&" and p&" are determined uniquely by symmetry
and do not depend upon the scattering mechanism,
as shown below.

x(uk, —u'k', ) P(k, k') . (28)

Jf Eq. (7) is used for the collision integral W(q),
one obtains

(nc)'
a„„=

(4 3,4 4k T dk, dk2 dk', dk2

x (k„+k2, —k'„—k2, ) P(k, , k2; k'„kp) (29)
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~„„r~h ' (a' )s

(4 s)s 4p T J kl dks
~

dkl dk2

x(gP»+gobs' —g&k» —&skIh) P(k» k» k» ks) .
(3O)

To this point, only intraband scattering has been
considered. To illustrate the considerations in-
volved when interband scattering is present, con-
sider two bands, denoted by n and P, each contain-
ing a single closed sheet of the Fermi surface and
possessing twofold symmetry about H. The Boltz-
mann equations for electrical transport are given
by

Bnz Bfo v„„+W (qs; ass),
B Be

(31)

Boss Bfo
(4),s

—— — v„s+ Ws (gas,' q s, ) .
B s Bes

(32)

For the scattering of an electron by an impurity or
phonon, W, (q; qs) is given by

W.(n.; ns) = , T-, dk (&.-4P..(k, k')
IT (if

+. ~ fit P Pgg kP k ~ 33

+ a«-4P, (k,",'; kV!)4V!)) . (44)

In the ease of the scattering of an electron by an
impurity or phonon, Eq. (34) becomes

I 2

a„„= ', „~, dk jl dk'(k, - k')' P..(k k')

+ dk ' dk' (k, —k„) Pss(k, k')
dg ~g

+2 dk f dk (4„—k, )' P„(k,k )), (85l

The first term represents intraband scattering of
~f

the type k -k, and the second term represents
interband scattering of the type k -k~. The ex-
pression for Ws(qs, q ) can be obtained by permuting
(x and P in Eq. (33). An expression analogous to
Eq. (33) can be obtained for electron-electron scat-
tering.

The results derived earlier in this section for
intraband scattering hold also for combined intra-
and interband scattering. In particular, it is shown
in Appendix A that C'„' = C~

' = 0. Also g~'o and g~~
are determined by Eq. (25) as before, and therefore
are given by Eq. (26). Using Eq. (19) to calculate
the contribution to a„„from each band, one obtains

3

s
~

dB- Wa(ns'nk &zs)(I zD
4m

where use has been made of the symmetry proper-
ties of the P's:

P„(k,k ) =P„(k,k),

Pss(k, k ) =Pss(k, k),

and

P~(k, k ) = Ps (k, k).

An analogous expression for A„„/T can be derived
in the same manner. The argument can also be ex-
tended to include interband electron-electron scat-
tering, although the expressions obtained are con-
siderably more cumbersome.

C. High-Field Conductivities: Relationship to Zero-Field
Resistivities and Their Temperature Dependence

In the first part of this section, we explore the
relationship between the high-field conductivity
formulas derived in Sec. IIB and the zero-field re-
sistivities given by the Kohler variational principle.
We consider initially a system whose Fermi surface
is a single closed sheet, belonging to a single band.
According to the Kohler variational principle, ' the
zero-field resistivity p can be written

p p„(@)= —~ dk —W ~- — C 4'
1 1 , ( Bfo

Zs 4o „),Be

(36)
with

1 t' - ( Bf,

The trial function 4' is chosen to minimize the right-
hand side of Eq. (36), reducing the equation to an
equality. In this case (- Bfo/Be)c' represents (within
a constant factor) the deviation of the distribution
function f from its equilibrium value f,. The quan-
tity J„represents the x component of the electrical
current density associated with the distribution
function fo+(—Bfo/Be)@. {The electric field is taken
to be along the x axis. ) Generally, the proper
choice of @ will depend upon the scattering mecha-
nism, and the additivity of the resistivities for dif-
ferent scattering mechanisms (Matthiessen's rule)
will be only approximate.

We suppose that the system has cubic symmetry
and that the z axis is directed along a fourfold sym-
metry axis. A possible choice for 4 is hck„, where
k„ is measured from the center of symmetry of the
sheet. In almost every case, ' this will not be the
best choice for 4, and Eq. (36) will be an inequal-
ity. However, with this choice of 4, the denomina-
tor of Eq. (36) can be written

3 1 G7S ~'3
J„= —s —ev„(|feb„)

4m Se
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—"as- k4v' 3J (37)

where dS is an element of the Fermi surface, and

n is a unit vector normal to the surface, directed
outward from the surface if the sheet is an electron
surface, and inward if the sheet is a hole sur-
face. The integral ~ 3 f aSn ~ k~ is just the volume
enclosed by the Fermi surface, which is 4& times
the number of states n enclosed. Consequently, the
denominator has the value (nee) . Since the e axis
is assumed to be a fourfold symmetry axis, the
trial function 4 =Sck, appearing in the numerator
of Eq. (36) can be replaced by —hck, without chang-
ing the value of the numerator. Then it follows
from Eqs. (19) and (26) that the numerator is iden-
tically equal to a„„. Consequently, p & p„[hck„]—= a„„/
(nec) . However, a„„/(nec) is just the high-field
magnetoresistivity p„„of the material, so that
p p„(5ck„]-p„„.

This treatment can be easily generalized to sys-
tems in which portions of the Fermi surface are
distributed among several bands. For example, if
there are two bands n and P, the numerator of Eq.
(36) is identical to Eq. (34), if ege", and ege'~' ap-
pearing in Eq. (34) are replaced by the trial func-
tions 4 and 4 z, respectively. The quantity J„ in
Eq. (36) represents the total x component of the
current density, corresponding to the distribution
function f0+ (- 8fo/8e, )C for the n band and fo
+(-8fo/8e6)C~ for the P band. Following the earlier
arguments, one obtains

p „,/[(n, —n„)ec]'- p„„,
and for the thermal case,

A„„/T

(38)

where n, and n„are the numbers of electrons and
holes, respectively.

While these results by themselves may not be
very surprising, the derivation is interesting be-
cause it indicates that in an uncompensated (n, On„)
metal, the difference between the high-field mag-
netoresistivity and the zero-field resistivity is a
measure of the error produced when the trial func-
tion I =Nck„(C =kcuk„ in the thermal case) for each
sheet is used to calculate the zero-field resistivity
by the Kohler variational principle. If the system
is compensated (n, =n„), the right-hand sides of
Eqs. (38) and (39) diverge. This reflects the fact
that the trial function hck„ for each. sheet yields a
vanishing total current, while the correct trial
function for each sheet would give a finite total cur-
rent.

In view of the similarity of the variational expres-
sion for p and the expression for a„„[forexample,
compare Eqs. (36) and (19)], it may be reasonable

to expect that p and a„„(or WT and A„„/T in the
thermal ease) would have similar temperature de-
pendences. This is especially evident for the sim-
ple case in which a relaxation time v exists. In this
case W(g) = —q/7 and both p and a„„, as well as WT
and A„„/T, depend upon 7 in the same way: Each is
proportional to I/y. In the remainder of this sec-
tion we consider the temperature dependences of
a„„and A„„/T expected for impurity, electron-elec-
tron, and electron-phonon scattering.

Of these scattering mechanisms, impurity scat-
tering is the simplest to discuss. Such scattering
is elastic and leads to values of a„„and A„„/T that
are temperature independent and related by the
Wiedemann-Franz law, i. e. , A„„/Ta„„=1.0.

The temperature dependence of n„„adnA„„/T for
electron-electron scattering is determined mainly
by the Fermi factors contained in P(k, , k2; k'„ka).
This reflects the operation of the Pauli exclusion
principle, which confines the scattering to a region
within k~T of the Fermi energy, resulting in a char-
acteristic T temperature dependence for the high
field conductivities a„„and A„„/T. This T behavior
should be largely independent of the Fermi surface
topology, and should occur for interband as well as
intraband processes.

The situation for electron-phonon scattering is
much less clear. In the simple metals in the ab-
sence of a magnetic field, the Bloch theory, ' which
treats only normal processes, predicts a T' depen-
dence of p and a T' dependence of WT at low tem-
peratures. Umklapp processes, ' not treated in the
Bloch theory, must be dealt with on a metal-to-
metal basis, since the contribution of these pro-
cesses to the resistivities are sensitive to the posi-
tions of the Bragg planes relative to the Fermi sur-
face and to the form of the pseudopotential. Theo-
retical calculations have indicated for some time
that umklapp scattering plays a dominant role in de-
termining the electrical resistivity, '~ and there is
growing evidence that umklapp processes do, in fac t,
cause serious deviations from a simple low-tem-
perature T behavior in some metals. "

While the role of electron-phonon scattering is
still not completely understood in the simple met-
als, it is even less well understood in the transition
metals. The problem is difficult for several rea-
sons. First, the Fermi surface of a typical transi-
tion metal does not generally even resemble the
surface that would be derived from a nearly-free-
electron model. Second, the wave functions gen-
erally have significant s-d character and the pseu-
dopotential cannot yet be calculated reliably, so that
the matrix element for electron-phonon scattering
is uncertain. Consequently, for lack of a better
alternative, experimentalists have had to assume,
without much theoretical justification, that the sim-
ple T' and T' behavior for p and WT can be used to
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describe electron-phonon scattering at low tempera-
tures in transition metals. One might expect by
analogy that the contribution of electron-phonon
scattering to a„„and A„„/T would be proportional to
T' and T', respectively, but, as far as the transi-
tion metals are concerned, it is probably wise to
apply these results with considerable caution.

III. EXPERIMENTAL RESULTS
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The tungsten sample used in the experiment was
spark-cut from a longer 3-mm-diam zone-refined
crystal, which had a residual resistivity ratio
p(299K)/p(OK) of 63000. The rod axis was paral-
lel to the [110]direction (taken as the x axis), and
the magnetic field H was oriented normal to the rod
axis along the [001]direction (z axis). Measure-
ments of the transverse electrical and thermal mag-
netoresistivities p„„and S"„,were made in the con-
ventional potentiometric manner in separate experi-
ments.

The cryostat used was identical to the one de-
scribed in a previous paper, ' except that the sample
was mounted horizontally rather than vertically, so
that a superconducting solenoid could be used to
produce a magnetic field transverse to the sample.
In the thermal measurements, the temperature dif-
ference created between two points on the sample
by a heat current was measured by means of two
matched Allen Bradley 56-0 —,'o-W carbon resistors
soldered to copper rings which had been electro-
plated to the sample. For the electrical measure-
ments, the thermometers were left in place, a cur-
rent lead was attached to the free end of the sample,
and potential leads were attached to the sample at
the thermometers.

It is worth mentioning that at high magnetic fields
the use of ring contacts rather than point contacts
will not seriously perturb the current distribution
in the sample, Provided that the sample is compen-
sated and the magnetic field is oriented along a
high-symmetry direction. Although the rings will
short-circuit the Hall electric field locally, under
these circumstances the Hall field is so small com-
pared to the electric field along the specimen axis
that the effect is negligible. On the other hand, if
the specimen were uncompensated, just the reverse
would be true, and the current distribution would
be seriously perturbed.

The thermometers were calibrated during each
experiment (in zero magnetic field) against a stan-
dard germanium resistance thermome ter. Small
corrections for the magnetoresistance of the carbon
resistors were made, but were so small for the
field strengths used that they were hardly neces.-
sary. During the thermal measurements, heat cur-
rents of 0. 1 to 1 mW were used to generate temper-
ature differences of about 200 mK at each field, al-
lowing measurement of 8'„„to a precision of better
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FIG. 1. Variation of H /p with T for various values of

the magnetic field H.

than 2%. All thermometer and heater leads to the
sample were constantan, and the heat leak through
these leads was negligible. It was verified that the
heat lost through the vacuum surrounding the sam-
ple was also negligible by comparing measurements
taken with the sample at different temperatures rel-
ative to its environment.

The results of the electrical measurements are
summarized in Fig. 1. In this figure, H /p„„ is
plotted against T' for several values of the magnetic
field. The purpose of plotting the data in this man-
ner is first to show the field dependence of p, and
second, to show the temperature dependence of
H /p, „-a„,[Eq. (1)] in the high-field limit. It is
clear from the figure that p„„is nearly proportional
to H, the exponent being approximately 1.S6.
Small deviations from the II law were observed in
earlier work by Fawcett, ' but were not observed
in a more recent study by Long. It is not certain
whether the deviations observed in this study are
an intrinsic effect, or merely an artifact caused by
the finite width of the electroplated copper rings
which were used as potential contacts. In any case, .

the deviations pose no serious problem in the inter-
pretation of the measurement, and will not be pur-
sued further.

The temperature dependence of H /p„„- a„„is
nearly quadratic, but increases at a somewhat
faster rate at higher temperatures. For this sam-
ple, the temperature-dependent part of a„, is rough-
ly 30% of the residual part of 6 K. It is interesting
to note that the zero-field resistivity p of the same
sample measured in an earlier experiment showed
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6 K. In contrast, the zero-field measurements of
WT showed an almost precisely T behavior below
6K'

In the derivation of Eq. (2) we neglected thermo-
electric effects which arise due to the fact that the

thermal magnetoresistivity W„„was measurerI under
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FIG. 2. Variation of H2/O' T with temperature for

various values of the magnetic field H. The slashed data
points were taken in a separate experiment with no change
in the cryostat. The solid data points were taken after
changing the separation of the thermometers on the sam-
ple. The dashed line indicates the residual value of
H~/TV T obtained by the Wiedemann-Franz law.

a similar temperature dependence. ' Furthermore,
the temperature-dependent part of the zero-field
resistivity was also about 30'%%u~ of the residual part
at 6K.

There is little doubt that the high-field regime has
been reached in this sample at the magnetic fields
used. At 13.3 kG and 4 K the resistance had in-
creased by nearly five orders of magnitude over its
value at zero field. Furthermore, a measurement
of p„, indicated that it was about 300 times smaller
than p„„at 13.3 kG and 4 K, so that Eq. (1) was
valid for all field strengths used in this study.

The results of the thermal measurements are
summarized in Fig. 2, in which H /W„, T is plotted
against temperature for several values of the mag-
netic field. To compare these results with Eq. (2),
these data have been replotted in Figs. 3(a) and 3(b)
as 1/W„„T vs 1/H for several temperatures. The
agreement with Eq. (2) is remarkable. In particu-
lar, the intercepts give the values of z~/T at each
temperature, and these have been plotted against
temperature in Fig. 4. As can be seen from this
figure, v,/T has a, very plausible linear tempera-
ture dependence given by &,/T = 0. 5T mW/cm K .
According to Eq. (2), the slope of each line in Fig.
3 is the value of A„„/T for that temperature. These
slopes have been plotted against T in Fig. 5, dem-
onstrating that the temperature-dependent part
of A„„/T has an almost precisely T behavior below
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FIG. 3. Plot of 1/O' T as a function of 1/H2 for several
temperatures. In (a) some of the data within the dashed
box has been omitted for clarity. The data falling within
the dashed box has been plotted in (b).
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FIG. 4. Lattice thermal conductivity divided by tempera-
ture as a function of temperature.

the condition of zero electric current rather than
zero electric field in the sample. The dominant
correction due to these effects is a term p„„(e„",)2
that should be added to the right-hand side of Eq.
(2). The quantities p and e„", are elements of the
electrical resistivity and thermoelectric power
tensors, respectively. At high fields this term
becomes independent of magnetic field and has the
value p„„(cyT/H)~, where y is the coefficient of the
electronic specific heat per cm' of electrons. For
the tungsten sample used in this study, this term
has the value 0. 1 mW/cmK at. 4 K. Since this is
at least 20 times smaller than 1/W„„T for all values
of the magnetic field at this temperature, the cor-
rection is of little consequence and can be ignored.

IV. DISCUSSION

One of the principal findings of this investigation
is that the magnetic field dependences of both v„„
and &„„closely follow the predictions of the high-
field semiclassical theory, provided that thermal
conduction by the lattice is taken into account. The
measurements indicate that the lattice conductivity
&~ is proportional to T2, as expected for a pure
metal in which the phonons are scattered principally
by the conduction electrons. Furthermore, the
temperature dependence, as well as the magnitude
«&~ is in good agreement with measurements made
on transition-metal alloys. The first attempts to
mf. asure the lattice conductivity of tungsten were
made over three decades ago by de Haas and de
Nobel and, subsequently, by de Nobel, but were
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FIG. 5. Plot of A /T as a function of T3. The values
of A„„/T were obtained from the slopes of the lines of
Fig. 4. The precision of each value is approximately

hampered by the lack of specimens of sufficient
purity. 7 Very recently, a successful measurement
of the lattice conductivity has been made by Long~s

in a tungsten crystal of higher purity than was
available to de Haas and de Nobel. The measure-
ments of &~ reported here and reported by Long are
in substantial agreement, and, as shown by Long,
agree within better than a factor of 2 with reason-
able theoretical estimates of K~.

The temperature dependences of the high-field
electrical conductivity o„„-a„„/H and the electronic
contribution to the thermal conductivity (z,)„„/T- (A„„/T)/H should reflect the scattering mecha-
nisms present in tungsten at low temperatures. It
was shown in Sec. IIB that with the magnetic field
H along a twofold symmetry axis, a„„and A„„/T are
composed of the sum of the contributions of the
various scattering mechanisms present in the met-
al, as if each mechanism acted separately. Fur-
thermore, the expressions for a„„and A„„/T ob-
tained in Sec. IIB were, apart from the choice of
trial function, similar to the variational expressions
for p and O'T, respectively. For this reason it was
argued that the temperature dependence of a„„and
p, as well as A„„/T and WT, would probably be
similar. This appears to be the case for the elec-
trical quantities a„„and p but not for their thermal
counterparts A„„/T and WT. In this study, a ap-
pears to increase nearly quadratically with temper-
ature at low temperatures, but at a somewhat faster
rate at higher temperatures approaching 6 K. In
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a previous study at zero magnetic field, '
p was found

to behave in a similar fashion. On the other hand,
A„„/T showed an almost precisely T behavior in
this study, while in the previous study WT showed
an almost precisely T~ behavior. Although the
zero-field results can be plausibly explained in
terms of electron-electron scattering, it seems un-
likely that this scattering could cause a T depen-
dence of A /T. It may be possible to explain both
the high-field and the zero-field results in terms of
electron-phonon scattering, but the current under-
standing of the role of these processes in the tran-
sition metals is still too poor to assess this possi-
bility properly.

We have assumed that the effect of boundary scat-
tering on the temperature dependence of a„„and
A„„/T can be neglected. Indeed, the previous mea-
surements in zero magnetic field indicated that
boundary scattering did not have a significant effect
on the temperature dependences of p and WT for
this sample. Moreover, it seems reasonable that
the importance of boundary scattering should de-
crease as the magnetic field is increased, since the
fraction of electrons striking the boundaries is re-
duced.

There is one assumption made in Sec. IIB that
should be examined in the context of the tungsten
Fermi surface. The tungsten Fermi surface has
portions located in the second, third, and fourth
Brillouin zones. The second zone consists of an
array of six small ellipsoidal hole pockets located
at N (at the centers of the (110) zone faces), and the
third zone consists of an octahedral-shaped hole
surface located at H (the (100) zone vertex) The.
fourth zone contains the electron "jack" centered
in the zone at I'. In Sec. IIB it was assumed that
all orbits have at least twofold symmetry about H.
Although H was directed along a fourfold symmetry
axis in the experiment, there are a number of or-
bits that do not possess even twofold symmetry
about this same axis. First, there are the orbits
formed by the intersection of the "knobs" (but not
the "necks") of the electron "jack" with a plane per-
pendicular to the magnetic field. These orbits oc-
cur on only a small fraction of the Fermi surface,
so their contribution to the conductivities can be
neglected without much error. Second, four of the
six hole ellipsoids taken individually do not have
any special symmetry with respect to the rest of
the zone. However, the surfaces are ellipsoidal,
so that v„(P+ v) = —v„(P) for orbits on these sur-
faces. Although it does not follow that Eq. (25) will
hold for an arbitrary scattering mechanism, Eq.
(25) does hold in the relaxation-time approximation.
Consequently, the assumption that p"' for these
surfaces is given by Eq. (26) should be a good
starting point for calculating the contribution of
these sheets to the conductivities.

We now turn to the experimental results reported
by Long. In that study the extraction of the lattice
thermal conductivity from the measurements was
based on the phenomenological expression

~„„(H, T) = TL,(T) a„„(H, T) + ~,(T) . (40)

This equation can be shown to be a simple conse-
quence of the high-field theory. Long's crystal was
oriented with the magnetic field along the [001]di-
rection, so that all the arguments given in Sec. II
apply. Equation (40) is equivalent to Eq. (2), which
can be written as

z„„(H, T)= T~ (r„„(H, T)+~ (T), (41)
IA„„(T)
Ta„„T

showing that L~(T) =A„„(T)/Ta„„(T). Thus the as-
sumption made by Long that I-& does not depend upon
H is well justified at high fields. In Long's sample,
the temperature-dependent part of a„„was only a
small fraction of the residual part; consequently,
the temperature dependence of L~ was determined
by that of A„„/T. It was found in this study that

A„„/T varies almost precisely as T, while Long
has fit his values of I-, to a T dependence. How-

ever, a T dependence is not inconsistent with the
data when the scatter is taken into account. Long's
measurement of L,(T) =A„„(T)/T a„,(T) can also be
understood in terms of semiclassical theory. As
remarked in Sec. IIA, J-2 willbe equal to Loonly if
the scattering is elastic and will generally be greater
than Lo if the scattering is inelastic. This is borne
out by his measurements, which show that I.~ in-
creases from a value near I-0 at 1.5 K to a value
appreciably greater than 1-0 at 4. 2 K.

In summary, it is found that the magnetic field
dependence of the high-field conduetivities o„„and
&„„canbe understood excellently in the context of
semiclassical magnetoresistance theory, provided
that the thermal conductivity of the lattice w~ is taken
into account. A lattice thermal conductivity &~ given
by &,= 0. 5 T mW/cmK is found experimentally,
consistent with the view that the phonons are scat-
tered mainly by the conduction electrons. The tem-
perature dependence of the high-field conductivities
is shown to yield information about low-temperature
scattering mechanisms. However, when both zero-
field and high-field measurements are considered
together, it is found that they cannot be explained
plausibly in terms of electron-electron scattering,
as was previously concluded from measurements
of the zero-field resistivities. Electron-phonon
scattering may be responsible, but the current un-
derstanding of such scattering in the transition met-
als is still too poor to explore this possibility in
greater detail.
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APPENDIX A

In this appendix we wish to show that

Cs (k„c)= ——&(const.(o& sfo

Since the distinction between electrical and thermal
conduction is unimportant, we drop the E and T sub-
scripts on q and g. First, we prove the result for
only intraband scattering. Next, we indicate how

the argument is extended to two bands with combined
intra- and interband scattering.

(i) Multiplying Eq. (12) by (- He/k'c o)&dk, de g(o&,

integrating over k, and c, and noting that ('o& is not
a function of (&&& gives

d& d(t& W(C(o&) (1&(o&

f dk fdk' ((C&'
' —(C&' ") P(k, k')=0 . (A2)

Since the integrand is always positive, this condition
can be met only if (1&(o&= const or C(o&(k„c)
= (- Bfo/de) x const. A similar proof can be con-
structed for electron-electron scattering by using
Eq. (7) for the collision integral.

(ii) Following the discussion in Sec. IIB, we de-
note the two bands by n and P. The quantities C' '

and C~
' are determined by the two conditions

$dy„w. (c."'; c,"')=0,

fd(t&o Wo (Co ',. C~ ') = 0 .
(A3)

Multiplying the first equation by (- eH/hac(d, )
xdk, de, (t&, ', the secondby(-eH/k c(do) dk, odeo(t&(& ',

adding the resulting equations, and changing the inte-
grations back to integrations over wave vector, one
obtains for impurity or electron-phonon scattering

However, dk= (-eH/tie(d, ) dk, dad(t&, so that the in-
tegration may be changed back to an integration over
wave vector Using .Eq. (5) for the collision inte-
gral, one obtains

f.dk f dk'((t,"' —(t"")'P „(k,k')

+ ,' f—dkf dk' ((II
' —(o ") Poo(k, k')

+ 1 dk f dk'(q"'-("")'P„,(k, k')=0, (A4)

We wish to show that if the magnetic field H is
directed along a twofold symmetry axis and the or-
bits have this same symmetry, that the solution p
to the Boltzmann equation. has the property &l((t&+ &()

= —q((t&). For simplicity consider electrical trans-
port and intraband scattering given by the collision
integral of Eq. (5). I et k„and k„'be the vectors
corresponding to a rotation of m about H of k and k'.
At k„, corresponding to the point (Q+ &() on the or-
bit, the collision integral W„(&)(Q+ &()) is

I Pk ki

(Bl)
However, P(k„, k'„) =P(k, k') by virtue of the twofold
rotational symmetry and dk„'=dk'. Consequently,
W„('g((t&+&()) = W('g(Q+&()). This last result also holds
for electron-electron scattering, which can be veri-
fied by repeating the same argument using Eq. (7)
for the collision integral. Utilizing the fact that
v„((t&+ &() = —v, (P), the Boltzmann equationfor q((t&+ &()

can be written

v, ((t&) + W('6((t&+ ")) ~ (B2)
s&)((t +&() sfo

0 sy se x

Adding this equation to Eq. (4) for &)(Q), and letting
&l, = —,'[&)((t&)+&)((t&+(()j, one obtains

(o. s
'=W(&l.), (B3)

subject to the condition that p, be a single-valued
function of (t&. Note that &I, satisfies the same equa-
tion, subject to the same boundary condition, that
is satisfied by f fo in tke absence -of an electric
field. Since f fo is zero in -this situation, and this
solution is unique, p, must be zero. Therefore,
&i((t&+ &() = —p((t&). This property depends only upon
the symmetry properties of the collision integral
and is valid for interband as well as intraband scat-
tering. For thermal transport a similar argument
can be constructed.

where use has been made of the symmetry proper-
ties of the I"s. Since each term is positive defi-
nite, this condition can be satisfied only if each term
vanishes separately. Therefore, (I&„'

'=
&1&(I

'= const.
The extension to electron-electron scattering is
straightforward, though tedious.
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