
WEAK ABSORPTION TAILS IN AMORPHOUS SEMICONDUCTORS

tion cross section. In this interpretation the internal
electric fields' ' make the glasses more transpar-
ent than a crystal with the same concentration of
states in the gap. One can roughly visualize the
nature of the effect with the following picture. As
the percolation theory suggests, ' above the mobility
edge, but close to it, the extended states do not
exist in the whole volume V, of the sample but only
in a part V, (Fig. 5). If we neglect transitions

between states located at different sites, the absorp-
tion is reduced by a factor V, /V, .
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Phonon Density of States in Germanium at 80 K Measured by Neutron Spectrometry
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More than 500 frequencies of phonons with reduced wave vectors evenly distributed over an
irreducible section of the first Brillouin zone have been measured in germanium at 80 K with
a neutron crystal spectrometer. The phonon density of states was calculated from the data
with an improved sampling technique. Comparisons between thermodynamic quantities de-
rived from calorimetric data and from the present spectrum reveal an excellent agreement.
A critical-point scheme determined by use of a method originating from Phillips is also
presented. The scheme properly satisfies the Morse relations and other topological condi-
tions, and most of the van Hove singularities expected are clearly displayed in the spectrum.

I. INTRODUCTION

The phonon density of states g(v) of a crystalline
solid is defined as follows. The function g(v)dv
signifies the fraction of the total number of phonon
states n the frequency interval (v, v+dv) if fg(v)dv
is normalized to 1. Knowledge of g(v) is essential

for understanding of the thermodynamic properties,
for extraction of the electron-phonon coupling co-
efficient in a tunnel-junction experiment, for de-
sign of reactor moderators, etc. It is difficult to
make good direct measurements of the density of
states, and few spectra have actually been studied.
Usually measurements reveal only the main peaks.
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Theoreticians have produced mathematically ac-
curate g(v) functions for lattice models in about
two decades„and one of the most striking results
of these calculations is the existence of kinks in

g(v) or discontinuities in dg/dv. Van Hove pointed
out that they originate from so-called critical
points in the v(q) branches (q is the phonon wave
vector).

A common technique for obtaining g(v) is to mea-
sure the phonon dispersion relations for some prin-
cipal symmetry directions on a single crystal with
a three-axis crystal spectrometer, fit a lattice dy-
namical model to the data, and calculate frequen-
cies for off-symmetry directions. The accuracy
of this method hinges on the validity of the model
applied. When the frequencies of a large number
of uniformly distributed phonons are known, g(v)
is obtained by sampling the phonons in suitable
frequency intervals. As no model available to us
afforded a satisfactory fit to the data in the prin-
cipal symmetry directions of germanium, we have
extended an earlier investigation to include off-
symmetry phonons as well. (By a satisfactory fit
we mean a fit within the experimental error of
every frequency. ) Then we were able to sample
the density of states directly from the measured
frequencies. This procedure has previously been
applied by Stedman et al. ~ to aluminium and lead.
It is accurate, but time consuming. In the present
work the sampling procedure is improved.

Other methods for measuring the density of states
are available. One is to study the incoherently
scattered neutron intensity from a polycrystalline
sample. Then g(v) is obtained from s o"'/sasv
in the limit of vanishing neutron-wave-vector trans-
fer, i.e. , g- 0. 9 o'"'/SQsv is proportional to

FIG. 1„Conventional notations of points and lines in
the irreducible (1/48)th part of the first Brillouin zone
of. an fcc lattice.

Thus, applied to germanium, with its small
incoherent cross section, this method would have
worked poorly because of the necessary application
of a rather large y, which introduces systematic
errors.

Roy and Brockhouse' recently investigated the
possibility of obtaining g(v) for strongly coherent
scattering polycrystalline samples, using the in-
coherent approximation. The intensities were
measured as a function of v for a wide range of
wave-vector transfers y and then summed over y.
Thus g(v) could be extracted from the superposed
data in the incoherent approximation. It is desirable
to look more closely at this method by applying it,
for example, to germanium, using much better
resolution than in Ref. 5.

II. DENSITY OF STATES

A. Experimental Frequencies

The present investigation is an extension of a
previous work, in which phonon dispersion rela-
tions were measured in germanium at 80 K for all
principal symmetry directions and on some lines
at the boundary of the Brillouin zone. Accounts of
the instrument used and the experimental technique
adopted will be found in Ref. 3 or in the references
cited there. The accuracy of the complementary
phonon frequencies is usually not as good as in
Ref. 3, but the mean error of all frequencies is
believed to be about 0.6%-0.8%.

The aim of the present study was to measure the
frequencies of so many off-symmetry phonons that
a sampling of the density of states could be per-
formed. The phonons in a reciprocal simple-cubic-
point lattice with a unit cell length of 1/10th of the
distance I'-X (Fig. 1) were studied. The original
intention was to measure the frequencies of pho-
nons corresponding to the 146 nonequivalent phonon
wave vectors (q, ) in the irreducible 1/48th section
of the first Brillouin zone for all the six branches.
For lack of time it was not possible to scan all these
phonons. However, in many regions of reciprocal
space the topology of the phonon branches is simple,
and a reduction could be made without spoiling the
accuracy. More than 500 frequencies were mea-
sured and the rest of them interpolated.

In order to reduce the influence of subjectivity
in the interpolation process to a minimum, the foj.—

lowing procedure was applied: A Born-von Karman
model fitted to our data of the 4, A, and Z direc-
tions' was used to generate frequencies of the (q, I

mesh. When a frequency of a point q, had to be in-
terpolated, the differences between the measured
and calculated frequencies in the neighborhood were
plotted as a function of these reciprocal points,
and the value assigned to v(q, ) was the sum of the
calculated frequency and the difference interpolated
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from the plot.
The frequencies of the mesh (q, ) of phonon wave

vectors are listed in Table I, where the principle
of ordered labeling is assumed. This means that
every phonon branch is assigned a number z ranging
from 1 to 6. The ith branch i's defined as the one
of frequency v, (q), where f &j implies v;(q) & v, (q).

B. Sampling Procedure

A number of methods exist for calculation of
spectra from lattice dynamical models. A review
covering the period up to 1963 will be found in
Ref. 8. All procedures starting from the frequen-
cies need a great many more frequencies than can
reasonably be obtained from experiments, and it
is necessary to have a mathematica, l device to
produce a sufficient number of interpolated fre-
quencies. Stedman et al. obtained the spectra of
aluminium and lead as follows. The boundaries of
the experimental simple-cubic-point net (q,) were
expanded to a cube with length of side I'-X. The
cube centered at each point q, was divided into
1000 smaller cubes defining wave vectors q,". Thus
each phonon branch contained 1000000 states. By
a local second-order Taylor expansion of the fre-
quency around each point q, with the derivatives
being determined by the frequencies of q, and its
six-nearest and twelve-next-nearest neighbors
every point q," was assigned a frequency. g(v)dv
wa, s then obtained by counting the number of states
in each interval (v, v+dv). The adopted interpola-
tion technique works quite well in most regions of
reciproca, l space. When the mesh (q, ) is as dense
as in the present case the errors in the frequencies
v(q,") caused by neglecting third-order and higher
terms in the Taylor expansion are small compared
to the errors introduced by the measured frequen-
cies with the present experimental accuracy. Prob-
lems will occur, for instance, when one or more of
the components of V'», v& show discontinuities, a.s for
the acoustic branches at I', all branches at 5', ac-
cidental degeneracies, etc. In such a case, depend-
ing on whether the "corner" of v, (q) is directed
towards higher or lower frequencies, a bump or a
shift will appear in g(v) on the low- or high-fre-
quency side, respectively, of the frequency of the
"top of the corner. " This is because the "corner"
will be rounded off in the interpolation. More
serious, however, is the fact that the number of
phonon states to be sampled, limited to 1000000
for every branch on account of computation time,
is not large enough to avoid additional statistical
scattering in the density of states. This scattering
has generally been believed to be much smaller
tham the one caused by experimental errors in the
measured frequencies. We calculated g(v)dv from
both the frequencies of Table I and those calculated
by the Born-von Kirmin model (Sec. II A). The

point scattering was found to be the same in both
cases and accordingly it was almost entirely caused
by a too-dilute phonon point mesh. This means that
the experimental errors were little reflected in the
spectrum obtained, the statistical uncertainty of
which mainly originated from the calculation —a
situation hardly acceptable to us. An improvement
of the sampling procedure was necessary.

Gilat and Dolling' and Gilat and Raubenheimer"
have developed a rapid method of calculating den-
sities of states. Its theoretical fundamentals are
as follows: The irreducible section of the first
Brillouin zone is divided into a uniform simple-
cubic mesh of points q~. Every qo is considered
centered at a small cube. The frequency of branch
j at an arbitrary point qo+ &qo within the cube is
given by

v, (q, + q, )= v, (q, )+&qo V; +v, (q) (I)

if the mesh (qo) is fine enough. v&(qo) belongs to
a constant frequency surface passing through qo.
Adding an increment dv, one will get a new surface
of constant frequency through qo+ &go defined by
v&(qo)+dv. The number of phonon states which lie
in the range between v, (qo) and v, (q, ) +dv is propor-
tional to the volume d V of the layer confined by
these surfaces. g(v)dv is obtained by summing the
phonon states (proportional to dV) over all cubes
qo (properly weighted with respect to their sym-
metry) for every frequency interval (v, v+dv). The
appropriate formulas are given in Ref. 10. The
accuracy of the method hinges on the size of the
cubes qo.

Vfe have adopted the ideas of Gilat and eo-workers
to improve the sampling technique of the density of
states from experimental frequencies. In a first
trial we calculated g(v) directly from the experi-
mental mesh fq, ). The components of V; ~ v, (q )
were determined from the frequencies of the near-
est neighbors around the respective points. The
result was considered slightly worse than the
spectrum obtained by the method of Stedman
et al. , but with better displayed van Hove singular-
ities. A finer-divided point mesh was necessary
and an interpolation was performed with the sec-
ond-order Taylor expansion, but limiting the num-
ber of new points around each q, to 64 (1000previous-
ly). This divis.'on led to about equal time of compu-
tation for the two methods considered. Figure 2
shows the results of branch 2 when using the Born-
von Kirmin frequencies of the mesh (q, ) in order
to avoid unknown contributions from experimental
errors. The new method gives a continuous curve
close to the smoothed mean value of the old spec-
trum. Scattering of the points is replaced by con-
siderably damped oscillations.

The final results are shown in Fig. 3 where the
phonon density of states in germanium at 80 K is
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TABLE I. Phonon frequencies in Ge at 80 K in units
of THz.

TABLE I. (Continued)

~z 9'y 9'~

0 0 0
0 0 1
0 0 2

0 0 3
0 0 4
0 0 5
0 0 6
0 0 7
0 0 8
0 0 9
0 0 10
0 1
0 1 2

0 1 3
0 1 4
0 1 5
0 1 6
0 1 7
0 1 8
0 1 9
0 1 10
0 2 2

0 2 3
0 2 4
0 2 5
0 2 6
0 2 7
0 2 8

0 2 9
0 2 ]0
0 3 3
0 3 4
0 3 5
0 3 6
0 3 7
0 3 8
0 3 9
0 3 10
0 4 4
0 4 5
0 4 6
0 4 7
0 4 8
0 4 9
0 4 10
0 5 5
0 5 6
0 5 7
0 5 8

0 5 9
0 5 10
0 6 6
0 6 7
0 6 8
0 6 9
0 7 7
0 7 8
0 7 9
0 8 8

0. 0
0. 60
1.15
l. 62
1, 96
2 ~ 20
2.32
2.39
2. 40
2. 41
2. 40
0.67
1.20
1.66
1.98
2.23
2. 40
2. 47
2. 49
2. 50
2. 50
1.29
l. 72
2. 03
2. 28
2. 51
2. 63
2. 66
2. 72
2. 76
1.82
2. 06
2. 31
2. 61
2. 78
2. 89
2.99
3.10
2. 11
2.31
2.59
2. 85
3.02
3.18
3.31
2. 34
2. 51
2. 77
2. 98
3, 20
3.41
2. 46
2. 61
2. 80
3. 08

49
2. 61
2. 82
2. 45

0. 0
0. 60
1.15
1, 62
l. 96
2. 20
2. 32
2. 39
2. 40
2. 41
2. 40
0. 93
1.36
l. 82

2. 14
2. 35
2. 43
2. 48
2. 50
2. 51
2. 50
l. 70
2. 07
2.38
2. 57
2.67
2. 72
2. 75
2. 78
2. 76
2. 35
2. 64
2. 83
2, 95
3.03
3. 07
3. 12
3. 10
2. 92
3. 10
3.21
3.29
3.34
3.36
3.31
3.34
3.45
3.53
3.55
3.49
3.41
3.61
3.64
3.62
3.49
3.66
3.57
3.36
3.34

0. 0
0.91
1.77
2.59
3, 42
4. 17
4, 90
5.57
6.23
6. 77
7.21
l. 39
2. 07
2. 75
3.48
4. 17
4. 87
5.48
6. 07
6. 60
7. 10
2. 58
3.10
3.62
4.20
4. 79
5.36
5. 87
6.36
6. 82

3.53
3. 90
4. 37
4. 81
5.27
5. 72
6. 12
6.52
4. 28
4.66

94
5.28
5.67
5, 95
6, 24
4. 95
5.20
5.47
5. 77
5. 95
6, 14
5. 55
5. 78
5. 99
6, 12
6. 10
6.28
6.39
6.56

9. 12
9. 05
8. 91
8. 73
8. 56
8. 42
8. 35
8. 29
7. 97
7. 63
7. 21
9. 01
8. 85

8. 69
8. 53
8. 35
8, 22
8. 09
7. 80
7. 46
7. 10
8. 72
8. 58
8. 37
8. 18
8. 00
7. 79
7. 52
7.21
6. 82
8. 37
8. 15
7. 95
7. 73
7. 49
7. 23
6. 92
6. 52
7. 89
7. 67
7. 42
7, 18
6. 94
6. 65
6.24
7. 40
7. 13
6. 91
6. 72
6.39
6. 15
6, 91
6. 72
6. 52
6.37
6. 58
6.49
6.56
6.66

9. 12
9. 05
8.91
8. 73
8. 56
8.42
8.35
8.29
8.28
8.27
8.26
9.03
8. 91
8. 74
8. 60
8.47
8.37
8.32
8.29
8.28
8.27
8. 89
8. 76
8. 65
8.54
8.45
8.37
8.30
8, 29
8.28
8, 76
8. 68
8. 59
8, 50
8, 40
8.31
8, 30
8.33
8.61
S.54
8.44
8.36
8. 32
8.31
8.35
8.45
8.38
8, 33
8.32
8. 30
8.36
8.35
8.31
8. 30
8. 28
8.29
8.28
8.27
8.27

g. 12
9. 11
9. 09
9. 02

8. 95
8. 80
8. 62
8. 35
8. 28
8. 27
8. 26
9, 05
9.02
8. 96
8. 88
8. 74
8. 61
8. 37
8.29
8.28
8.27
8. 92
8. 87
8. 79
8. 69
8. 61
8.43
8.33
8. 31
8. 28
8. 80
8. 73
8. 68
8. 62
8. 50
8. 41
8.37
8. 33
8. 70
8. 68
8. 63
8. 56
8. 48
8.42
8. 35
8. 66
8. 64
8. 60
8. 53
8. 45
8.36
8. 65
8. 62
8. 53
8.45
8. 63
8. 51
8.43
8.47

0 8 9
0 9 9
1 1 1
1 1 2
1 1 3
1 1 4
1 1 5
1 1 6
1 1 7
1 1 8
1 1 9
1 2 2

1 2 3
1 2 4
1 2 5
1 2 6
1 2 7
1 2 8
1 2 9
1 3 3
1 3 4
1 3 5
1 3 6
1 3 7
1 3 8
1 3 9
1 4 4
1 4 5
1 4 6
1 4 7
1 4 8
1 4 9
1 5 5
1 5 6
1 5 7
1 5 8
1 5 9
1 6 6
1 6 7
1 6 8
1 7 7
1 7 8
1 8 8

2 2 2
2 2 3
2 2 4
2 2 5
2 2 6
2 2 7
2 2 8
2 3 3
2 3 4
2 3 5
2 3 6
2 3 7
2 3 8
2 4 4
2 4 5
2 4 6
2 4 7

2, 57
2.43
0. 86
1.26
1.62
l. 97
2.20
2 ~ 32
2. 41
2. 43
2. 44
1.33
1.66
1.98
2, 24
2. 37
2. 48
2. 53
2. 59
1.75
2. 02
2. 29
2.46
2. 61
2. 74
2, 83
2. 07
2. 32
2. 55
2. 72
2. gl
3, 04
2, 28
2. 51
2. 70
2. 95
3.14
2. 41
2. 59
2. 82
2. 47
2.63
2. 47
1.47
1.65
l. 90
2. 10
2. 25
2. 37
2.43
l. 75
1.93
2. 11
2. 29
2. 43
2. 53
1.98
2. 14
2.33
2 ~ 52

3.09
2. 76
0. 86
1.32
1, 82

2.21
2. 46
2. 56
2. 62
2. 67
2. 70
1.46
l. 92
2. 31
2. 62
2. 78
2, 91
3, 00
2. 99
2. 09
2. 44
2. 76
2. 98
3. 12
3.27
3.25
2. 61
2. 91
3.15
3.29
3.44
3.39
3.05
3.30
3.42
3.54
3.46
3.42
3.57
3.55
3.64
3.42
3.21
1.47
1.69
2, 12
2. 54
2. 79
2. 96
3.09
1, 84
2. Og

2. 46
2. 81
3.06
3.26
2. 28
2. 53
2. 84
3.14

6. 69
6.96
1.73
2. 38
2, 94
3.60
4. 19
4. 86
5.48
6. 06
6.54
2. 80
3.31
3. 83
4.33
4. 87
5.39
5. 91.
6.32
3.70
4. 14
4. 55
4. 95
5.35
5. 77
6. 07
4.46
4. 83
5. 13
5.40
5.70
5. 91
5. 12
5.36
5. 57
5.73
5. 87
5.61
5. 79
5. 87
5.98
6. 09
6. 29
3.30
3.75
4. 23
4. 62
5. 04
5. 47
5.90
4. 20
4, 59
4. 91
5. 19
5. 53
5. 77
4. 90
5. 17
5.37
5.61

P4

6. 78
6. 96
9.02
8. 91
8. 79
8. 64
8.48
8.23
7. 98
7. 74
7. 43
8. 75
8. 60
8. 44
8.24
8. 01
7. 76
7. 53
7. 16
8. 37
8. 18
7. 97
7. 73
7. 49
7.24
6. 85
7. 91
7. 70
7.46
7. 20
6. 93
6. 56
7. 43
7. 20
6. 95
6. 71
6.41
6. 97
6. 77
6. 65
6. 74
6. 86
7. 05
8. 81
8. 60
8. 34
8. 10
7. 85
7. 60
7.36
8. 43
8, 16
7. 91
7. 66
7. 38
7. 13
7. 97
7. 71
7. 44
7. 15

8.26
8.26
9. 02

8. 90
8. 77
8.63
8, 53
8.42
8. 35
8.30
8.27
8. 89
8. 76
8. 65
8. 56
8.47
8.40
8.33
8.28
8. 75
8. 66
8.59
8. 52
8.43
8.36
8.29
8. 63
8.56
8.48
8.41
8.36
8.30
8.48
8, 42
8. 36
8, 34
8.31
8.37
8.32
8.31
8.29
8.28
8.27
8. 82
8. 78
8. 68
8.57
8. 48
8.40
8.33
8. 74
8. 68
8. 58
8. 50
8. 42
8.36
8. 65
8.58
8.51
8.43

8.38
8.34
9.03
8.99
8. 93
8. 87
8. 75
8. 62
8.48
8.36
8.31
8. 90
8. 87
8. 81
8. 72
8. 63
8. 51
8, 43
8. 40
8. 79
8. 74
8. 69
8. 63
8. 55
8. 46
8, 43
8. 70
8. 67
8. 63
8. 60
8. 49
8. 44
8. 68
8. 65
8. 58
8. 50
8.44
8. 68
8, 61
8. 52
8. 64
8. 51
8.48
8. 82
8. 80
8. 77
8. 72
8. 64
8. 56
8.49
8 75
8. 72
8. 70
8. 66
8. 58
8. 51
8, 70
8. 69
8. 65
8. 59
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10q

2 4 8
2 5 5
2 5 6
2 5 7
2 5 8
2 6 6
2 6 7
2 7 7
3 3 3
3 3 4
3 3 5

6
3 3 7
3 4 4
3 4 5
3 4 6
3 4 7
3 5 5
3 5 6
3 5 7
3 6 6
4 4 4
4 4 5
4 4 6
4 5 5
4 5 6
5 5 5

V)

2. 67
2. 14
2 ~ 33
2. 54
2. 75
2.28
2.48
2.39
1.76
1.88
2. 01
2. 17
2. 31
1.86
1.99
2. 18
2.34
2. 01
2. 18
2.38
2. 16
1.88
1.95
2. 05
1.93
2. 04
1.90

3.34
2. 73
2. 95
3.21
3.38
3. 18
3. 29
3.30
1.76
1.93
2.27
2. 65
3.05
2. 02
2. 23
2. 58
2. 96
2. 37
2. 64
2. 93
2, 86
1.88
2. 06
2 ~ 33
2. 01
2. 32
1.90

5. 73
5.42
5.56
5.69
5. 72
5.69
5. 76
5. 83
4. 73
5. 06
5.32
5.51
5. 66
5.40
5.60
5. 72
5. 79
5, 85
5.94
5. 81
5.97
5.93
6. 15
6. 10
6.33
6.25
6.66

6. 85 8.37
7, 52 8. 55
7.22 8. 49
6. 97 8.44
6. 72 8.38
7. 01 8.46
6. 88 8.42
7. 02 8.38
8. 36 8. 75
8. 11 8. 69
7, 85 8. 62
7. 58 8.54
7. 31 8.47
7. 97 8. 68
7. 70 8.62
7„42 8.55
7. 11 8.48
7. 51 8.61
7.23 8.54
6. 96 8.48
7. 14 8.54
7, 80 8. 70
7. 54 8. 66
7. 32 8. 61
7. 39 8. 66
7, 21 8. 62
7.34 8. 70

TABLE I. (Continued)

P6

8. 52
8. 69
8. 65

8. 60 .

8. 52
8.67
8. 60
8. 60
8. 75
8. 71
8. 68
8. 65
8. 62
8. 70
8. 67
8. 64
8. 61
8, 68
8. 64
8. 60
8. 66
8. 70
8. 68
8. 65
8. 68
8. 66
8. 70

heat-capacity-equivalent Debye temper ature +p
(reduced to absolute zero) by fitting the Debye
model to the density of states up to 1 THz, below
which value yhonon dispersion was assumed to be
absent. The result Up= 363 K is in reasonable
agreement with the most often quoted value 374
~2 K."

Flubacher et al. deduced the specific heat at
constant volume C„ from C~ by means of the formula

C~ —C„= o'TV/g, (2)

where ~ is the cubic coefficient of thermal expan-
sion, V the molar volume, and y the isothermal
compressibility. They also calculated the Debye

EO-

plotted together with the individual contributions
from each of the six phonons branches. Oscilla-
tions due to experimental errors become increas-
ingly important with increasing difficulty of mea-
surement or roughly with increasing frequency.
These oscillations are especially pronounced in
branch six, in spite of the fact that the relative er-
rors are smaller for optical than for acoustic pho-
nons. However, 'when the dispersion is small,
even small errors will be important and produce
relatively large oscillations or fallacious peaks in
the density of states.

C. Comparisons with Calorimetric Data

The heat capacity at constant pressure C~ has
been measured for germanium by Flubacher et al. "
in the temperature range 2. 5 to 300 K with the ex-
perimental uncertainties of C~ estimated at 0 5/o

and 0. 2% in the ranges 10 to 20 K and 20 to 300 K,
respectively, i.e. , of the same magnitudes as the
errors quoted for the phonon frequencies in the
present work. Below 10 K their percentage errors
increase.

The largest relative errors of our density-of-
states spectrum are localized to the low-frequen-
cy region. It is known that the Debye model of lat-
tice dynamics is valid there. %e calculated the

CA

C)

I
2

g [TH z]

FIG. 2. Two spectra of branch 2 calculated from
frequencies produced by a Born-von Kirman model by
(a) the method of Stedman et al. (Ref. 4) (dots) and (b)
the present method (solid line). In both cases dv = 0. 01
THz. Some points in (a) have been deleted to obtain
clearer reproduction. &he solid line in (b) has not been
subject to smoothing but was constructed by lineaI inter-
polation between consecutive points throughout.
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FIG. 3. The phonon density of states in Ge at 80 K as a function of frequency. Figures labeled by numbers ranging
from 1 to 6 show the contributions from the respective branches. The spectra are expressed in 10 g{v)dv {dv =0. 01 THz)
and the frequencies v in units of THz. The symbols P& mark the frequencies of the critical points listed in Table III.
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TABLE II. Moments p„as calculated by Flubacher
et al. (Ref. 11) from the present data, and by Dolling and
Cowley (Ref. 12).

Moments Flubacher et a/. Present Dolling and
work Cowley

p, » (1P-" sec'~')
p, , (10-" sec')

(10~19 sec3/2)

p &
(10 ~3 sec)
(]012 sec i)
(1P25 s~-2)

p, (10" sec-4)
p„(10"sec ')

5.73 + 0.03
7. 82 + 0.02
1.277+ 0.003
2.314 + 0.004
5.82+ 0.02
4.06 + 0.06
2.50+ 0.15
1.75 + 0.21

6.4
7.77
1.274
2.315
5.83
4.09
2. 50
1.69

8.74

2.408
5.81
4.09
2.54
1.72

temperature OD equivalent to C„and fitted the
Thirring harmonic expansion

0» = 0» [] —Q(O» /T) +Il(8 /T) —.. . ] (3)

to it. From their work it is clear that within the
experimental accuracy germanium may be con-
sidered harmonic at 80 K. Thus we calculated the
harmonic specific heat C„ for T& 300 K. When
comparing C„"with the C„of Flubacher et al. the
temperature scale may be divided into three re-
gions according to the behavior of the difference.
In the first region, from 2. 5 to 12 K, where the
heat capacity drops sharply, C"„&C„and the dif-
ference increases percentally when approaching
the lower limit. In the region between 12 and 120
K, C„" assumes a smoothed mean of C„. Finally,
in the third region ranging from 120 to 300 K,
C„"& C„as is expected if anharmonicity is present.
C„—C„ increases approximately linearly with tem-
perature.

Flubacher et al. found that at about 120 K there
is an abrupt onset of anharmonic contributions.
It was also evident that the quasiharmonic approx-
imation, in which the frequencies are assumed to
be harmonic but are allowed to change with volume,
is not sufficient to account for these contributions.
Using the resulting value 0„=395 + 3 K they could
extrapolate a C~ (harmonic) from their low-tem-
perature data and calculate C„—C„. They found
the difference to be linearly dependent on tempera-
ture and to be 1.4% of C„at 300 K, where we get
1.6/z for (C„—C„")/C„.

A comparison between the moments defined by

u„= f v g(v) dv (4)
0

which can be obtained from calorimetric data is
also a sensitive check. As expected (see Table
II) our lowest moments V, 3 5 and p ~ (dominated
by the very lowest frequencies) deviate from those
by Flubacher et a/. Higher moments agree well
between the two measurements. Dolling and Cow-
ley fitted a second-neighbor shell model to early

phonon data on germanium by Brockhouse and
Iyengar and calculated the density of states and
some of its moments. The present spectrum dif-
fers markedly from theirs in the region 1-4 THz.
The moments p, ~ and p, of Dolling and Cowley
deviate considerably from ours and those of Flu-
bacher et al. while higher moments agree well be-
tween the three works.

The geometric mean frequency v~' associated
with the entropy is found to be 5. 11 THz and the
entropic Debye temperature 343 K. Flubacher
et al. report v~= 5. 110+0. 015 THz.

III. CRITICAL POINTS AND SINGULARITIES

A, Basic Theory

A striking qualitative feature of the spectra in
Fig. 3 is the presence of discontinuities in dg/dv.
Assuming harmonic interatomic forces van Hove
showed such singularities to be consequences of
so-called critical points. A critical point (cp) is
defined as a point q, in reciprocal space where
every component of V~; v&(q) of a branch j is either
zero or changes sign discontinuously. One dis-
tinguishes between ordinary cp where all derivatives
are zero and singular cp which correspond to
cross-over points between phonon branches. Or-
dinary cp are divided into analytic and fluted In.
the vicinity of points of the first kind there exists
a Taylor expansion of v& but not for the second. We
denote a cp q, by P, (n). The indexi (=0, 1, 2, or
3) indicates the number of principal directions in
which v& decreases from v&(q, ) and n denotes the
number of discontinuous components in &~ ~v&(q).
The functional type of the contribution to the den-
sity of states from a cp is determined by its in-
dices i and n. This was studied in detail by Phil-
lips' who developed a procedure for determining
the type of a cp: Consider a reference sphere in
reciprocal space centered at the cp q„and mark
on its surface all its intersections with sectors of
directions emerging from q, with increasing and
decreasing frequencies. Call these sectors positive
and negative and denote their numbers by P and N,
respectively. The sector numbers (P, N) complete-
ly specify the type of the cp and its topological
weight q (not to be confused with wave vectors q)
as summarized by Phillips in the following three
statements: (i) If the sector numbers are (1, 0) or
(0, 1), then q= 1 and j=0 or I, respectively, where
l is the dimension of the crystal. That is, a warped
(fluted) minimum or maximum is topologically
equivalent to an analytic minimum or maximum,
respectively. (ii) In two dimensions an (n, n)
point has j=1 and q=n —1. (iii) In three dimen-
sions, usually only one of P or N will be greater
than 1. In the former case j=2 and q=P-1, and
in the latter case j= 1 and q = N —1. (In general
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P3 (Q);

P3(1); f
iL

P (2) pp (3) j

FIG. 4. The different types of
contributions to the density of states
from the cp encountered in this work
according to Phillips {Ref. 14).

v- vc.

a point must be counted both as a j=1 point with

q~ = N 1and -as a j= 2 point with q2= P —l. )
The existence of some critical points necessitates

the existence of others. This is expressed by the
Morse relations for two dimensions

no& 1, n, -no& 1, n~-n, +no=0

and for three dimensions

(5)

No& 1, Nj -No& 2, Na Ni+No& 1,

N3 —Ng+Nq —No ——0 . (5)

The Morse number N& (or u&) of a cp q, is the
product of its topological weight q and its multiplicity
M. Some critical points are required by symmetry
and constitute the symmet y set. In the reciprocal
lattice of a diamond structure this set is made up
of the points I', X, I and W in three dimensions and
in two by I', X, W, and R for S,(q, = 0) and I; X, and
L for S„(q,=q, ) (Fig. 1). [R is the point (1, 1, 0)
and its equivalences in S,. ] The symmetry set does
not always satisfy the Morse relations. The small-
est set doing this is called the minimal set, which
need not be identical to the true set. Phillips
pointed out that all critical points not in the sym-
metry set must have the weight q = 1.

B. Results of the Gritical-Point Analysis

The results of the critical-point analysis are
presented in Table III for two and three dimensions.
For the latter case the table includes frequencies
and, when necessary, also coordinates of the cp,
all of which except one [Pa(0) in branch 5 at (0. 85,
0. 45, 0) in S,] are located on symmetry lines.
Every cp encountered has the weight q = 1, which
implies N& (or n~) =M throughout. This means that
no fluted cp are present. The symmetry set is not
a minimal set for the branches 1, 2, 3, 4, and 5 in
three dimensions or for 1, 2, 4, and 5 of S, and

1 2 3 and 4 of S~z in two dimensions. All sets
contained in Table III are minimal sets and within
the limits of the experimental accuracy they are
also true sets.

Johnson and Loudon'5 explicitly formulated that,
if in a crystal with the diamond structure the upper
branch of a degenerate pair has a P~(2) cp at W, then
the lower branch must have a, P~,2(2) cp. The present
work confirms this statement.

As far as we know, this is the first attempt to
obtain a cp scheme directly from experiment. The-
oretical investigations have previously been pub-
lished for Ge (for example Johnson and Loudon"),
but those schemes hinge on the actual values of the
parameters of the applied models, and they also
differ from the present one.

C. Spectrum Singularities

The frequencies of the cp obtained have been
marked in Fig. 3. Different cp contribute in dif-
ferent ways to the density of states. van Hove' and
Phillips' worked out the expected functional be-
havior of these contributions as shown in Fig. 4.
If n = 0, the point in question should give rise to a
square-root frequency variation ing(v) on one side
of the critical frequency, with a linear frequency
variation on the other side for P, and P2 critical
points. A Po or P3 point should give rise to a linear
contribution if n= 1. All P, and P2 points with
n& 1, or Po and P3 points with n& 2, are not ex-
pected to produce discontinuities in dg/dv, but in
higher-order derivatives. Thus the point W', with
n= 2 for all branches, should not be observed in the
spectrum except for the branches one and four,
where it forms trivial cp. Also the cp P2(1) at X
in branch four should not be revealed, but instead
the cp at I' which is trivial in branches one, two,
and three.

A comparison between Table III and Figs. 3 and
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4 discloses that most of the singularities are clearly
displayed, and furthermore, the frequency variations
are in accordance with expectation. No singularities
appear originating from points from which they
were not expected. P, (0) at I' in branch five hardly
demonstrates the expected square-root frequency
variation, but the oscillations due to uncertainty
are pronounced in this region of g(v). P2(0) on Q
in branch two is clearly displayed, but g(v) falls
off rapidly on the other side of the critical frequen-
cy. This makes it difficult to decide whether its
contribution is of type 1 or 2. In branch five the
point P,(0) on Q with frequency 8. 30 THz is hidden

by Pa(0) in S, of frequency 8. 31 THz. This is be-
cause the contribution to g(v) from the latter ex-
ceeds that from the former considerably. Finally,
three singularities expected to be seen are more
or less absent. The first is the one of P, (0) at I.
in branch three with frequency 6. 66 THz. This

may be explained as follows. Branch three has a
sharp maximum at t., which means that the con-
tribution from this region to g(v) is small compared
to those of the majority of critical regions. An
inspection of the frequency surfaces shows that
there are three points in reciprocal space in the
vicinities of which there are far fewer points having
frequencies close to the critical ones than for all
other critical points. These points are precisely
those which are weakly or not at all displayed in
Fig. 3, namely P3(0), P, (0), and P2(0) at I., on Z,
and at t. in branches three, four, and four, re-
spectivelyy.
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Electronic Effects in Elastic Constants of PbTe
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The electronic contribution to the second- and third-order elastic constants of p-type lead
telluride have been calculated as a function of temperature and carrier concentration. The
results show that the electronic contribution to the elastic constants varies markedly with the
carrier concentration if the nonparabolic, nonellipsoidal band model for p-PbTe is used.

I. INTRODUCTION

Keyes' has developed a theory for determining
the electronic contribution to the elastic properties
of degenerate semiconductors on the basis of the
deformation-potential model. ' It is shown that
the electronic contribution to the elastic constants
depends on the density of states function. In n

type Ge, where the bands are parabolic, the theory
predicts an 8%% lowering of the shear elastic con-
stant C44 with attainable doping levels. In PbTe,
where the bands are highly nonparabolic, '~ the
density-of-states function increases much more
rapidly with carrier energy than when the bands
are parabolic. The electronic contribution to the
elastic constant is therefore expected to be en-


