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The method of lattice statics and the deformation-dipole model have been applied to Schottky
defects in ionic crystals in approximations higher than zero order. For an isolated vacancy,
all host-lattice —ion potential energy functions for short-ranged repulsive and Coulomb-defect
forces were expanded to terms quadratic in the displacements and dipole moments, and the
resulting forces were allowed to act on the first and/or second neighbors to the vacancy. The
zero-order Coulomb force was allowed to act on the remainder of the host-lattice ions past
first and/or second neighbors. The vacancy and Schottky-pair-formation energies in the 12
Na, K, Rb halides have been calculated. A comparison is made between the zero-order approxi-
mation and the one considered here. Fairly good agreement is obtained between our calculated
values and the experimental values for the Schottky-pair-formation energies if the polarizations
around the defect are properly treated with respect to deformation dipoles.

I. INTRODUCTION

For many years there has been widespread inter-
est in the subject of ionic conductivity in solids. '
Recent advances in conductivity measurements and
data analysis have increased this interest in both
experimental and theoretical areas. A review
article by Lidiard' gives an excellent historical
survey and a bibliography up to 1956. More re-
cently Suptitz and Teltow, ' and Fuller have
brought up to date advances and trends in the trans-
port properties of ionic crystals. Fuller has
pointed out that there has been recent interest in
solid electrolytes for use in electric automobiles
and solid-state batteries. Thus there is an in-
creased need for a continuing and deeper study of
ionic conductivity and the types of defects which
are important in transport processes. These types
of defects, called point defects, are those formed
by vacant lattice sites and interstitial ions. The
important quantities needed are the formation
energies since it is these energies which govern
the concentrations of the defects.

Barr and Lidiard '" have pointed out that Schott-
ky-pair-formation energies tend to be - 10-20%
low when compared with experiment (although the
results of Scholz are high possibly because polar-
ization contributions are lost by assuming too
small a crystal). They discuss several possible
causes for the low values of the Schottky-pair-
formation energy which may probably apply to the
other types of defect calculations, e. g. , inter-
stitials, migrating ions, complexes of vacancies
and interstitial ions, etc. Improvements dis-
cussed include the following: (i) a proper descrip-
tion of the repulsive potential, especially where
the distance of approach between cations and
anions is less than the equilibrium lattice spacing;
(ii) a modification of the polarizabilities on neigh-

bors close to charged defects because of the strong
electric fields ( 10' V/cm); (iii) a modification of
polarizabilities when ionic overlap is large, e. g. ,
when the ionic radii of cation and anion are very
much different; (iv) the inclusion of dipoles as a
result of distortions in the ionic-charge distribu-
tions due to the overlap of ions'; (v) extending the
region of explicit relaxation to include more ions;
(vi) and application of the lattice-statics method
introduced by Matsubara' and later applied to va-
cancies in solid argon by Kanzaki.

Since Kanzaki's work, the method of lattice
statics has been used in many defect calculations
for both metals and ionic crystals, '

The method of lattice statics consists essentially
of minimizing the Fourier-transformed expression
for the potential energy of a harmonically distorted
superlattice containing supercells each having N
unit cells and one defect. The assumption of peri-
odic supercells allows the Fourier synthesis of the
ionic displacements and dipole moments. Then
the translational invariance of the force-constant
matrices, which are contained in the potential-
energy function of a harmonically distorted perfect
lattice, is utilized and thereby the rank of these
matrices is reduced. For example, the displace-
ments and dipoles for a supercell containing N unit
cells can be Fourier transformed in terms of N
six-component Fourier amplitudes, one for each
distinct allowed wave vector q in the first Brillouin
zone obtained by applying periodic boundary condi-
tions across the supercell. Then, in the case of
ionic crystals with a diatomic unit cell, the 6N &&6N

array of linear equations can be decoupled into N
6&&6 equations which subsequently determine the
Fourier amplitudes. If the direct space displace-
ments and dipoles are desired, back transforma-
tion is necessary. However, in problems involving
charged defects, calculation of formation energies
obtained directly from the Fourier amplitudes and
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generalized forces is much easier than using di-
rect space quantities.

In this work, the formalism presented by Hardy
and Lidiard" for treating point defects in ionic
crystals using the deformation-dipole model and
the method of lattice statics has been modified to
include higher-order terms in the defect-host-
lattice-ion interactions, and has been extended
in some cases to allow for the explicit relaxation
of both nearest and next-nearest defect neighbors.
Schottky-pair-formation energies have been cal-
culated for the 12 Na, K, and Rb halides.

II. VACANCY INTERACTION POTENTIAL ENERGY

A vacancy will interact with the host-lattice ions
because of missing repulsive overlap, Coulomb-
monopole and -dipole interactions, and deformation
dipoles. In each of these cases, ( will be the neg-
ative of the appropriate functions as they appear
in the perfect crystal.

A. Repulsive Overlap

In considering the short-range overlap interac-
tions, two separate types of potentials are used.
If only first-neighbor (nn) interactions are to be
considered, the Horn-Mayer form

0'(r) =-«~(r)= ~;~e ""
between the ith and jth types of ions is used. The
parameters ~ and p are obtained from the equilib-
rium condition using the compressibility and the
lattice constant. The compressibility P is obtained
from the elastic constants &» and C» using the
relation

P= 3/(C&, + 2Cu) .

~hen second-neighbor interactions (nnn) are in-

cluded, both the nn and nnn repulsive potentials are
assumed to be of the Huggins-Mayer form, ~

g" (r) —= Q(~(r) = X(~e ~~~4,

where

&,'q= b(q(1+e, /n;+e; /nq)e'"& '"&'~'&s .

Here r&, z&, n, &,„and p' are, respectively, the
ionic radius, net ionic charge, number of outer
electrons, a constant characterizing the overlap
between ions, and a screening parameter. The
parameters ~' and p' were taken from Fumi and
Tos 1.

In order to be consistent with the Fumi-Tosi
parameters, we included van der Waals terms
when considering the Huggins-Mayer potential-
energy term. Thus to zero order in the ionic
displacements,

and

(f&(((v 2ro)=c„/(pro) -d„/(pro)o+ X'„e o"o~'&g,

where c&& and d&& are the dipole-dipole and dipole-
quadrupole van der Waals coefficients, respec-
tively, calculated by Mayer.

B. Coulomb Interactions

The contribution arising from the interaction
between the defect electric field and the host-lat-
tice monopole charges is written

&'(lr'+ &'I ) = e.(e~/ lr'+ &'I),
where eL) is the effective charge of the defect and
r'+ (' is the relaxed-lattice separation between the
defect and the &th ion, the defect being located at
the origin. Here.-=('),
i. e. , &th ion in the 1th unit cell.

The Coulomb-dipole contribution will be made up
of separate parts arising from displacement, po-
larization, and deformation-dipole moments.
Letting p be the &th component of the total dipole
moment on the ~th ion, we can write

&"""(I"+&'I) = -&.~'&-(I "&'I),
where

,( I)
0 ()I

~ relaxed

is the defect electric field.

C Missing Deformation Dipoles

The missing dipole contribution arises because
each of the six nn anions about a cation vacancy is
missing one of its six deformation-dipole mo-
ments. Following the lattice-dynamical studies
by Hardy, 3 these dipoles are located entirely on
the anions. The correction needs to be made for
the missing "bonds" between dipoles and the re-
maining ions in the crystal. As a zero-order
approximation, this correction will involve only
the (200) neighbor-to-cation vacancies as showr,
in Fig. 1. The energy of the dipole & on the left
in the presence of the field E of the ion at r2 is

—P(r, +(~)xE(ri $s r,)

Here we have assumed that the vacancy center and
the ion at ra remain at the unrelaxed-lattice con-
figuration (the vacancy center will not move by
symmetry). The contribution to the formation
energy will be the negative of this or

c(lr+ & I) = [&(ri)+&'(ri)&i+ j

x[e/(r& -ro) 2e)~/(rt ro) ~. . . j

upon expanding. The missing dipole correction is
considered only to zero order in the force, so that
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FIG. l. Missing dipole configuration on cations about an
anion vacancy.

in this approximation,

c "(I"+& "I ) = I'(ro)e/ro+ [~'(ro)+ 2I'(& o)/ro]e$/r', .
Here

where e is the monopole charge, e* is the "effec-
tive ionic charge, " and &(ro) is taken to be the
distortion-dipole moment which is the result of
the mutual distortions of neighboring ions owing
to their overlap and is to be distinguished from
the deformation-dipole moment which is the un-

. balanced-dipole moment formed by the relative
displacements of the ions against each other. The
distortion dipoles are centered on the anions and

are counted positive when directed toward the
cation.

forces for the defect-host-lattice-ion interactions
(energy terms which are linear in the displace-
ments and the dipole moments). In approximation
II, force terms linear in the displacements and

dipoles are retained. The expanded form has been
chosen rather than evaluating the interactions at
the relaxed-lattice configuration, since vacancy
defects involve corrections to the perfect-lattice
potential energy, and since the force-constant
matrix contains interactions evaluated in the har-
monic approximation.

The formalism for approximation I was first
considered by Hardy and Lidiard, "and recently
Karo and Hardyo4 (KH) have presented the results
of calculations for alkali halide, .with nearest-
neighbor repulsive overlap forces. In this work
we have included repulsive overlap and higher-
order Coulomb interactions between the defect and
both its nn and nnn in approximations I and II.

In approximation I the deformation dipoles are
considered to be "frozen" in as the defects are
formed so that the missing-dipole contribution is
zero. Thus, in this approximation,

p, = C a[Eo+ UIf(l+ US)$]+S$

M$ = Vo+ (U +S)C Eo,

E = 4'oR+ C'o —,EoC '+Eo ——o[Vo+EoC i(U ~+ A)])

for the dipole moments p, ionic displacements (,
and formation energy E, respectively. 4 Here ~o
and C'o are the zero-order repulsive overlap and
Coulomb interaction energies defined by the equa-
tion

III. SCHOTTKY FORMATION ENERGY

The Schottky-pair-formation energy E& is de-
fined as the energy necessary to remove a well-
separated anion-cation pair from the interior of
the crystal and put it on the surface. Thus I-~ is
the sum of the formation energies for a cation
vacancy and an anion vacancy, and cohesive energy
per ion pair since the separated pair is placed on
the surface of the crystal.

For both nn and nnn repulsive interactions, the
cohesive energy can be written

The subscript 0 indicates quantities that are to be
evaluated at the relaxed or undistorted-lattice con-
figuration.

In approximation II the interaction potential
energy g is expanded to terms quadratic in the
displacements. Thus, including a missing-dipole
contribution, the above equations for the dipole
moments, ionic displacements, and formation
energy, respectively, become

p = C u(Eo+ Eo))+ C &UH(1+ US))+ St'

M$ = Do+ Vo+ Got + J'op+ (U + S)C (Eo+ Eg ),

where the p&& are defined in Eq. (1), and o.' is the
Md 1 g o t t.

We have considered Schottky defects in two ap-
proximations; the zero-order and quadratic ap-
proximations which are referred to as I and II,
respectively. In approximation I only the lowest-
order terms are retained in the expansion of the

& = @o+ C'o+@'o'- —:Eoc'~&o-:L'o&

——,'Vo) —oEoC (U + B)$ —oEoC &E(g

Here the matrix elements for the harmonic repul-
sive overlap, Coulomb field gradient, and missing
dipole moments are, respectively,
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s R(~)
0tlg 0 X XB

s'0'(&)
et/, O eq X~ Xg

&'.0= —P"(&o)+ 2P(&o)/&0%/&o .

These contributions are treated as short-range
forces acting only on a few close neighbors.

The force-constant matrix M used in this work
was the one considered by Jaswal and Hardy.
This matrix is in the dipole approximation and in-
cludes deformation dipoles and an angle-bending
force. This latter force is assumed to be pro-
portional to the angular deviation from the 90'
angle formed by an ion and two of its dissimilar nn

ions.

IV. NUMERICAL RESULTS

The sum over the wave vectors q in the Fourier-
transformed expression for the ionic displacements
indicates a crystal of finite volume containing N=ns
unit cells where n is the number of unit cells along
an edge. 4 This sum is an approximation to an
integral over the first Brillouin zone, and the sum
approaches the integral as ~- ~ in which case we
would have an isolated defect in a lattice containing
an infinite number of unit cells.

The sum requires that periodic boundary condi-
tions be imposed on the displacements in a volume
repeated throughout an infinitely extended medium.
By doing this a representative sample of the per-
missible wave vectors can be obtained for the de-
termination of the displacements and hence the for-
mation energies. The sample becomes much im-
proved as the size of the periodic volume is in-
creased. The shape of this volume or "supercell"
is taken to be the same as that of the unit cell.
This is the same basic approach as used by Keller-
mann.

The calculations were done on an IBM 360/65
computer for a uniform mesh of ~= 8000 wave vec-
tors in the first Brillouin zone and then extrapo-
lated to N= ~. The extrapolation was made pos-
sible because the ratio of the differences between
relaxation energies for successive runs, having
& values of 1000, 8000, 64000, and 512000, was
found to be a constant. Therefore the extrapolated
value could be found from the sum of a geometrical
progression for an infinite number of terms from
the values obtained for ~= 10, 20, and 40. The
results thus obtained are estimated to be within
less than 2% of the values for N = ~.

In Table I values are given for the cohesive
energy Wi. and the energies needed to extract a
cation, E„ to extract an anion, E, and to form a
Schottky pair, E&, for both the nn and nnn models.

The calculated values of E& in this same approxi-
mation by KH are also given for the nn model for
comparison. Only neighbors as far as 3rD have
been included because we have found that for wave-
vector samples larger than 8000, values of the dis-
placements and dipole moments in this region do
not change appreciably. In order to calculate ac-
curately the displacements and dipole moments of
more distant ions, the number of wave vectors
must be increased, i. e. , increase the size of the
periodic volume, so that the influence of the other
defects in the periodic lattice of defects becomes
negligible. The calculated formation and Schottky
energies in approximation II are given in Table II.
The calculated values for @'z for both the nn and
nnn models along with some of the more recent
experimental values of E& are also given.

V. SUMMARY AND DISCUSSION

The formation energy of Schottky pairs in alkali
halides has been calculated using the method of
lattice statics and the deformation-dipole model.
In this work the calculations of KH have been re-
peated using the same model but different input
data. This model, approximation I, was one in
which all defect-host-lattice-ion forces were
evaluated at the unrelaxed-lattice configuration.
This approximation was considered for both near-
est-neighbor Born-Mayer repulsive overlap and
the more sophisticated Huggins-Mayer repulsive
form which included the attractive van der Vfaals
interactions. In this latter case, the dynamical
matrix was modified to include nnn anion-anion
repulsive interactions in addition to a noncentral
angle-bending force, as opposed to the former
case where only nn repulsive contributions were
considered. This approximation was then modif ied
to include higher-order terms in the expansion of
the defect-host-lattice-ion potential energy. All
terms up to and including those quadratic in the
displacements and dipoles were considered signifi-
cant. Calculations based on approximations I and
IL were carried out for both the nn and nnn models.

A comparison of Ez(nn) and Ez(KH) from Table I
shows that the results of KH' have been satisfac-
torily repeated within the limitations of the input
data used. A direct comparison of Eq(nn) and

Ez(nnn) for either approximation is not too mean-
ingful because the results for the former were
found from experimental data for host-lattice-ion
interactions while the latter were obtained using
theoretically derived data as well as a modified
force-constant matrix. However, within this limi-
tation, the over-all choice of model does not seem
to be significantly important when comparing the
calculated E& for the two models with the experi-
mental values. Also, the lattice energies W~

given in Table I show no significant changes for the
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TABLE I. Calculated cohesive energies Wz in the nn and nnn models, calculated energies to

anion to infinity, E, and E, and the Schottky-pair-formation energy Eg in approximation I.
remove a cation and an
All energies are in eV.

E, (nn)

E. (nn)

E, (nnn)

E„(nnn)

Es (nn)

Eg (nnn)

5.890 4.708

6.010 5.128

5.495 4.628

5.903 5.140

2.342 1.888

1.948 1.792

2.399 1.904

«See Ref. 24.

NaF NaCl

—WL (nn) 9.557 7.949

—W' (nnn) 9.451 7.976

NaBr NaI KF

7.530 6. 989 8.404

7.610 7.141 8.388

4.373 3.914 5.316

4. 874 4. 521 5.125

4. 336 3.924 4. 977

4. 938 4. 678 5. 186

l. 718 1.446 2. 037

1.663 l.460 l.775

1.657 1.441 2. 070

KBrKC1 KI

7.195 6.884 6.447 8.023

Rb F RbCl

6.945 6.644

7.296 7.001 6.613 8.001 7.049 6.780

4.487 4. 241 3.879 5.119 4.405 4.161

4.610 4.457 4. 203 4.840 4.436 4.287

4. 508 4. 284 3.974 4.741 4.436 4.232

4.772 4. 641 4.477 4. 855 4. 587 4.479

l.902 1.814 1.636 1.936 1.896 1.805

1.985 1.924 1.837 1.595 1.974 l. 931

1.935 1,811 1.621 1.804 1.900 1.770

RbI

6. 237

6.425

3.822

4. 065

3.941

4.339

1.650

l.855

l.638

different types of defect-host-lattice-ion interac-
tions used. The values for E& have a definite
trend to increase on going from the first approxi-
mation to the second if one keeps the defect-host-
lattice-ion interactions the same. This increase
is markedly higher in the sodium halides (an in-
crease of nearly 30/p occurs for sodium iodide).
The changes are smallest in the rubidium series,

and within each of the three alkali-ion sequences
the change was proportional to the anion ionic
radius. In most cases, the difference between the
two values of E& is approximately equal to the
zero-order missing-dipole energy 4o which has a
similar trend to the Schottky-defect-formation
energies.

The over-all difference between the two approxi-

TABLE II. Calculated zero-order missing-dipole energies C ~ in the nn and nnn models, calculated energies to
remove a cation and an anion to infinity, E, and E, and the Schottky-pair-formation energy E& in approximation II. All
energies are in eV.

@~0 (nn)

e ~0 (nnn)

E, (nn)

E (nn)

E, (nnn)

E (nnn)

Eg (nn)

E, {nnn)

NaF NaCl

0.515 0.503

0.624 0.555

6.264 5.206

6.020 5.085

5.972 5.152

5.967 5.087

2.727 2.343

2.489 2.264

NaBr NaI KF

0.518 0.464 0.205

0.530 0.368 0.142

4. 911 4.407 5.411

4. 821 4.456 5. 231

4. 859 4.322 4. 996

4. 865 4. 586 5.317

2. 203 1.873 2. 239

2. 113 l. 767 1.925

KCl KBr KI RbF RbCl RbBr

0.336 0.355 0.380 0.099 0.271 0.295

0.339 0.336 0.294 0.040 0.217 0.251

4.754 4.555 4. 251 5.137 4. 597 4.403

4, 627 4.454 4.182 4. 968 4.473 4, 305

4.720 4.518 4. 193 4.679 4.498 4.341

4.772 4.613 4.420 5.011 4.601 4.465

2.186 2. 124 1.986 2. 081 2.126 2. 063

2.196 2.130 l.999 l.690 2.050 2.027

RbI

0.305

0. 243

4. 112

4.058

4. 071

4. 295

1.933

l. 941

1.60
1.58
1.56
2. 21"
l.90J

2.02
2.09
2.12
2.34'

Es (expt )' 1.68 ''' 2 64" 2. 22 2.53 ee ~ 2 0& ~ oo

l.74 2.30 1.99 2.04'
2. 59 2. 00
2.49~

2. 26'

~Experimental values compiled by P. V. Sastry and B. G. Mulimani, Phil. Mag. 20, 166 (1969).
"P. Siiptitz and J. Teltow, Phys. Status Solidi 23, 9 (1967).
J. B. Holt, H. G. Sockel, and H. Schmulzried, J. Am. Ceram. Soc. 52, 376 (1969).
H. G. Fuller, Bull. Am. Phys. Soc. 15, 384 (1970).

~S. Chandra and J. Rolfe, Can. J. Phys. 48, 412 (1970).
~S. Jain and S. Dahake, Indian J. Pure Appl. Phys. 2, 71 (1964).
B. G. Fuller, C. L. Marquardt, M. H. Reilly, and J. C. Wells, Jr. , Phys. Rev. 176, 1036 (1968).

"S. Chandra and J. Rolfe, in Ref. e, p. 397.
~J. H. Beaumont and P. W. M. Jacobs, J. Chem. Phys. 45, 1496 (1966).
&Ya. N. Pershits and E. V. Pavlov, Fiz. Tverd. Tela 10, 1418 (1968) [Sov. Phys. Solid State 10, 1125 (1968)].
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mations cannot be understood entirely in terms of
zero-order missing-dipole contribution since in
approximation II the forces acting on the host-lat-
tice ions have been modified, especially on the nn

as a result of the missing-dipole force.
A comparison of the displacements showed that

the displacements past nn did not change signifi-
cantly from one model to the other. Even the
displacements of the nn about an anion vacancy did
not change to any great extent; however, in the
case of a cation vacancy, where the additional re-
pulsive missing-dipole force is acting on the nn

anions, the change from approximation I to approx-
imation II was significant. A similar behavior was
found to occur for the dipole moments. The dipole
moments are directed inward about cation vacan-
cies because the polarization dipole generated by
the defect electric field is dominant over the defor-
mation-dipole moment which is directed away from
the defect.

From these results we can conclude that the dif-
ference between the results of approximations I
and II are mainly due to the missing-dipole con-
tributions. Thus it appears that the consideration
of the missing dipoles with the zero-order approx-
imation in most cases should adequately describe
the relaxation of the lattice about charged point
defects in alkali halides, with the possible addi-
tional consideration of the missing dipole inter-
acting with other ions in the vicinity of the defect.

An observation of the displacements of the nn

anions about a cation vacancy in NaI showed that
in zero-order (approximation I) the displacements
were directed outward; however, the introduction
of field-gradient dipole forces (which are included
in approximation II) caused a contraction rather

than an expansion for this nn shell. This effect
can be attributed to the large-defect induced-polar-
ization dipole moment in NaI which has the
smallest ratio of the cation-to-anion ionic radius.
The result is that there will be a large-defect
electric field on the anion which has a large polar-
izability. Therefore in some cases approximation
II contains important contributions which will be
important especially in crystals like NaI and some
of the lithium halides. Barr and Lidiard4 discuss
similar effects when the cations and anions are of
very different size.

We would like to point out that large changes in
the relative displacements of the nn and nnn along
the (100) direction do occur. 'For cation vacancies,
the general trend is for the (100) nn to displace
inward as a result of the large Coulomb attraction.
However, the opposite is true for anion vacancies
as a result of the "pushing" caused by the large
outward displacement of the nn cation. Therefore
further useful information might be obtained by
considering anharmonic forces between nn and nnn

to a vacancy along the (100) direction.
The calculated values for Es still tend to be

somewhat low when compared to experimental
values, although agreement is greatly improved
in approximation II. Again we mention that Barr
and Lidiard have pointed out that because of the
high electric fields due to charged defects, the
assumption that the induced dipole moment is pro-
portional to the electric field (linear approxima-
tion) may be an overconstraint resulting in an over-
estimation of the dipole moments. Also the defor-
mation-dipole moments were considered to be cen-
tered on the ion rather than being located out near
the region where the distortion is produced.

*Work performed in part under the auspices of the
U. S. Atomic Energy Commission.
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Optical and EPR Studies of [Na] o and [Li] o Centers in Cao~
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We report EPR and optical studies of 0 ions located next to Li' and Na' impurities in cal-
cium oxide. The oscillator strengths of the optical transitions (f- 0. 1) are larger than ex-
pected for the A(p~) -E(p„,p~) transitions of these centers. The hyperfine interaction with the
impurity nuclei is interpreted as having a negative contact term a and a positive anisotropic
term b. The results are discussed in terms of admixture of 0 I 3 s) functions into the ground
p~ state.

I. INTRODUCTION

The optical absorption bands of trapped electron
and trapped hole centers in the alkali halides were
studied long before models for the defects were
accepted and before EPR and electron-nuclear
double resonance (ENDOR) techniques were avail-
able to guide the choice of model. For the alkaline-
earth oxides, the order of study was reversed and
the EPR spectra of F' and V centers were identified
first. ' Presently the F' bands are reasonably well
understood (albeit only after some controversy),
but less attention has been given to the optical
properties of trapped hole centers.

Trapped hole centers have very different struc-
tures in the isostructural alkali halides and alka-
line-earth oxides. In the alkali halides, the in-
trinsic hole centers are the self-trapped X& mole-
cule ions, whose symmetry axes are parallel to
the crystal (110)directions. ' Although mixed mol-
ecule ions, (OF), have been observed in mag-
nesium oxide crystals containing fluorine, no EPR
spectrum has been identified which can be attributed
to O~, the analog of the X2 center in any of the
alkaline-earth oxides. Instead, crystals of the
alkaline-earth oxides irradiated with x rays, y
rays, or fast electrons show magnetic resonance
absorption due to V centers, i. e. , 0 ions adja-
cent to cation vacancies. ' It can be seen in Fig. 1
that the V centers have tetragonal symmetry about
the principal axes of the crystal.

The presence of trapped hole centers in MgO
crystals subjected to ionizing radiation was first
detected with EPR methods by %ertz et al. ' These
authors observed a three-line spectrum at arbi-
trary orientations with turning points about the
(100) crystal direction. Analysis of the spectrum
showed the g tensor to have cylindrical symmetry

a.round the (100) axes with g, = 2. 0385 and g„
= 2. 0033. No central ion hyperfine pattern was re-
ported. It was proposed that the spectrum was as-
sociated with the V center, an 0 ion adjacent to a
cation vacancy. This proposed model was based
upon the g values, saturation properties, and tem-
perature dependence of the spectrum. Strong sup-
port came later from EPR and ENDOR measure-
ments of the interactions between the trapped hole
and neighboring OH, OD, or F impurities.
More recently, hyperfine interaction with the adja-
cent Mg

' ions, of which only the 10% abundant
'Mg nuclides are magnetic, has been observed.

Similarly, simple EPR spectra have now been ob-
served for V centers in CaO and SrO. ' In all
three oxides, the measured values of g, were sig-
nificantly greater than the g value for free elec-
trons. EPR spectra of 0 ions adjacent to substi-
tutional Li'ions ([Li] centers) in MgO, CaO, and
SrO have also been reported. A schematic rep-
resentation of the structure of these and related
defects in the alkaline-earth oxides is portrayed
in Fig. 1. In the present paper, detailed optical
and EPR resonance measurements on the [Li] and

[Na] centers in CaO are discussed.

II ~ EXPERIMENTAL

Single crystals of CaO were grown from Mal-
linckrodt CaCO& powder, reagent grade, by sub-
merged arc fusion. ' The starting powder con-
tained about 10/p by weight of Na~CO, or Li~CO, .
An analysis of the resulting crystals showed there
to be approximately 1300 ppm of Li or 70 ppm of
Na present after melting. All crystals were an-
nealed to 1100'C and then quenched to room tem-
perature. For EPR studies, trapped hole centers
were produced by irradiation at 10 K with 2-MeV


