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The multiple-scattering series for the elastic electron-solid differential cross section is
reduced to a set of coupled equations for layer scattering amplitudes by first performing the
partial-wave decomposition of this series and subsequently defining the layer amplitudes as
subsums of the complete series. The resulting equations are identical to those derived by
Laramore and Duke in a recent paper. However, Laramore and Duke's derivation, in which

the subsums of the multiple-scattering series were performed prior to the partial-wave de-
composition, contains an ambiguity in the latter step which is avoided by our analysis.

In a recent set of papers, ' Duke and Laramore
constructed a general theory of electron scattering
from a vibrating lattice' (hereafter referred to as
DL) and applied this theory to evaluate the tem-
perature dependence of the elastic-scattering dif-
ferential cross sections (hereafter referred to
as LD). The essence of the second analysis is the
reduction of an infinite series of mulitple-scattering
integrals to a set of coupled algebraic equations
for the elastic-scattering amplitudes of the elec-
tron from individual planar "layers" of scatterers.
In their derivation LD proceeded by first deriving
a set of coupled integral equations for the layer
scattering amplitudes and subsequently reducing
these integral equations to algebraic equations by
a par tial-wave expansion technique. However,
their derivation' of Eq. (33) from Eq. (32) [and
implicitly of Eq. (49) from Eqs. (3), (32), (33),
and (48)] is not clear. The problem with their
presentation lies in the apparent assumption of the
validity of a partial-wave expansion of the layer
("subplane") scattering a,mplitudes [e.g. ,
7~(k&, k&, E) in the case of Eq. (33)] in the process
of deriving a matrix equation for the expansion
coefficients [e.g. , the r~ (k&, k, )] which contain
matrix elements that depend explicitly on the direc-
tion of k, [e.g. , via G'~(k, k, ;E) in Eq. (33)].

In fact, the subplane scattering amplitudes for
both a single subplane (i. e. , the r~ ) and an array
of subplanes (i. e. , the T~~~ ) depend on the direc-
tion as well as magnitude of the wave vector k;
of the incident electron. Our purpose in this paper

is to provide an explicit derivation of this result
for a partial-wave expansion by performing the
partial-wave expansion Prior to the conversion of
the multiple-scattering series to a set of coupled
equations for layer scattering amplitudes. In our
approach, the r~~ and T~ are defined as the sum
of certain series whose terms depend explicitly on

k, . Therefore one is never led to suspect that
their dependence on the direction of k, might be
incompatible with their definition as matrix ele-
ments (labeled by I. and L') in a partial-wave ex-
pansion.

We find that 7~~~ and T~~~ satisfy the equations
derived by LD, a result which implies that their
derivation is not in error. Equations (32) in LD,
and its analog for T, obtained from Eq. (48),
may be regarded as matrix eigenvalue equations
associated withthe spherical harmonics Y~(A) as
eigenvectors. The procedure followed by LD was
to construct a solution to the resulting zero-eigen-
value determinental equation by requiring that all
the matrix elements vanish individually. Our
analysis verifies that the Hz and T~ generated
in this manner are identical to those obtained from
a straightforward summation of the multiple-
scattering series following an angular momentum
decomposition of the scattering amplitudes of the
individual electron-ion-core scattering amplitudes.

The starting point of our calculation is Eq. (63)
in DL for the multiple-scattering series for the
elastic electron-solid scattering amplitude
R(kg, k(, E):

R (k&, k&, E) = Q B(n; k&, k&, E) + Q E B(n; k&, k&, E)G(k„E)B(m;k&, k» E)
n ft AS
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+ 5 ~ B(n;R„K„E)G(k„z)B(m;K„k„z)G(k„z)B(l;K,, k„z)+".
gAn;nsll fr. 1y k&

The B(n;k', k; E) are the renormalized electron-
ion-core interaction vertices defined by Eq. (60)
in DL. It is convenient to rewrite Eq. (1) as

R, (k, , k, ;Z) =Z e'"&-~'a.
tl

x Q b~~ (k~, k„z)Y~(k~)Y~e(k, )

R(k, , k„z)=2 R, (k, ,k„z),
)a0

R,(k„k„z)=Z B(n;k, , k, ;Z),

R, (kq, k„z)= Z ~& B(n;k„R„E) G(R„E)
tI An k1

(2a)

(2b)
Turning to a consideration of R„we use Eqs.

(2) and (3) to obtain

R (k k .E)= g I & e«~& a„'-~y R &

1 f~ &i
I (2v)3

xB( mkq, f, ;E) . (2c)

The definition of the general term R„ is evident
from Eqs. (1) and (2) so we do not display it ex-

plicitly. Following Eq. (64) in DL, we define the
reduced ion-core scattering vertices b„(k~,k„z)
according to

xb„(k„k&,E)G(k„z)b (Ky, k&, E)

xe &&I&'(Rq--R~& (6)

We substitute into Eq. (6) the partial-wave expan-
sions for b„and b [Eq. (4)];the definition for
G(k, ;E):

B(n;k2, k, ;E)=e" 3 '&" ~b( k,2k„z) (3) G(k&;E)=lim ( —2m/If )[k& —k (E) —ie] ', (Va)

We decompose b„(kz, k„z) into partial waves via
[L=(I,m)] k (E) = 2m[E —Z(E)]/I (Vb)

b„(k„k,;E)= Z b~~ (k„k„z)Yg(S,)Y~.(k, )

We proceed by examining the partial-wave de-
composition of each term in the series specified
by Eq. (2a) and subsequently performing partial
summations of these terms to define appropriate
planar scattering amplitudes. The results for R0
are self-evident from Eqs. (2b) and (4):

and the partial-wave expansion for the exponential:

e '"'"=+I 4»(-i)'j, (kR)Y~(R)Y~(k)

The quantity Z(E) is the one-electron proper self-
energy associated with electron-electron interac-
tions a.s described by Eqs. (81) and (82) in LD,
postulated by Duke and Tucker, ' and derived by
Duke and Laramore. 4 Using Eqs. (7) and (8) in
Eq. (6) gives

R (ky&, k(, E)= Z exp[i(k(. R„—k» ~ H )] Q Yqe(k()Y~ (k~) Q YI. (P„-0 )
nP rn

I, r.'
( —i) m

dk
k&bq (k&, k( s E)bm (k&'sk&s E)j&2(k& I Rn Rm l ) Id@ Y*(k )Y (k )Y* (k ) (9)

k'(E) —k', +fe I 1 ge1 1 13 1 ~

0

The integral over the directions of k, is well
known. ' We designate it by

f(L'„L,L, )= J dn„, Y;(k,)Y,*(k,)Y),(k, ) (10)

From these equations, the relation

j, (kr) = (- 1)'&j, ( —kr)

and the fact that

(12)

and note its evaluation in Eqs. (42) and (43) in
LD.

Turning to our consideration of the radial
integral in Eq. (9), we recall from Eqs. (40) in
LD

b~~ (k„k, ; E) = ( —1)' b„~ ( —k„k„z)

b (k~, k&;E) = ( —I)'1 b &(ky, —k&,
.E) . (11b)

I(L,', L, Lz) = 0 unless l', + l + lz = 2m, (13)

we conclude that the integral of the radial integral
is an even function of k, so that we can extend the
range of the integral from —~ to + ~.

After extending the k, integral to the range
( —~, ~), we evaluate it by contour integration.
This evaluation requires that we know the analytic
structure b~~ (k, k'; E) in the complex k(k') plane
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holding k'(k) and E as fixed real variables. An

assumption, consistent with the model used by LD
and others, is that the b„do not exhibit any sin-
gularities in the upper-half k(k') plane. This as-
sumption is analogous to (and consistent with) that
of nonoverlapping spherical potentials in the co-
ordinate representation analysis of the rigid-lattice
version of the theory. However, our momentum-
representation analysis also is valid for overlapping

j, (u) = —'[h,~ '(u)+hI '(u)]

hI2'(-u) = ( —1)'h,"'(u)

(14a)

(14b)

in which the h,"'(u) are the spherical Hankel func-
tions, ' a.nd Eq. (13), we obtain

(but finite-range) and vibrating spherical potentials.
Using these assumptions about the b» the formulas

~

~kgb„(k„k„E)b ' '(k~, k„Ej)(a(k, )P„—Ko ()

= oiv[k(E)b~ {k(E),k(, E)b '
{k~,k(E);E)h~' (k(E)(%„—5 I)] . (15)

Substituting Eqs. (10) and (15) into Eq. (9) gives

R, (k„k, ;E)= Z exp[i(k, .a„o-k, Q')]

x Q Y~. (k, )Y~ (kq) 2 b„(k(E),k(, E) b
' '(k~, k(E);E)GJ r{P„—R;E)

L'L LL'
1 1

(16)

in which we have used the definition of the matrix
elements GL.L of the Green's function

-imk(E)
2~@'

x Z ( —i) I(L', L, L2)h, '(k(E)(K[}Yq (R)
L~

(1V)
The expression for R, given by Eq. (16) com-

pletes the specification of the first two terms in
the sum for R(kz, k, , E) defined in Eq. (2a). Using

the expressions (dropping superscript "0"for
convenience)

exp[i(R( ~ 0o —ky R„)]

= exp[i (K, - k, ) R„+K, . (R, -5„)], (16)

and changing our notation to read

Z-Z
n R„

we can obtain the general term in Eq. (2a) by in-
duction. The result is specified by

R„(k,, k„E)= Z
RpyR1y col y Rff

Y, {k )Y* (k )
~ L1 L1y ~ ~ ~ )LgL

xba {k(E),k, ;E)ba' '{k(E),k(E);E) b„"" "(ky, k(E);E)

x ie'~" &o' G~ ~(Ro —H„E) ~ e'"&'~"o-~ "~' G~ ~ (0„,—0„;E), n & 1 . (19)

Equations (2a), (5), (16), and (19) completely specify R(k&, k, ;E) to be given by the schematic expression

R(ky, k(,'E)= E Yr,.(k()Y~(ky) 8 e' "& ~' Z Z Z b (k(E),k(,'E)
$~0 RpyR1y ~ o ~ yRy 1 I P)L1I 1y ~ .. $L~ 1LJ 1;I~

xb~a (k(E) k(E) E} bg (k& k(E) E) e "&' o- y&Gz. z (Po lt& E). . .

(20)

Equation (20) is the final result of the first step
in our calculation: i. e. , the reduction of the sum
of multiple-scattering integrals given in Eq. (1)

to a sum of matrix products whose matrix elements
are labeled by the angular momentum quantum
numbers L. It is the finite-temperature analog
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of Beeby's expression for the cross section [Eq.
(8) in Ref. 9] based on his analysis of the rigid-
lattice muffin-tin model.

The second step in our calculation is the con-
version of the sum given in Eq. (20) to a sum over
layer scattering amplitudes T~& which satisfy a
set of coupled algebraic equations. This is ac-
complished by a partial subsummation of Eq. (20)
originally referred to' as the "summation over
paths. " In this method, the sum over positions R
is decomposed into a sum over planes of atoms
parallel to the exposed surface of the solid. The
sum over positions in an individual plane is further
divided into a sum over identical subplanes each
exhibiting the space-group symmetry of the lattice
for translation parallel to the surface and contain-
ing only one atom per unit cell. The I IV'& I i are

the scattering matrices for the subplane labeled
by X. Our performance of this step of the calcula-
tion differs from Beeby's original analysis only in
that because of the inclusion of the consequences
of lattice vibrations, the I j b R I 1 matrices in Eq.
(20) are not diagonal in the I indices (unlike
Beeby's f matrices).

Turning to our examination of Eq. (20), we con-
sider only "energy-shell" scattering for which

f, =b, =u(E) (2l)
and recall that the b~ depend only on the subplane
index X (i. e. , to be independent of the scatterer's
position in the subplane). We first sum over terms
in Eq. (20) in which all the 0; lie in the same sub-
plane. %e define the subplane scattering matrix

i I&), I l via

7, (, ) =r/ „z z b„' (k(E))b„' '(k(E)) b, j(k(E))
g~P P' 1'''" g-1 Lp,'LgLg&" ~;L~ ~L~„~&L~(All g'8 in & auhplane)

If we designate the Bravais net vectors of the (identical) subplanes by P, the terms in Eq. (22) may be re-
grouped to give

00

~~~'(k() = Z ~& b), (&(E))GI,'g, (k()
p

xb„~ ' ~ '(k(E))G ~. ~ (k() ' ' ' b), '(k(E))Gz'z, (k, )b„(b(E)), (23)

in which we used the definition of the "subplane
propagator Gg& L .'

Gp~. (k, ) = Q e'"&'~G~I, (P;E) .
p/p

(24)

Equation (23) is just a power-series expansion of
the matrix equation of the r~L' given by

7~' (k() =b~' (&(E))+ ~ b"'(&(E))
L(Lp

x Gl, ~ (k()rqo (k() (25)

8, = ~) Z 2 fbx(&(E))[G"(k()bx(&(E))l' ') gr ~

y p

x Q exp[ik( (d), —d), +P)]G~.J. (d), —dg+P;E)
P

xb', ,+'(k(E)) .

%e next consider those terms in the sum in Eq.
(20) for which all the 0's are in the Xth subplane
except Ro, which is the in subplane Ao (Aogk). The
expression in brackets in Eq. (20) becomes

l

%e use the symbol d), to designate the location,
relative to an external coordinate system, of the
vector P -=0 in the sum over P in the subplane
labeled by X. If we define the matrix elements of
the interplanar propagator, 6 "o, via

G~'~ (k, )=Qy exp[ik, (d„,—d, +P)]

x Gi i (d), -d~+0;E), (27)

then Eq. (26) for So becomes

S, = Z [~, (R, )G"'o(k, )b~(lj)]
Xp', )l.pA.

It is now clear that when we sum all terms in the
sum in Eq. (20) for which there are two different
values of X (all the R's lie in one of two subplanes)
the expression in large parentheses in Eq. (20) be-
comes

[rx(k()G""(k;)~1 (k()] Ix
Xp', XpA.

More generally, when we sum over all terms in the
sum in Eq. (20) for which n values of X occur, the
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expression in large parentheses becomes xr, ~&(k, )G~'~, (k, )T~9 (k, ) . (29)

x7, (R, ) G " ' " '(k, )r ~,(k, )]~~..

Summing over all values of n for the bracketed ex-
pressions in Eq. (20) leads to our definition of the
matrix elements of the "layer" scattering matrix
&

&v"

Insertion of Eq. (29) into Eq. (20) gives our final
expression for the electron-solid scattering am-
plitude

R (k~, k(, E)= Z Y~, (k( )Y~ (k~)X„~+ 5 (k, —ky +g )

e$ (t(-ky)'dg ZLL (k ) (30)

+ E 7'„(k, )G" &(k, )r)„(k,)G'~ ~(k, )v~ (k, )
~q, )i2;)tie)t, X X)

(23)

Equation (28) is just the power-series expansion
of our desired coupled linear equations for the
layer scattering matrices:

in which the g are the reciproc:~l-lattice vectors
of the Bravais net of the (identical) subplanes, and

K„ is the number of cells per unit area.
Equations (25), (29), and (30) are identical to

Eqs. (54), (55), and (2), respectively, in LD.
Therefore, as noted earlier in the paper, the re-
sults of LD are correct, although the derivation
given by I D of Eqs. (54) and (55) from Eqs. (32)
and (48) is, perhaps, less transparent than the one
given above.
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The direction of the off-center displacement of certain atomic impurities in alkali halide
matrices has been determined through calculations of certain barrier parameters. The contro-
versial results for the RbCl: Ag' system and other systems like KCl: Li' and NaC1: Li' have
been suitably discussed in the light of present calculations.

Recent experiments'2 have presented strong
evidence for the off-centered position of certain
atomic impurities in alkali halide matrices. For
the RbC1: Ag' system, however, controversial re-
sults have been obtained by Kirby et al. ' and Kapp-
han and I.uty. 2 The latter authors could explain
their results on the basis of a (111)displacement
direction, whereas the multiplet structure of the

far-infrared absorption' ruled out such a configura-
tion and presented evidence for a displacement in
the (110)direction. We, in the present note, wish
to present certain calculations of the barrier pa-
rameters, which will throw important light on this
controversy concerning the displacement direction.
For the sake of completeness, we also present cal-
culations for the KCl: Li' and NaC1: Li' systems and


