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The component of the triplet-exciton diffusion along the crystal a axis was measured in an-

thracene crystals at 118, 160, 298, and 371'K, and found to be D =(4.0+ 0.5), (2. 5+ 0.3),
(1.5 + 0.2), and (1.6+ 0.3) && 10 cm sec l, respectively. The polarized-excitation spectra
(0, 0 line) for delayed fluorescence have also been measured. The inferred values for the

Davydov splitting 6 and the effective scattering rate I' at the corresponding temperatures are
~=18+ 2, 18 + 6, 17 + 3, and 19 + 2 cm"~ and I'=14+ 1, 30+ 2, 51 + 1, and 65 + 2 cm . The

simultaneous measurement of these parameters, in conjunction with an expression for diffusion

derived from a phenomenological model of triplet-exciton scattering, allows the assessment

of the relative importance of local vs nonlocal scattering mechanisms in the triplet-exciton
motion. The nonlocal scattering rate, due to fluctuations in the exciton-transfer matrix ele-
ments between molecules separated by + 2(a + b), is estimated to be -0.1 cm, and appears

to be temperature insensitive. The local scattering mechanism is dominant, but the nonlocal

fluctuation rates can make a sizable contribution to the rate of triplet transport. The spectro-
scopic measurements show that the hopping model for transport is applicable in the tempera-

ture range studied.

I. INTRODUCTION

The room-temperature value of the diffusion
constant for triplet excitons in anthra, cene is well
known. ' ' Additional information on triplet-exciton
dynamics can be obtained from spectroscopic data, 4

which lead to the conclusion that at room tempera-
ture triplet excitons in anthracene move by a hop-
ping process; the spectroscopic information also
yields an estimate of the diffusion constant, pro-
vided one admits certain simplifying assumptions.
Assuming absence of self-trapping, local exciton
scattering, and a Lorentzian line shape, the authors
of Ref. 4 obtained an estimate of 0. 5&&10 cm sec '
for D„, the component of the diffusion tensor along
the a crystal axis. In view of the uncertainties in
this estimate it compares well with the directly
measured value of 1.5~ 10 ' cm sec '.

This spectroscopic approach to exciton dynamics
has been used by Durocher and Williams' to inves-
tigate triplet excitons in anthracene for a range of
temperatures; more recently, the method has been
also applied to study exciton dynamics in other sys-
tems. ' A comparison of the spectroscopically esti-
mated va, lues of the diffusion constant with directly
mea, sured ones provides a test of the a,ssumptions
of the spe ctros copic method. For anthracene, di-
rect measurements of D„ for temperatures other
than room temperature have not been reported be-
fore the present paper. The value of the diffusion
constant near liquid-nitrogen temperature has, how-
ever, been inferred from determinations of the spin
relaxation times of triplet excitons as well as from
the measured influence of triplet excitons on proton
spin relaxation times. ' Both sets of experiments '9

have been interpreted so as to imply about a 3(PO

increase of D at the lower temperature, compared
to D at room temperature as obtained by the same
techniques. These results sharply contradict the
spectroscopic estimate of Ref. 5, which predicts a
ratio D„(130'K)/D„(300 'K) = 6.

Perhaps the most sensitive assumptions involved
in the spectroscopic estimate of the diffusion con-
stant were the assumption of absence of self-trap-
ping and the assumption of local scattering of exci-
tons. Further support for the absence of self-
trapping, in the form of an undetectable (within
+5 cm ') Stokes shift of the 0, 0 line of the phospho-
rescence emission above 55 K, has recently been
given by Goode and Williams. ' In this paper, we
wish to reexamine the assumption of purely local
exciton scattering. Nonlocal scattering of excitons,
arising from fluctuations in the exciton-transfer
matrix elements, has been included by Haken and
Strobl ' in their theory of exciton motion. Recently,
Grover and Silbey' have argued that for strong
coupling of excitons and phonons, the nonlocal scat-
tering is dominant, and have presented a theory of
the temperature dependence of the diffusion constant
based entirely on nonlocal scattering. A weak-
coupling theory, on the other hand, can give rise to
local scattering. " An experimental resolution of
the question of the relative importance of local ver-
sus nonlocal scattering of triplet excitons in anthra-
cene thus appears to be of considerable interest.

In the present study, we report direct measure-
ments of D„ for triplets in anthracene at various
temperatures, together with temperature-dependent
spectroscopic measurements of the delayed-fluo-
rescence polarized excitation spectra of the 0, 0
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line of the lowest anthracene triplet state. We also
verify phosphorescence emission spectra (0, 0 line)
reported previously. ' We present a theoretical
discussion of the model of nonlocal scattering intro-
duced in Ref. 11 and derive an exact expression:for
the diffusion tensor for this model. The expression
for D„ involves essentially three phenomenological
parameters, a total scattering rate I', the Davydov

splitting 4, and y~, the fluctuation rate of the exci-
ton-transfer matrix elements between molecules
separated by +2(aab). The effective value of I" is
obtained with the aid of the hopping-model formula
of Dexter' and of Trlifaj, "using the absorption
spectra derived from the measured excitation spec-
tra. The splitting b, is computed as the difference
in mean energies, calculated as centroids' of the a-
and b-polarized absorption spectra. The theoretical
expression for the diffusion constant together with
the measured value and the known parameters 4 and
I then enables us to deduce a value of y„ for each
temperature. Finally, we present a discussion of
the apparent contradictions between existing mag-
netic-resonance results ' and the present experi-
ments.

II. THEORETICAL BACKGROUND

A. Phenomenological Model for Exciton Motion

A phenomenological model of exciton scattering,
useful in analyzing exciton dynamics at temperatures
such that kT is large compared to the exciton band-
width, has been recently presented by Haken and

Strobl. " The model treats the exciton Hamiltonian
as consisting of the sum of an average, or time-
independent, part X and a time-varying part h(t),
which is treated phenomenologically. The matrix
elements h„(t) in a spatial representation (excitons
localized at R„or R„) are assumed to have the fol-
lowing prope rty:

to wave-vector-dependent scattering and should
therefore manifest itself by producing a different
line shape for the two Davydov components in a
polarized light absorption experiment. The obser-
vation of nearly identical line shapes for the two
components at room temperature then supported the
neglect of nonlocal scattering terms. It can be
shown, however, that a wave-vector-independent
exciton scattering results when the fluctuations of
the transfer matrix element between a given pair of
molecules is uncorrelated with that for any other
distinct pair, as assumed in Eq. (1). As shown in
Appendix A, Eq. (1) implies a Lorentzian absorption
line shape of the same half-width,

for both Davydov components. Although the noncor-
relation assumption on the transfer matrix elements
is clearly incorrect for scattering due to acoustic
phonons (the motion of a given molecule simulta-
neously affects the transfer matrix elements to all
of its neighbors), Grover and Silbey' have argued
that such predominantly uncorrelated scattering can
arise from interactions with internal vibrations of
the molecules since, for strong coupling with such
vibrations, exciton-transfer matrix elements con-
tain a Franck-Condon factor' which undergoes
thermal fluctuations at finite temperatures.

Insofar, then, as the assumptions implicit in (1)
are applicable to excitons in a real molecular
crystal, it is of interest to investigate the implica-
tions of (2) on measurements of exciton diffusion.
As shown in detail in Appendix B„and as is expected
on general grounds in a dissipative system, Eq.
(2) reduces to a diffusion equation in the limit of
large times and long wavelengths for the spatial
exciton density. The diffusion tensor is given by

(4)

where () denotes an average over t, and where the

parameters y~ „are understood to be functions of

R„—R„. Furthermore, it is assumed that averages
of higher products of h„'s can be expanded in terms
of (1), i. e. , that the cumulant averages" of a prod-
uct of more than two h„~'s all vanish. With these
assumptions, the equation of motion of the exciton
density matrix p takes the form (h = 1)

(s/st) p = —i[X, p J„—2 (Q, y, )p„+m„g, y„,p„

The same equation of motion was used in Ref. 4,
where, however, only the local scattering term yo
was assumed to be nonvanishing. It was argued in
Ref. 4 that nonlocal scattering should be equivalent

where P„" is the transfer matrix element for trans-
fer between a molecule at, say, R, and one at
R+ Rp The sum extends over all lattice vectors
but for triplet excitons it is expected to be accurate-
ly approximated by considering nearest-neighbor
R's only.

Expression (4) differs from the corresponding
expression of Ref. 1 in that the quantities yit (R & 0)
are present, both explicitly and implicitly in the
total scattering rate I' [Eq. (3)J. If these quantities
are not negligible compared to both yo (and hence
to I') a.nd —,Pfl/r, the knowledge of the ha. lf-width of
the Lorentzian absorption spectrum and of the
transfer matrix elements P y is not sufficient for
inferring the exciton diffusion tensor. Equation (4)
can be used to obtain information on the yy's if
measurements of the exciton diffusion tensor are
made ~
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B. General Line Shapes, Hopping Model

'(R) = »a+ P-'/(F+») (6)

The inconsistency between (7) and (6) arises because
Trlifaj" in his derivation assumes that exciton-
transfer terms in the Hamiltonian are independent
of the positions of the molecules; thus there is no

possibility of fluctuations of these transfer terms.
Formulas (4) and (5) with (6) are in some ways

complementary. Although limited to Lorentzian
spectra, formula (4) is not restricted to the hopping
model but is applicable to partia, lly coherent exciton
motion as well; it is, however, limited to tempera-
tures large compared to the exciton bandwidth, since
the theory leading to this expression implies a uni-
form population of all exciton states at equilibrium
[the steady-state solution of (2) is p„-=N '5„].
Formula (6), on the other hand, works whenever
the hopping model is applicable and when nonlocal
scattering can be neglected, regardless of the tem-
perature and of the shape of the spectra.

For molecular crystals, spectra frequently con-
sist of a series of vibronic peaks, of which the main
progression has an energy spacing la, rge compared
to k T for all reasonable temperatures. As a re-
sult, since thermal relaxation between the vibronic
states is fast compared to triplet decay rates, ex-
citon dynamics involves only the lowest vibronic
band of this progression, characterized by proper-
ties of the 0, 0 peak. ' Formula, (6) gives the correct
hopping rate in this case even if the range of co is
restricted to the region of the overlapping 0, 0
peaks in emission and absorption, provided the
quantity Py is understood to be the transfer matrix
element for the exciton in its lowest vibronic state

A potential difficulty in applying the phenomeno-
logical expression (4) to real systems is that a
Lorentzian spectral shape is required. A formula
for the diffusion tensor which does not have this
difficulty is the hopping-model formula obtained by
Trlifaj, "following Dexter's theory" of energy
transfer in doped systems. In the hopping model
one has

D., = —,'Z „-a„a„e(R), (5)

where 4(R) is the exciton hopping rate between two

molecules separated by R. Trlifaj's formula is

4'(R) =Pg 2m f d(uf(u))F((u), (6)

where f(v) and E(~) are, respectively, the normal-
ized emission and absorption spectra, which can be
arbitrary functions of the photon frequency w. Ap-
plication of (6) to the coincident Lorentzian absorp-
tion and emission spectra implied by (1) yields

4'(R) = P„-'/I',

whereas expression (4) implies a, jump rate

(Pg:CopPn where Coois the Franck-Condon
factor for the 0, 0 transition").

Even if only the 0, 0 peak is retained in the spec-
tra, this peak may still not have a line shape which
is sufficiently close to a Lorentzian to allow an
unambiguous assignment to the parameter 1" of the
phenomenological theory. Although a rigorous
generalization of this theory, so as to apply to arbi-
trary line shapes, is not available, it is reasonable
to define an effective I' by the relation

'= [2v f d(u f(( )F((u)] '. (9)

This relation is an identity for the case of coinci-
dent Lorentzian absorption and emission spectra of
half-width 1', and one will, at least, be assured of
obtaining the correct answer for the diffusion con-
stant from Eq. (4) when nonlocal scattering is neg-
ligible and when the hopping model is applicable.
Note that the integral must be restricted to the re-
gion of the 0, 0 peak and that the transfer matrix
elements Pa in Eg. (4) are those for the exciton in
its lowest vibronic state.

By defining I' via (9) and assuming Eq. (4) to be
applicable one can always find quantities y"„so as
to yield experimentally measured va.lues of the dif-
fusion constant. The exact interpretation of these
quantities as fluctuation rates of the corresponding
matrix elements [Eq. (1)] may not be clear cut if
the deviation from a Lorentzian line shape is large.
Even in this case, as long as setting yR= 0 is incon-
sistent with the measurements and the hopping model
is applicable, one can at least say that some form
of nonlocal scattering must be present in the exciton
motion.

III. EXPERIMENTAL

The experimental setup for. the measurements of
the singlet-triplet (T,- So) excitation spectrafor,
delayed fluorescence was a modification of the ap-
paratus reported earlier. Light, from a 1000-%
xenon arc lamp (Hanovia 976C-1), was filtered
through 10 cm of water and a red-transmitting blue-
cutoff filter (Schott No. 00-1), 2 mm thick), dis-
persed via a monochromator (Spex model 1700 with
a Bausch 5, Lomb 1200-grooves-per-mm grating
blazed at 7500 A, with a dispersion of 10.5 A per
mm in the spectral range of interest), and relayed
via lenses and a polarizing filter (Klinger Scientific
No. 036320 with an Erwin Kisemann Ks DEM-%'-58
polarizer) onto the crystal. The delayed fluores-
cence from the crystal was led with a Pyrex light
guide to a photomultiplier (EMI 6255-SA) through a
blue-transmitting red-absorbing filter stack (Corn-
ing C. S. 4-76 and C. S. 7-59 filters and an Qptics
Technology broad-band interference filter with 5(Pp

transmission points at 3700 and 4525 A, or Corning
C. S. 4-72+ 5-58 filters; for measurements above
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room temperature one C. S. 4-72 and three C. S.
5-60 Corning filters were used). The photomulti-
plier output was fed via an operational amplifier to
an integrator (Technical Measurements Corp. CAT
Model 400) or to a strip-chart recorder. In mea-
surements above room temperature, where a higher
intensity was needed, a wider-slit monochromator
(Bausch &, Lomb, 500-mm gra, ting with 16.5-A-per-
mm dispersion) was used. The monochromators
were provided with a synchronous-motor wave-
length-drive mechanism with a microswitch for
triggering the CAT. Wavelength-drive rates be-
tween 25 and 100 Amin ' were used. The CAT was
operated in the external address advance mode,
using a, crystal-controlled pulse generator, at a
rate of 0. 4 sec per channel (160-sec full sweep for
the 400 channels). To achieve adequate signal-to-
noise enhancement, up to several dozen CAT scans
were employed. A low-pressure argon lamp (Pen-
Ray Ultra-Violet Products) was used for wavelength
calibration.

In the low-temperature measurements the crys-
tals were placed in a glass cryostat with optical
windows at its bottom and cooled with a flow of ni-
trogen gas. The temperature was measured with a
copper -constantan thermocouple in contact with the
sample. A second thermocouple monitored the tem-
perature of the chamber near the sample. In mea, -
surements above room temperature the samples
were surrounded by a heater capped with a glass
Dewar. At any given temperature the sample and
its holder could be rotated in order to control the
orientation of the crystal axes with respect to the
electric vector E of the incident light beam.

The crystals, typically 2-3 mm thick, were
cleaved along the ab plane from ingots grown from
the melt of highly purified anthracene. Triplet
lifetimes were about 20 msec. The incident light
was perpendicular to the ab plane and had a cone of
incidence of -20'. The polarization ratio (the ratio
of delayed-fluorescence intensity with Ella to that
with Kalb) was measured at room temperatures by
setting the incident wavelength at 6779 A (the aver-
age position of the two Davydov components) and
recording the emitted delayed-fluorescence intensity
as the crystal was rotated with respect to the E
vector. At —184 'C the Davydov components appear
sufficiently separated and the pola, rization ratio
was obtained by comparing the peak intensities in
the two components. It was ascertained that the
effect of slit width on the spectral line shape was
negligible.

The direct measurements of triplet-exciton dif-
fusion lengths were performed with the delayed-
fluorescence phase-detecting technique described
earlier. The gb-plane anthracene platelets were
cooled and heated by a technique similar to the one
used for the speetroseopic measurements. The

spa, tially nonuniform triplet-exciton distributions in
the crystal were produced with 1:1 images of
Ronchi rulings placed outside the cryostat at the
appropriate position in the optica, l path of the beam
of the He-Ne laser. The spatial periodicity of the
exciting light intensity distribution in the plane of
the samples was verified with a microscope and by
regularly checking the induced changes in the phase
of delayed fluorescence against those obtained by
placing the rulings directly below the crystal. This
optical arrangement considerably simplified the ex-
periments, allowing, at a given temperature, a
complete scan of the dependence of the phase lag of
delayed fluorescence on the spatial distribution of
the intensity of the exciting light. For all samples
nearly negligible levels (4i/i0=3-5%) of stray light
correction in the shadow regions were needed for
best fit of the data to the predicted behavior for the
phase of the delayed fluorescence. '

The expressions relating the phase lag of delayed
fluorescence to the triplet lifetime 7', to the diffusion
len~dh L along a given direction e in the plane of
the sample, and to the spatial period xo of the excit-
ing light have been given in Ref. 2. From the dif-
fusion length, defined in the usual manner
[I =—(2D„r)'~ ], one obtains D„, the magnitude of
the exciton diffusion tensor in a given direction.
The triplet-exciton lifetime at each temperature
was obtained from the phase lag of delayed fluores-
cence under uniform excitation of the sample (e.g. ,
I. /~o«1 in Ref. 2). In several runs the deduced
lifetimes were also verified by accumulating the
waveforms in a computer of average transients, and
the triplet lifetimes were deduced from the expo-
nential decay of the delayed fluorescence. For the
samples studied the lifetimes were nearly constant
(v=18-20 msec) in the 200-400'K range and de-
creased by nearly a factor of 2 (v'= 10-20 msec)
after cooling to 118 'K. A similar behavior of life-
time has been recently reported by Arnold et al.
for high-purity unstrained anthracene crystals.

Measurements of triplet-exciton diffusion along
the crystal a axis were performed at 118, 160,
298, and 371'K. The results are „D=( .4+005),
(2. 5+0.3), (l. 5+0. 2), and (1.6+0.3)x10 '
cm sec, respectively. The corresponding 0, 0
lines of the delayed-fluorescence excitation spectra,
after corrections as explained in Sec. IV, are dis-
played in Fig. 1.

IV. INTERPRETATION OF EXPERIMENTS

A. Davydov Splittings

Mer rif ield has shown that the proper way to de-
termine the Davydov splittings of complex spectra
is to calculate the differences in mean energies
calculated as the centroids of the absorption spectra
of the various components. For an absorption
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FIG. 1. First band (0, 0 line) of the polarized excita-
tion spectra for triplets in anthracene crystals at (a) 118,
(b) 160, (c) 298, and (d) 371 K. The quantity plotted is
the square root of the measured delayed-fluorescence in-
tensity 4 ~ . The full curves are for E ll a crystal axis.
The dashed curves are for E tjb crystal axis after correc-
tion for the presence of the mainly a-polarized compo-
nent as explained in text;. The arrows in (c) and (d) indi-
cate the assumed cutoffs for calculating ~ and I' [Eqs.
(10) and (12) in text]. The vertical scales are arbitrary,
and do not reflect the actual relative heights of the a and
the 5 components. Note the change in horizontal scale
for (c) and (d).

spectrum given by the square root of the delayed-
fluorescence excitation spectrum 0 (&u) as a function
of the photon frequency ~, the mean value ~ is
given by

~= 1d~ ~(~(~)]'"ijd~'[e(~')1'". (10)

This equation can be applied not only to the complete
spectra (for all frequencies) when the full electronic
Davydov splitting is obtained from the mean-energy
differences of the two components, but also for each
vibronic component of the full spectrum. The re-
sult is then the splitting of that particular compo-
nent, equal to the full splitting times an appropriate
Franck-Condon factor. " In the latter case, appli-
cable to the present experiments, it is, of course,
necessary that the vibronic components can be re-
solved from one another. This technique will yield
the same result for the splitting as that obtained
from the difference in peak positions if the spectra
of both Davydov components (i.e. , a- and b-polar-
ized spectra for anthracene) have the same shape.
This is not the case for excitation spectra in anthra-
cene, where asymmetries which are different for
the a and 5 components have been reported, '
and as is pa. rticularly evident in Fig. 1(b). Al-

TABLE I. Summary of measured and calculated
parameters.

118
Temperature ( K)

160 298 371

D~ 4.0+ 0.5 2.5+ 0.3 1.5+ 0.2
(10 cm sec )

1,6+ 0.3

18 + 6 17+ 3 19+ 2

pb

(cm 1)a

pC

(cm ')a

a 6 /64I'
(10 cm sec ')

14 + 1

14+ 2

2 ~ 5 o 6
+0.8

30+ 2

26+ 6

1' 1-0, 6
+ 1.0

51+ 1

54+ 6

0.6+ 0.2

65+ 2

62+ 2

0.6+ 0. 1

0 11-0.'06 0 10-o.'06 0 ~ 07+ 0 04 0 07~ 0 ~ 03Vg
(cm-')'

'The equivalent rates (sec ~) are obtained by multiplying
by 2~c= 1.88&& 10 cm sec

"From the a-polarized component.
'From the 5-polarized component.

though the differences in the spectra of the two
components are small, the Davydov splitting is also
small in comparison to the total linewidth except
at the lowest temperatures, so that splittings ob-
tained by differences in peak positions can be gross-
ly incorrect.

In computing Davydov splittings via (10), it is
important that the b-polarized spectrum (giving
mainly the minus" Davydov component)2' be cor-
rected for the contribution of the (mainly a-polar-
ized) "plus" component, which is more intense a,nd

seems always to be present in experiments in
amounts depending on the particular experimental
setup and the crystal used. In the setup for the
three lowest temperatures given in Table I, the 5-
polarized spectrum obtained at 90'K allowed re-
solution of the "plus" peak, whose magnitude in
absorption was about 0. 16 that of the "minus" peak.
Another way of estimating this contribution is by
comparing high-temperature polarization ratios
with the theoretical value" of 3.62 (which we veri-
fied experimentally at 90 K), where the polarization
ratio is measured at a wavelength midway between
the two components. The ratio is reduced to 3. 62/
(1+x), where x is the fraction of the "plus" com-
ponent in the b-polarized spectrum. This procedure
gave x= 0. 17 at room temperature, consistent with
the above. For the high-temperature setup, where
x could only be deduced from the polarization ratio,
we found x=0.8. Some reasons for the presence
of the plus" component in the 6-polarized absorp-
tion spectrum are (a) the theoretical expectation"
that 5-polarized light is absorbed to some extent
by the primarily a-polarized "plus" Davydov com-
ponent, the ratio of "plus" to "minus" absorption
being about 0. 02, (b) crystal imperfection effects
causing misalignments and depolarization of the
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exciting light by scattering, and (c) the fact that,
in the present experiments at least, the light inci-
dent on the crystal was partially focused, with the
resulting deviations from normal incidence intro-
ducing a g~ component in the E vector of the inci-
dent light, which couples strongly to the "plus"
Davydov component.

A difficulty present only in the high-temperature
spectra is that the 0, 0 peak is not perfectly re-
solved [e.g. , Fig. 1(c)t from the next vibronic
peak. We have adopted the procedure, illustrated
by the arrow in Fig. 1(c), of cutting off the spectra
near the flat minimum separating the 0, 0 peak from
the next vibronic peak. Obviously, the precise
choice of the cutoff point affects the position of the
calculated mean energy. We have chosen the cutoff
points such that for both components the distance
between peak maximum and cutoff is the same.
This choice ought to minimize the error in the
Davydov splitting introduced by the cutoff, since
for the case of identical line shapes of both compo-
nents only this choice of cutoff avoids introducing
an artificial error in the splitting.

A further source of error was present in the
analysis of the 371'K spectra, where the delayed-
fluorescence emission was superimposed on a low
background of prompt emission, apparently due to
direct absorption in the singlet tail. The magnitude
and wavelength dependence of this background were
deduced by comparing spectra for different slit
widths and using the fact that delayed-fluorescence
intensity varies as the square of the incident in-
tensity, while prompt fluorescence is linear in in-
tensity. Since singlet absorption in the Urbach tail
is also strongly polarized. the background correc-
tion was quite different for the a- and 5-polarized
spectra. Therefore, any errors in this correction
lead to an error in the splitting.

The calculation of the splitting from the mean
energies has the additional advantage that all the
experimental points are used, with a resulting re-
duction in the experimental error. A careful esti-
mate of the errors in the splitting is essential,
since these give by far the greatest contribution to
the errors in the spectroscopic estimates of the
diffusion constant. We have estimated the rms
error in the position e of the centroid by the for-
mula

((g )2)1/2 + ( 14 &n)'"(/I/F)'~
C(0)

derived under the assumptions stated in Appendix
C. In Eq. (11), $ is the resolution for a CAT chan-
nel, 2g the full spectral range, I' the half-width of
the equivalent Lorentzian, E the rms noise ampli-
tude, and 4(0) the value of the signal at the peak.
No attempt has been made to estimate the uncer-
tainties introduced by the cutoff and the background

subtraction used for the high-temperature spectra.
The numerically computed Davydov splittings for

the spectra shown in Fig. 1 are given in Table I,
where the listed errors are calculated with the aid
of (ll). Similar procedures applied to spectra. at
90 and 228 ' K gave Davydov splittings of 4 = 18 + 4
and 17 a5 cm ', respectively. Thus, within the
stated errors, the splitting appears to be tempera-
ture insensitive in the range 90-371 'K. The ap-
parent shallow minimum' in the vicinity of 220 ' K
results if the splittings are determined from the
separation of maxima of the two lines instead of the
rigorous procedure" taking into account the com-
plete line shapes, which near this temperature show
the greatest asymmetries.

B. Effective Linewidths

The value of the effective linewidth I' obtained by
Eq. (9) will in genera, l differ considerably from that
obtained by measuring the half-width at quarter-
maximum of the observed excitation spectrum, even
if this spectrum is nearly equal to the square of a
Lorentzian near the peak. The reason for this can
be found in the unphysical wings of a Lorentzian,
which drop off so slowly (as e ) tha, t if they are cut
off for frequencies greater than about five half-
widths, the value of (9), assuming equal truncated
Lorentzians for f(&u) and F(&u), is decreased to
about one-ha. lf the Lorentzian half-width (the de-
crease is mainly due to the change in the normaliza-
tion constant introduced by the cutoff). Real spec-
tra, even if well approximatable by Lorentzians
near the peak, are not expected to have wings de-
creasing only as ~; the Urbach rule implies an
exponential decrease, at least on the low-energy
side of the absorption edge. In view of this, we
believe that formula (9) can be applied'directly to
the observed spectra without worrying about possi-
ble contributions due to essentially unobservable
wings.

Emission spectra are needed in the evaluation of
(9). Because of the extremely low phosphorescence
intensity of anthracene, we have not been able to
obtain phosphorescence spectra, with the precision
obtained for the excitation spectra, particularly at
low temperatures. For this reason, we prefer to
deduce the emission spectra from the absorption
spectra using the condition of detailed balance,
which essentially implies '

f(&u) o- E(u&) exp(-h&u/kT).
The prerequisite for validity for this relation is that
both emission and absorption occur under conditions
of thermal equilibrium of the lattice. This prere-
quisite may be violated if there occur, during the
exciton's motion, slow but important relaxation
processes whose rate is slow compared to the ex-
citon decay rate. Such a process should manifest
itself in the form of a Stokes shift of the positions
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of the 0, 0 peak in emission vs absorption. The
evidence ' ' is against a Stokes shift comparable
to k T. Our own phosphorescence measurements
also showed negligible Stokes shifts in the tempera-
ture range of 298-77 'K; moreover, the observed
linewidths were essentially the same as in the
square root of the excitation spectra, as expected
from the condition of thermal equilibrium. The ef-
fective I' was then calculated from the observed
excitation spectra C(&u) by'

f der [e(cu )]'"fd~e """'[4(~)]'"
2v f d(uC(&u)e """

This quantity was numerically evaluated both for
the a- and corrected b-polarized spectra. (Table 1).
Since the theory which leads to (6) implies identical
line shapes for both Davydov components, the
discrepancy in the values of I" computed for the two
components provides a quantitative measure of the
error due to the fact that the line shapes are not
exactly identical. Indeed, the greatest relative
discrepancy in I' occurs for the 160 'K spectra
shown in Fig. 1(b), ' where the observed qualitative
differences of the spectra of the two components
was greatest.

By making an error estimate in the same way as
was done for the Davydov splittings (Appendix C),
we arrive at the expected errors given in Table I,
which show that, in fact, the discrepancy in the
values of I' for the two components is in each case
at least within experimental error. As before, no
attempt has been made to estimate uncertainties
such as those introduced by the cutoffs of the high-
temperature data, or by possible long tails in the
spectra which may be lost in the background noise.

C. Applicability of Hopping Model

The values of a and 1' (Table 1) allow us to decide
on the applicability of the hopping model of exciton
motion in the temperature range investigated. The
mean free path A., for exciton motion along the g

axis is given by' A.,=a&/161, so that x, «a when-
ever ~ «161'. If the mean free path is small com-
pared to a lattice spacing, many scattering events
occur before exciton transfer from one molecule to
another, and the transfer may be considered nearly
incoherent.

The relation b «16I" is satisfied for all the en-
tries in Table I. Thus we can clearly conclude that
the hopping model is applicable for describing trip-
let-exciton migration in anthracene over the range
of temperatures covered. This conclusion also
gives support to the use of Eq. (9) in our analysis
of the diffusion constant.

D. Diffusion and Nonlocal Scattering

The principal axes of the triplet-exciton diffusion

D..., =&+'[ 4~„,+ 3P,'.,(r+&„.)-'] . (13c)

Since spectroscopic measurements yield only I'
and p, = 8L, D„[Eq. (13a)—] is the only component
of the tensor which in conjunction with spectroscopic
data provides an unambiguous determination of a
nonlocal fluctuation rate (y„). '" Equation (13a) can
be rewritten as

(14)

where the first term can be evaluated from spectro-
scopic data and the second term represents the
correction due to nonlocal scattering. Note that
this term simplifies to g y~ when the hopping model
is applicable (p, «1"). The first term is presented
in Table I using' a=8. 56 A; from the measured
values of D„one obtains the listed values of y„.

Because of the large estimated errors in y, (which
may be even larger than given in Table I owing to
uncertainties which have not been included in the
error estimate), definitive statements concerning
the temperature dependence of y~ cannot be made.
The results do imply an upper limit of -0.2 cm '
on the value of y„. The results suggest that y~ is
roughly temperature independent, contrary to the
expectation that scattering due to phonons must de-
crease as the temperature decreases, although a
y„which is decreasing with temperature cannot be
ruled out. A temperature-independent y„could
arise if fluctuations in the transfer matrix element
P~ are not due to lattice motion but are rather due
to a static disorder which leads the moving exciton
to "see" a fluctuating P„. If so, future experiments
might disclose a dependence of y~ upon the degree
of crystalline perfection.

The model proposed by Grover and Silbey, ' in
which nonlocal scattering (here y~, y~, and y~„)
dominates loca. l scattering (yo), is inconsistent with
our measurements. The linewidth [Eq. (3)J in this

tensor in anthracene are a, 5, and c*. Band-struc-
ture calculations' ' indicate that the most impor-
tant triplet-exciton transfer matrix elements are
P„g, and P~„, for transfer between molecules
separated by lattice vectors equivalent to —,'(a+b ),
b, and c+ —,'(a. +b), respectively. Of these, P„, is
much smaller than the other two and is only rele-
vant for exciton motion out of the ab plane. The
Davydov splitting is then 4, = 8P„. Since one expects
similar relative magnitudes for the fluctuation rates
of the transfer matrix elements, we assume that
only y„, y~, and y„„are nonnegligible and that y„„
is small compared to the other two. From Eq. (4)
one then obtains for the principal components of the
diffusion tensor

D..="h,.—.'P,'(F.y, ) '], (13a)

D»=f '[&r, +r. +P,'(F+~,) '+ .' P,'(F-+r, ) '], (»b)
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model would be I' = 4y„+ 2y~; although we do not know

y„we certainly do not expect it to be significantly
greater than y~, and values of Z' much greater than
-1 cm ' should be inconsistent with the upper limit
y„& 0. 2 cm '. By contrast even the narrowest line
observed had I'- l4 cm ', so that local scattering is
dominant in the temperature range investigated.

V. OTHER METHODS FOR STUDYING EXCITON
DYNAMICS

A. Exciton Spin Relaxation

Haarer and Wolf7 have studied the ESR spectra
of triplet excitons in anthra. cene at 300 and 100 '

K,

and have attempted to interpret the spin relaxation
times T, and T2in terms of the modulation of the

dipolar fine-structure interaction by the hopping of
the excitons. Although they obtained a room-
temperature hopping rate which is consistent with

the directly measured value, the reported hopping
rate at 100' K is increased by only 30/z over the
room-temperature rate, in sharp contradiction to
both measured and spectroscopically estimated
values (which show an increase of greater than
200/o). The theoretical analysis of the spin relaxa-
tion mechanism, however, has several difficulties.

If the spin relaxation is only due to the motional
modulation of the fine-structure part of the spin
Hamiltonian of the excitons, then the relaxation
rate I/T, must be proportional to the square of ap-
propriate matrix elements of X&-X~, where X„and
X& refer to the spin Hamiltonian for an exciton re-
siding on one of the two inequivalent molecules in
the anthracene unit cell. This assumption predicts
no spin relaxation when all molecules are equivalent
in the lattice (K&=Ks). The observed angular de-
pendence of T& on magnetic field could only be fitted
with this theory by arbitrarily neglecting cross
terms involving the product of a matrix element of
X„with a matrix element of X~. Such a modified
expression for T& would, however, predict spin
relaxation even in a crystal with one molecule per
unit cell, thus contradicting the very idea of motion-
al modulation, since in this case there is no modula-
tion. Similarly, it can be shown that the motional
modulation theory for T~, as given in Appendix D
of Ref. 37, does not fit the observed angular de-
pendence for T2. Instead, the authors of Ref. 7
used a formula describing the angular dependence
of T& when the spin relaxation is caused by fluctua-
tions in the dipolar interaction between two like
spins. ' The applicability of this formula to de-
scribe spin relaxation of a single exciton experienc-
ing a fluctuating spin Hamiltonian is not clear.
It seems to us that a meaningful comparison between
the directly measured exciton jump rates and the
values extracted from ESR studies cannot be made
until the complete mechanism for exciton spin re-

laxation is understood.

B. Exciton-Induced Proton Spin Relaxation

Maier, Haeberlen, and Wolf have deduced an
exciton hopping rate from studies of the magnetic
field dependence of exciton-induced proton spin re-
laxation. More recently, Kolb and Wolf have made
measurements for anthracene also at liquid-nitrogen
temperature and have conducted similar experiments
on naphthalene. The room-temperature values for
the hopping rate are consistent, in both investiga-
tions, with direct diffusion measurements. The
low-temperature data, on the other hand, seem to
imply a diffusion constant which is only about 30%
greater than the room-temperature diffusion con-
stant. We wish to point out some potential difficul-
ties in the assumptions involved in the analysis of
NMR data. It appears to us that taking into account
the nearly two-dimensional nature of the exciton
motion ' modifies this analysis sufficiently so that
it is no longer possible to say that present data are
inconsistent with a much larger value of the low-
temperature diffusion constant. The precise de-
termination of such large triplet diffusion constants
by NMR techniques unfortunately necessitates mea-
surements at high magnetic fields, not readily
available in the laboratory.

Exciton-induced proton spin relaxation results
when the exciton motion modulates the interaction
between the magnetic moments of the exciton and
of the proton. If, as is reasonable to assume, this
interaction can be neglected except when the exciton
resides on the same molecule as the proton, then
the proton spin relaxation rate becomes proportion-
al" to a correlation function J(~), which is the
Fourier transform of the probability that if an ex-
citon is on a given molecule at time t = 0, then it is
still on the same molecule a time t later. Thus
Z(&u) contains essentially a.ll the information on the
exciton motion in the lattice. The frequency ~ is
given by the energy difference between the levels
involved in the transition responsible for the spin
relaxation.

In Refs. 8 and 9 it was assumed that Z(~) can be
approximated by a Lorentzian function and that ~
can be replaced by the Zeeman energy of the triplet
excitons. The first of these assumptions, however,
neglects important details of the triplet-exciton mo-
tion, while the second assumption is not applicable
for external fields of the order of 1 kOe and less,
when the zero-field Hamiltonian of the excitons can
no longer be neglected. Not only will the presence
of this zero-field Hamiltonian modify the exciton
energy levels and spin selection rules for the tran-
sitions, but also the proton levels will be modified
since the proton, too, experiences a dipolar inter-
action with the electron and hole comprising the
exciton. A further complication at low fields is
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ton and proton spin, which was used in Refs. 8 and
9. The function has been plotted for two values of
the diffusion constant, the measured room-tempera-
ture value (curve A) and a five-times-larger value
(curve B). Curves assuming Lorentzian correlation
functions for these same diffusion constants are
shown as dashed lines. The liquid-N2 data of Ref.
9 do not seem to be inconsistent with curve 8 of
Fig. 2, or a fivefold increase of the diffusion con-
stant, although they do appear inconsistent with the
corresponding I orentzian curve. Clearly, mea-
surements well above 10 kOe are needed for this
case if a reliable value for the diffusion constant is
to be deduced.

I04 IO' VI. CONCLUDING REMARKS
u) in UNITS of MAGNETIC FIELD(0e)

FIG. 2. Inverse of the correlation function J'(~) relevant
in the analysis of exciton-induced proton spin relaxation
in anthracene (Appendix D). The quantity plotted is
A/J(~), with & given in units of Oe. For fields in excess
of -1 kOe the plot is equivalent to a theoretical curve for
the proton spin relaxation time T~ appropriate for scalar
coupling (Ref. 41). The constant A has been chosen so
that for ~=5 kOe the values for T& are approximately
equal to the typically observed relaxation times in anthra-
ccne (Refs. 8 and 9). The function has been calculated
for (A) the room-temperature triplet-exciton diffusion
tensor in anthracene (D„and D&& from Hef. 2, D~+~~ from
Ref. 37), and (B) assuming a fivefold increase of all the
components. Corresponding curves for a Lorentzian
correlation function are shown as dashed lines.

the presence of optical spin polarization of the pro-
tons. ' For purposes of studying exciton dynam-
ics, however, larger magnetic fields are sufficient;
e. g. , when D« = 1.5&& 10 cm sec ', the room-tem-
perature value for anthracene, the physically im-
portant fields are in the vicinity of 12 kQe.

Because of the nearly two-dimensional nature of
the motion of triplet excitons in anthracene ' the
correlation function J(&u) deviates markedly from
the Lorentzian approximation J(~) = const/(1+ u r, ) .
For perfectly two-dimensional motion (D„=0),
J(u) must diverge as &u- 0, since the exciton returns
to the origin infinitely often. ' Correspondingly,
a nearly two-dimensional motion must have a J(u)
which is peaked near e = 0. In Appendix D, we de-
rive an exact expression for J(&u) in the hopping
model, neglecting all but nearest-neighbor transfers
of excitons. In Fig. 3, we have plotted A jJ(&u),
with ~ given in units of Oe and the constant A chosen
so that, for ~ = 5000 Qe, the value of the plotted
function is approximately equal to the typically ob-
served values of T& for anthracene near this tem-
perature. In this way, for fields in excess of -1
kQe, the plot is equivalent to a theoretical curve
for T& appropriate for scalar coupling" of the exci-

In the present investigation, we have endeavored
to obtain a more complete picture of triplet-exciton
dynamics in anthracene in the temperature range
118-371'K through a combination of direct mea-
surements of' the diffusion component along the
crystal a axis and spectroscopic measurements of
the Davydov splitting and effective linewidth. In
trying to assess the importance of nonlocal scatter-
ing, a detailed analysis of the spectroscopic data is
necessary. Qur direct measurements of the diffu-
sion constant show that reasonable estimates of this
quantity can be made from spectroscopic data, par-
ticularly at lower temperatures. Near room tem-
perature and above, there is a definite indication
that a measure of nonlocal scattering is present in
the dynamics, though a definitive statement concern-
ing its temperature dependence could not be made.
It is clear, however, that, contrary to the model of
exciton dynamics given by Grover and Silbey, ' the
local scattering mechanism is the dominant one,
although nonlocal fluctuation rates can contribute a
sizable amount to the exciton transport rate. Final-
ly, we can definitely conclude from the spectroscop-
ic data that the hopping model for exciton motion is
applicable for the temperature range investigated.
It is hoped that the techniques developed in the pres-
ent paper will be useful in leading to a better under-
standing of exciton dynamics in other molecular
crystals.

Note added in proof. D. Haarer informs us that
the statement in Ref. 7, that the correlation time ~,
is only 30% shorter at 100 'K than at room tempera-
ture, is incorrect. It is the relaxation time T3 which
is about 30% longer. This implies, using the theory
of Ref. 7, about a twofold decrease of ~„or about a
twofold increase of the diffusion constant over the
room-temperature value. Although this corrected
result appears consistent with the present measure-
ments, the agreement may be fortuitous in view of
the difficulties in the theoretical analysis discussed
in Sec. V.
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APPENDIX A: OPTKAL LINE SHAPES

In order to derive the shapes of absorption and
emission lines implied by Eq. (1) for the phenom-
enological exciton scattering model, it is conve-
nient to introduce exciton creation and annihilation
operators g„and a„ for an exciton localized on R„.
The time-dependent exciton Hamiltonian of the mod-
el then has the form

x„,=x+h(t),
(AI)

X= Z P„a'„a, h(t) =- Z h„(t)a'„a
f1~ ftt

Absorption and emission spectra for (AI) are eval-
uated from the spectral densiti. es~

E-„((u) = (27t)
' f dt e'"' (a-„(t)a-'„(0)), (A2)

f j",(~) = (2v) ' f„dt e'"'(a-„(t)af(0)), (A3)

where a"„=N 't g„exp(jk R„)a„(N is the total number
of sites), and () denotes averaging of the fluctuating
part of (Al), for a no-exciton state in (A2) and for
a one-exciton state in (AS). It is convenient to work
in an extended zone scheme such that the Davydov
branches of the exciton become unfolded into a single
band. Then photons will couple to certain special
exciton wave vectors, in addition to k= 0. For these
values of k, (A2) and (AS) give the normalized ab-
sorption and emission spectra, respectively, pro-
vided the spectral frequency range is small com-
pared with the average frequency. The spectrum
for each special value of k is the spectrum of the
appropriate Davydov component.

Using methods and notation given by Kubo, ' one
has

a„-(t)=e xp[rif h(t )"-dt ]a"„, (A4)

where for any operator A the circumflex denotes the
interaction picture, A(t) ==e'"'A(t)e ' ', T denotes
time ordering of each term in the expansion of the
exponential, and the superscript && indicates that a
commutation operation is to be performed, ".

'. .e. ,
A"B—= [A, B]. The avera. ge of (A4) over the fluctuat-
ing part is obtained from

(expr [-i f, h(t')" dt'])

expr [ 2 f,'«, f,
'
«2(h(tg) h(t2)"), ], (A5)

where the subscript e denotes a cumulant average.
We have used the fundamental assumption of the
model that any cumulant average of a product of
more than two quantities h„(t) vanishes [as does

the average of a single h„(t), since it is defined as
a fluctuation about an average]. With the aid of (1),
we have

f'dt, f'dt, &h(t, )i(t,)"),=2sgn(t) f dt Q(t,), (A6)

where

@=Z 'Y„(a„a ) [a„a +(1 —g„)at a ]"

and where sgn(t) = I for t & 0 and —I for t & 0. Sub-
stituting (A6) into (A5) and then into (A4), we obtain
expressions for the integrands of (A2) and (A3).
These expressions are easily evaluated by consider-
ing their equations of motion,

(S/St) (a;(t)a;(0) )

=(S/St) &0~e '"'(a"„(t))e' 'a-'„~0)

= -i([X, a„"(t)]a'"„)-sgn(t)([Q(t)ag(t)]a'-„),

where I 0) is the no-exciton state. Since Qa"„
= g„y„aI= I af, and, from (Al), X= N g"„eIa"„a"„1

where eg= N'g„—P„exp(ik R„), we have

(s/! t)&a"(t)a"'(o) )

(AV)

by

APPENDIX B: DIFFUSION TENSOR

The spatial Fourier transform of Eq. (2) is given

(Siat)git(q)=-i~- p- m giI (q)(1-e"
—2Fgtt(q)+»~0 [Y(q) -Yo]go(q)

+ 2Ya e '"""g „"(q ), (Bl)
where

fq ~ R '
gRR q) ~R' ~ PR'+R R~ p

Y( q) =-~+i e YR i

(82)

(II3)

and where the Hamiltonian X in Eq. (2) has been
expressed in terms of its matrix elements pR con-
necting molecules separated by the lattice vector
R. For convenience, labels n and m in Eq. (2) have

= —i@-„(ag(t)a.„(0))—sgn(t) I'(a.„(t)aI(0)), (A8)

which, using (a"„(0)ai~)=1, has the solution

(ag(t)a'I-(0)) = e ""' (A9)

yielding the absorption spectrum

F&(~) = r/0
((u —e-„)'+I' '

The calculation of the emission spectrum follows
identical steps, except that in place of the expecta-
tion value of the no-exciton state I 0) the trace over
one-exciton states must be used. The result is
f„"(cu)=E;(&u) [Eq. (A10)]. Thus the spectra are
Lorentzians of width I' for all Davydov components,
centered about the appropriate energy e-„of each
component.
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been replaced by the explicit lattice vectors for
which they sta.nd.

We consider Eq. (Bl) in the limit of large times
and small wave vectors q appropriate for a possible
applicability of a macroscopic diffusion equation.
For R&0, the left-hand side of Eq. (Bl) can be
neglected after times such that the system is suffi-
ciently close to a steady-state limit so that the
rates of change are small compared to I' (times
large compared to the scattering time). For pres-
ent purposes, it is sufficient to solve the resulting
equation under conditions such that

fgo(q) f» fga(q) f
for all Re 0 .

One obtains, using ya = y It [see Eq. (1)],

gfl(q) = --,'ipii(I" +yii) '(1-e "")g,(q)

(B4)

(s/sf) go{q) = - q D qadi(q) (B6)

D=&~ RR[y~. -' ~.-'/{F'~.-)] . (ag)

If (B6) is obeyed for all q up to the zone boundary,
we have the special ease of the hopping model,
where the mean free path is small compared to a.

lattice spacing. In this case (BV) is va. lid for all q
and may be transformed back to the hopping equa-
tion,

(S/ef)pRR =&a +@-&'be a

-[Z~ ~(R')]p-.;, (»0)
where

{R~o), (a6)
so that in order to satisfy (84) one must have

a(1+&&) Isin-,' q Rl(~1

which will always be obeyed for sufficiently small
Equation (86) is essentially the statement that

the wavelength of the exciton density modulation to
be considered must be large compared to a mean
free path, since P gR is a measure of the exciton
velocity and 1/I" of its scattering time. Substitution
of (85) into Eq. {Bl)for R= 0 yields for go(q), the
Fourier transform of the exciton density, the rela-
tion

(s/sf) go(q) = -2 [F-Y(q)]go(q) -Zo(q)

&&]&~P)[I —cos{q R)]/(F+ya)], (B7)

which in the limit q- 0 approaches the diffusion
equation

{5e((u)5e (&u')& = e']5((u —ru') . (Cl)

@(~)=C(o)F'/(~'+I')' «r f~ f» fq f, (C4)

where v = 0 has been chosen at the position of the
peak, whose measured height is 4 (0). Evaluation
of (C2) yields

2

&(6~)'&=4Fe-,a@-0)2 {7n'+5 n'F'+ 3 n'F') (C6)

In present experiments, the rangy g was large
compared to the linewidth (g= 5I') and the last two
terms in (C5) are negligible. One obtains

Relation (Cl) is the continuum limit for measure-
ments made in discrete channels (such as those of
the CAT) at intervals ( of the variable ~. The
quantity & is the rms amplitude of the noise in each
channel, assumed to be uneorrelated between dif-
ferent channels, and the same in all channels (as
observed).

With (Cl), the mean-square error in the mean
energy &u given by Eq. (10) becomes

l &'h f d~ ~' /@(~)
kfd~[C(~)] '"]'

where we have assumed 5C (e) «4(&u) for all &u's of
interest. This can usually be achieved in practice,
even in the wings of the spectra, by reducing the
amplitude of 54 {&u) by taking an average over sev-
eral channels. Averaging over n channels reduces
the rms noise by g ', but increases the effective
channel width by n. The quantity e $ in (Cl) re-
mains, however, invariant under this procedure,
so that its value is determined by the rms noise in
a single channel. Similarly, the mean-square error
in the effective linewidth I' given by Eq. (12) will
be [we neglect the Boltzmann factors in (12) for
simplicity 0]

fd(u/4 ((u)
((6F) ) ~ hF (fd [@( )]1)2]2

fdur [C (&u)] f«
fd(u[C ((u)]'"fd(ue((u) [ fd(uc ((u)]'

For purposes of estimating the errors (C2) and

(C3), it is sufficient to approximate the measured
excitation spectra by squares of Lorentzians, trun-
cated within the experimental range of frequencies.
For simplicity, we assume that this range is sym-
metric about the maximum of the I.orentzian, ex-
tending by an amount q on each side of the maxi-
mum. That is,

~(R)=»; e~/(F ym). (all)

APPENDIX C: ERROR ANALYSIS

We assume that the measured delayed-fluores-
cence excitation spectrum C (&u) contains a noise
64(&u) whose correlation function is given by

&(6
—

)2&1&2 ~ '(khn)'"(n/F)'~
c(0)

Similarly, the error in I' is given by

2 1/2 l/2 g/2
{(6F)2&i)a {5) ( n

~F'e(o) (CV)
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APPENDIX D: CORRELATION FUNCTION IN HOPPING

MODEL

The equation of motion of the exciton density
pgit(t) has in the hopping model the general form
given in Eq. (B10). The spatial Fourier transform
of this equation is

(&/sf)g(q, &)=-f(q)g(q, &),

where

(Dl)

(D2)

and

g(q, t) =5~; e"-' pflii(f) . (Ds)

~( ) =(& ) 'E;f(q)/( '+[f(q)]') . (D4)

For triplets in anthracene, the motion is nearly
two dimensional and the important hopping rates
are C~ and Cb for transfer between molecules sep-
arated by lattice vectors equivalent to —,(a+b) and

b, respectively. " ' On appropriately replacing
the wave-vector sum in (D4) by an integration, one
obtains

Z(&u) = (ab/16m') ~

~4r /b

&q f(q. , q)/( '+(f(q. q))')
«0

Equation (D1) is easily solved to yield poo(t) for the
case corresponding to the initial condition pills(0)
= 5SO. This poo(f) gives the probability tha, t an exci-
ton, which is at R=0 at time t =0, is still at R= 0
at time t. The real part of its Fourier transform
with respect to time is the correlation function4'
Z(&u) needed in the analysis of triplet-exciton-in-
duced proton spin relaxation. The result is

where

f(qg) qb) 4@4+ 2kb 44 g cos(2 qus) cos(p qyb)

—M', cos(q~b) . (D6)

Expression (D5) diverges as &u- 0, As follows
from (D2) and (D4), such a divergence will occur
whenever the motion is confined to one or two di-
mensions and is a manifestation of the exciton's
repeated return to the origin in these cases. ~' The
divergence of (D5) is not present in reality, because
of the weak transfer perpendicular to the ab
plane. ' As shown in Ref. 37, such nearly two-
dimensional motion can be approximated by a mo-
tion constrained to the ab plane but with an effective
exciton decay rate equal to the out-of-plane hopping
rate. This approximation here amounts to adding
the out-of-plane hopping rate C,~ = 2C„, to the
right-hand side of (D6).

The evaluation of (D5) for purposes of Fig. 2 was
performed by numerical integration. For curve A
the room-temperatures values of 4'„and 4 b implied
by the measured values of D„and D» were used;
for C,~ the lower value deduced from magnetic
field experiments was used. Setting C,g = 0, how-
ever, does not significantly affect Z(&u) for the fre-
quency range shown in Fig. 2. Curve B gives the
corresponding behavior for a fivefold increase in
the hopping rates jl„and Cb. The Lorentzian ap-
proximation used in Refs. 8 and 9 results if f(q„q~)
in (D5) is replaced by its average va, lue 4'~=44,
+2kb. The correlation function reduces then to
J'(&u) = v ' 4 „,/(u& + qita„). As illustrated in Fig. 2,
the Lorentzian correlation function (dashed curve)
becomes a reasonable approximation in the vicinity
of magnetic fields for which ~ = 4„„the reciprocal
of the total residence time.
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