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The lattice thermal conductivity between 1.7 and 150 K of p-type mercury telluride is re-
ported. For most of this temperature range the thermal-conductivity behavior is similar to
that of other valence or ionic crystals, but at the lowest temperatures the thermal conductivity
is limited, not by boundary scattering of phonone, but apparently by hole-phonon scattering.
The Calla%'Ry phenomenological model ls used to fit the dRtR Rnd to obtRln the magnitudes of
the QoxmR1-, uxnklRpp-, and Bayleigh-scattexing r618xation times. Although the hole eoneeQ-
tratione of the samples ranged from 5. 0&& 10l6 to 4.4~ 10' cm 3, the magnitude of the inverse
relaxation time for the scattering of phonons by holes did not vary significantly and was ap-
proximately 2.7q sec for the phonon wave number q less than 6~ 10 em . This behavior is .

attributed to the complex shape of the hole Fermi surface. As the hole concentration of Hg Te
increasee, the maximum dimension of the hole Fermi surface incxeaees relatively slowly
beeRuse of the ovex'1Rpping VRlence and conduction bRnds Rnd thus the lange of %'Rve numbers
of phonons which can interact with holes is only weakly dependent upon the density of holes.
Meaeuremente of the thermoelectric power also are reported, and the same hole-phonon-scat-
tering relaxation time required to explain the low-temperature thermal conductivity accounts
for the phonon-drag contribution to the therrnoeleetrie power,

I. INTRODUCTION

Mercury telluride (HgTe) is a semimetal which

crysta1, lizes in the cubic zinc-blende structure.
It is similar to grey tin in that it ha,s the same in-
verted band structure' with the conduction band

degenerate with the valence band at the Brillouin
zone center; it is different, however, in that the
valence band slightly overlaps the conduction band

in the (ill) and (110)directions of k space. 3' This
close similarity of the compound to the element
makes it attx'Rctive for' fundamental solid s'tRte

physics studies. Additionally, Hg Te has attracted
a number of investigators because its mixtures
with cadmium telluride (CdTe) are small-band-gap
semiconductors which ax'e used to fashion efficient,
intrinsic, photoconductive detectors of far infrared
radiation. '

This payer reports the lattice thermal conductivi-

ty of p-type HgTe over the temperature range l. 7-
150 K. For most, of this temperature range the
thermal conductivity behavior is similar to that of

other VRlence or ionic crystals, but at the lowest
temperatures the thermal conductivity is very much

lower than would be expected if scattering of pho-
nons by the crystal boundaries were the limiting
mechanism. A simple analysis shows that this

depression of tile tllel'111al conduct1vlty Rt low 'te111-

peratures must be largely the result of hole-pho-
non scattering, and this conclusion is strengthened

by the fact that the same hole-phonon-scattering
relaxation time can be used to describe both the
thermal conductivity and the phonon-drag contri-

bution to the thermoelectric power.
The thermal conductivity below 60 K of P-type

HgTe has not been previously reported. In 1958,
Carlson' reported the thermal conductivity of a P-
type HgTe sample which at low temperatures had

a hole concentration of about 1.5 & 10' cm . He

presented data for the temperature interval 60-
300 K, over which phonon scattering occurs pre-
dominantly by umklapp processes. For the room-
temperature thermal conductivity of HgTe, Carlson
obtained the value 9.027 % cm ' K '. Kolosov and

Sharavskii~ later obtained essentially the same
result for a number of HgTe samples with hole
concentrations between 3 &10 and 10' cm; their
data, were for temperatures between 99 and 439 K,
and their avexage value for the total thermal con-
ductivity of HgTe at 300 K was 0.026 W cm ' K '.
In a, study of the thermal and electrical properties
of the HgTe-CdTe system, Markert, Nieke, and

Spieglerv included results for pure HgTe between

80 and 450 K; at room temperature they obtained

0.027 W c111 K fol' 'tile 'totR1 'theI'111R1 conductivity

and, by subtracting calculated electronic and bi-
polar diffusion contributions, 9.024 % cm ' K '. for
the lattice thermal conductivity. Muzhdaba et al. '
measured the thermal conductivity between 4. 2

and 200 K of an n-type HgTe crystal with an elec-
tx'on collcentx'Rtion of 3 & 10 cm, but they made

no analysis of the data. Their chief interest wa, s
the deduction of the I orenz number for the elec-
tronic thermal conductivity from tbe magnetic field
dependence of the total thermal conductivity. They

found that the I orenz number decreased from L,o
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at 4. 2 K to 0. 78 Lo at 200 K, where Lo is the Som-
merfeld value of 2. 44&&10 ' W QK'.

II. EXPERIMENTAL PROCEDURE

TABLE I. Thermal histories of the HgTe thermal-
conductivity samples. As-grown samples were cooled
slowly from the 690 C melting temperature.

HgTe sample No.

2-1

2-2

2-3

Thermal history

As-grown

Hg Te 2-1 subsequently
annealed in Hg vapor
at 250'C for 100 h.

Hg Te 2-2 subsequently
annealed in vacuum at
225 C for 72 h.

Annealed in He (3 Torr
at 300 K) at 400'C for
1 h, then rapidly
quenched to 77 K.

Hg Te 3-1 subsequently
annealed in Hg vapor
at 250'C for 100 h.

The HgTe compound was prepared and single
crystals were grown by methods similar to those
previously described by the authors for HgSe
and by Lawson ef, al. ' for HgTe. The elemental
constituents, in stoichiometric proportions to form
Hg Te, were sealed within an evacuated, thick-walled,
quartz capsule (12-mm i.d. , 3-mm wall thickness)
and then reacted in a rocking furnace at a tempera-
ture of about 750 'C for several hours. The resultant
encapsulated ingot of compound was then situated
in a horizontally-traveling, zone-melting furnace.
The furnace, as it traveled, maintained the entire
length of the stationary ingot at a temperature a
few degrees below the 690 'C melting temperature,
except for the molten zone which was maintained at a
few degrees above the melting temperature and
which was, typically, about 3 cm long. The ingot
from which samples were cut for this investigation
was subjected to two molten zone passages, the
first to produce a uniform cross-section for the
length of the ingot and the second to obtain single
crystal formation. The recrystallized ingot was
slowly cooled to room temperature. Two single-
crystal samples for this study, HgTe 2 and HgTe 3,
each Q. 31 & 0. 31 &5. 0 cm initially, were cutfrom
this ingot. Each crystal sample was mechanically
polished, the final polish being obtained wi, th 0. 05-
p,m-diam-particle- size alumina ab ras ive.

The as-grown crystals of HgTe had hole concen-
trations of 1.17 && 10'8 cm ~ at 4. 2 K. (The proce-
dure used for calculating the charge-carrier con-

centrations is described in the Appendix. ) In gen-
eral, HgTe annealed in vacuum at 200-250'C be-
comes more P-type, and HgTe annealed in Hg vapor
becomes less p-type and eventually n-type. "'
Excess hole concentrations probably are due either
to interstitial Te or to Hg vacancies, or both. The
annealing histories of the HgTe thermal-conductivity
samples are summarized in Table I.

The absolute, steady-state, longitudinal-heat-
fl.ow method was used to determine the thermal
conductivity. With this method a temperature
gradient dT/dx is established a.long the length of
the sample by introducing a heat flow W at one end
and extracting it at the other end. If no heat is lost
through the sides of the sample, the thermal con-
ductivity is

1V (dT)'

where 6 is the cross sectional area of the sample.
The apparatus used was similar to that described

by Holland and Rubin, ' and techniques described
by Rhodes, Moeller, and Sauer were closely fol-
lowed. Carbon resistors, mounted on copper bars
as described by Anderson, Reese, and W'heatley, "
were used both for temperature and temperature-
differentia1. measurements below 7. 5 K. Above
7. 5 K, a copper-constantan thermocouple was used
for measurement of absolute temperature, and
manganin-gold-cobalt-manganin differential thermo-
couples were used for measurements of tempera-
ture gradients. The copper bars upon which were
mounted the differential thermocouples as well as
the carbon resistors were held against the side of
a sample with phosphor-bronze spring clips.

Figure 1 depicts a cross section of the sample
chamber, which is suspended from the top of a
Dewar by a stainless-steel tube. In use, the entire
sample chamber is immersed in liquid helium or
other cryogen and is evacuated through the stainless-
steel suspension tube. A heat leak thermally con-
nects the sample mounting block to the base of the
sample chamber. High-purity Pb was chosen as the
heat-leak material because above 7 K its thermal
conductivity decreases rapidly as the temperature
increases, which obviates the use of a number of
different cryogens or different sizes of heat leaks
for different ranges of sample temperature. For
our thermal conductivity probe, the heat leak was
a strip of 99.999%-pure Pb, 0. 15 && 0. 25 cm~ in cross
section and 8. 0 cm in length. With this heat leak a
heat input of 30 m% raised the sample temperature
to 4. 5 K when the probe was immersed in liquid
helium at 1.7 K, and sample-block temperatures up
to 150 K were achievable. The upper temperature
of the sample block was not limited by the Pb heat
leak, but rather by the radiative transfer of heat
from the sample block and radiation shield to the
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each sample in Fig. 2, and the electrical con-
ductivities are shown in Fig. 3. From these data
the electron and hole concentrations were calcu-
lated by the method described in the Appendix, and
the results at 4. 2, 77, and 2SO K are listed in
Table II. The samples, except possibly HgTe
2-2, were p-type with hole concentrations at 4. 2
K ranging from 5. 0&&10" to 4. 4&&10ts holes/cm'.
As is explained in the Appendix, the electrical
characteristics of HgTe 2-2 were anomalous and
the actual nature of this sample could not be un-
ambiguously determined.

III. LATTICE THERMAL CONDUCTIVITY

~Heater H2
I

~ Thermal-conditioning
spool P2

Sample ~
~Radiation shield

Heater H3~

The reduced data for the lattice thermal conduc-
tivity are plotted in Figs. 4 and 5. The data span
the temperature range 1.7-150 K except for Hg Te
2-2, for which data were obtained only below 81.5
K. The electronic thermal conductivity calculated
from the Wiedemann-Franz law, Ita= LacrT (where
La=2. 44x 10-' W 0 K-s}, has been subtracted from
the total thermal conductivity to obtain the points
shown. Below 100 K, the electronic thermal con-
ductivity was negligible, and even for the highest
conductivity sample (HgTe 2-2} it was only 4%
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I I I I I I

I I
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FIG. 1. Cross section of that portion of the thermal-
conductivity apparatus which is immersed in liquid cryo-
gen.
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outer wall.
Thin copper plates were ultrasonically soldered

with pure tin to each end of a Hg Te thermal-con-
ductivity sample. The copper end-plates were in
turn soldered with Wood's metal to the sample block
2nd sample heater. This technique eliminated sam-
ple fracture which is often caused by temperature
cycling, and it provided satisfactorily low thermal-
resistance paths between the components.

Radiation-loss corrections to the measured ther-
mal conductivity were made, based upon calculations
which were believed to be accurate to within a factor
of two. The maximum possible error in the mea-
surement of total thermal. conductivity was esti-
mated to be + 4. 5% at temperatues lower than 100 K,
+ 5. 5% at 125 K, and + 9.0% at 155 K. The increase
in the error with temperature is due primarily to
the correspondingly increasing importance of ra-
diation loss.

The low-field HaQ coefficient as a function of
temperature between 4. 2 and 300 K is shown for

C 10—
U

V

0
V

I

0
0 100 200 300

Temperature (K)

FIG. 2. Hall coefficient as function of temperature for
the Hg Te single-crystalline samples.
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Hg Te
sample

No.

2-1
2-2
2-3
3-1
3-2

Ng -HD
(cm 3}

1.1x 10
3.5 x 10"
5.O x 1O"
4.4 x 1O"
4.8 x 10~~

Electrical conductivity
(0'cm ')

4.2K 77K 290K

42
36
17
95
29

73 750
270 1300
250 1700
110 280
130 1100

Hall coefficient
(cm3 C ')

4.2K 77K 290 K

—22
—17
—17
—22
—20

—23
—156
—114

O. 87
—120

—27
—730
—260

1.4
—50

at 150 K. The Callaway theoretical model'6 was
used to analyze the data. This model gives for
the lattice thermal conductivity

"K 8/Fi ( g~ 3 h/Ai/KT

1 l c
~ ++ (

1I&u/Er l)2

,

"ZO/tl
& & 3 X~/Zr

2
I + Jfy (

ll&o/ET' l)2

TABLE II. Net acceptor concentration (Vz-Nz),
electrical conductivity, and Hall coefficient of Hg Te
crystals. The Hall coefficients for 4.2 K are extrapolated
zero-field values, and those for higher temperatures are
for 1.0 kG.

constant divided by 2', and &=2mv, where v is the
phonon frequency. In terms of the phonon wave
number q, = cq.

The experimental results are consistent with the
assumption that four phonon-scattering processes
(in addition to normal processes) are effective in
HgTe. At high temperatures, normal processes
and umklapp scattering are dominant. Rayleigh
scattering by point defects is the limiting mechanism
at temperatures near which the thermal conductivity
is a maximum. At low temperatures, the thermal
conductivity is much lower than it would be if bound-
ary scattering of phonons were the dominant process.
The low-temperature thermal conductivity can be
explained at least semiquantitatively by the scatter-
ing of phonons primarily by valence-band holes.

For the inverse relaxation time for normal pro-
cesses, the expansion of Callaway will. be used:
v'~' = J3~ T . The phonon relaxation times for um-
klapp scattering, Rayleigh scattering, boundary
scattering, and hole-phonon scattering will be de-
noted, respectively, by 7'~, 7'~, 7'~, and v'p. The
sum of the inverses of these relaxation times will
be taken to give the inverse of 7

„

the relaxation
time resulting from the combined effect of all pho-
non-scattering processes. That is,

In these equations, 7„is the phonon relaxation time
for normal momentum-conserving processes, and

7, is the resultant relaxation time for all phonon-
scattering processes. Also, K is the Boltzmann
constant, OH is the Debye temperature, h. is Planck's
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FIG. 3. Electrical conductivity as function of temperature
for the HgTe single-crystalline samples.

FIG. 4. Lattice thermal conductivity as function of
temperature for the crystal Hg Te-2 as-grown (2-1),
annealed in Hg vapor at 250 C for 100 h (2-2}, and annealed
in vacuum at 225'C for 72 h (2-3). The data points shown
have been corrected for electronic thermal conduction
and radiation errors. The curves are the least-squares
fits of the Callaway equation to the data, and the straight
line is the thermal conductivity expected if diffuse scatter-
ing of phonons by crystal boundaries were to dominate.
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-1 -1 -1 -1 -1 "1
~c ~U + 7'A, + ~B + ~P + 7'N (6) stitutional atom with mass difference hM,

8, = 5 y /Mc20~, (6)

where M is the average atomic mass and y is the

Griineisen constant (here assumed to be 2. 0).
For Rayleigh scattering by point defects, the

inverse relaxation time is taken to be v„'= A&'.

The parameter A is the sum of at least two terms:
A„„for the scattering caused by the natural dis-
tribution of isotopes of the elements in the com-
pound, and A,„,for the scattering by point defects
such as Hg and Te vacancies and interstitials.

The isotope scattering may be calculated by
using the result of Klemens' for an isolated sub-
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For the inverse of the relaxation time for umklapp

scattering, we depart from the formulation of Calla-
way (who used v~ '= B,T~(ua) and follow Slack and

Galginaitis" who used

IT2e o (7)

The form of Eq. (7) gives a temperature dependence
for the thermal conductivity which very closely
matches that obtained experimentally. Slack and

Galginaitis determined the form of Eq. (6) empiri-
cally and further derived

~iso t

ao ~M 4
3 2

i sot 4 3G M ! (9)

where a30 is the unit cell volume, G is the number
of unit cells in the crystal, and M is the mass per
unit cell. For each atomic species, we define the
quantities m= Pf, m, and I"=Zf, [(m, —m)/m],
where I, is the mass of the ith isotope and f, is
the fractional natural abundance of the isotope.
Equation (9), summed over all unit cells, becomes

~isot

a ~ r'4M.~0 g ( i ~4
4mc G,., ( M

(io)

where M is the average value for the sum of the
atomic masses in a unit cell, and hM, is the devia-
tion from M of the mass in the ith cell resulting
from isotopic mass variations. In the case of
HgTe, for which ~=6.460 A, '~ Eq. (10) is

a 3 1 2

167t C 7RH++ BZTe

&&((m„,)'I'a, + (m„)'r„)~'

= (4. M && 10~4 sec~) ~ ' .
Klemens' calculated the inverse relaxation time

for substitutional atom or vacancy scattering in a
monatomic crystal to be

1/v, =A, & =(3VO /mc )(Z(/V(S( )~ (12)

where N, is the concentration and S, is the scatter-
ing factor of the ith type of defect, and Vo is the
atomic volume. In the case of diatomic HgTe, Vo

is the primitive unit cell volume: Vo= 4 ao. The
scattering factor S& depends in detail upon the bind-

ing forces of the defect as well as the mass change,
but it usually has a value near unity. Klemens"
calculated S, for a number of cases of substitutional.

impurities or vacancies in alkali halides and ob-
tained values ranging from 0. 5 to 2. 1. For HgTe,

0.01 I I I I I III I I I I I III
3 10 30 100 300

1/r, ,= (6.23X 10 ' cm sec ) (Z, //, S, ) ~4 .
(12)

The inverse relaxation time for scattering of

phonons by the crystal boundaries is taken to be

Temperature (K) ~ = c/[r(1. 12~'/3)], (14)

FIG. 5. Lattice thermal. conductivity as function of
temperature for the crystal Hg Te-3 annealed at 400'C
for 1 h and then quenched (8-1) and annealed in Hg vapor
at 250 C for 100 h (3-2). The data points have been cor-
rected for electronic thermal conduction and radiation
errors. The curves are the least-squares fits of the

Callaway equation to the data, and the straight lines are
the thermal conductivities expected if diffuse scattering
of phonons by crystal boundaries frere to dominate.

where 8 is the cross-sectional area of the sample
and Il is related to the fraction f of phonons which

are diffusely scattered at the boundaries, accord-
ing to Jl= (2-f)/f. This formula fores ', based
upon the works of Casimir and Herman, Simon,
and Ziman, 2' makes no allowance for finite sample
length as discussed by Herman, Foster, and Zi-
man.
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TABLE III. Inverse relaxation times for various
phonon-scattering mechanisms used to curve-fit thermal-
conductivity data. In these expressions G is the Debye
temperature, c is the speed of sound, 8is the crystal
cross-sectional area, and O~& is the hole-phonon cut-off
temperature. The parameters allowed to vary in the

curve-fitting are Bi, a, B2, A, D, and OHp.

Umklapp proces ses

Normal processes

Boundary scattering

Rayleigh scattering

Hole-phonon scattering

~-1 BI y 28-o/I2'
~u

7'N = B2T (d
»i 3 2

7-1 C/1. 12 Qi/2

7g =A+ 4

Tp = D(d (Q) —KOp/8)

~-,'= 0 (& &re~/@

At low temperatures the scattering of phonons

by holes in HgTe must be considered. For a sim-
ple cubic material with a spherically symmetric
valence band, only longitudinal phonons should be
scattered, and the inverse mean free time is

7,'=D~= —' ',"' for (~ ~2'~) (15a)

r~-'=0 for (~&2ckr), (15b)

The thermal conductivity data were fitted by
adjusting the values of B„Bz,a, A, D, and O~

in the expressions for the phonon relaxation times
which are summarized in Table III. The sample
dimensions and cross-sectional areas are given
in Table IV. The values for the average speed of
sound in Hg Te, c= l. 91 & 10' cm/sec, and the De-
bye temperature, O =141 K, were taken from Al-

per and Saunders. ~4 Their value for O~ was calcu-
lated from the longitudinal and transverse sound

velocities and should be the correct low-tem-
perature asymptotic value. For the density p a
value of 8. 123 g/cms was used which was calcu-

where m~ is the hole effective mass, Ed„is the
lattice deformation potential, p is the crystal den-

sity, and kz is the radius of the hole Fermi sur-
face. For fcc HgTe, both transverse and longi-
tudinal phonons should be scattered and here are
assumed to have the same relaxation times. With

1/7~ contributing to the sum 1/7'„ the integrals in

Egs. (3)-(5) each become the sum of iwo integrals;
one with the limits zero and KS~/0 and the other
with the limits Ke ~/h and Ee/h, where 8~
= 2c@gz/ff. As a function of tbe hole concentra. -
tions p the bole Fermi radius is kz= (3w P)' if
the Fermi surface is spherical, andinthiscase,

O, = 2ca(3~'p)'"/Z.

IV. THERMAL CONDUCTIVITY CURVE FITTING

lated from the lattice constant ao= 6. 460 A. '9

Actually, the logarithm of the thermalconductiv-
ity given by Eq. (2) was fit to the logarithms of

the measured values by the method of Marquardt"
for the least-squares estimation of nonlinear
parameters. If I(:; is the thermal conductivity
measured for a sample at a temperature T„and
if z(T,) is the value calculated at T; from Eq. (2),
then the curve fitting was done by finding the set
of relaxation-time parameters which minimized

2c' = g [logm g&
—log+ K(T&)]

TABLE IV. Dimensions and cross-sectional areas of the

Hg Te thermal-conductivity samples.

Hg Te
sample
No.

2-1
2-2
2-3
3-1
3-2

%idth
(cm)

0.313
0.313
0.273
0.315
0.260

Thickness
(cm)

0.314
0.314
0.280
0.316
0.274

Cross-
sectional

area
(cm2)

0.0983
0.0983
0.0765
0.0996
0.0713

where x is the number of data points.
The data, could be fit without hole-phonon scat-

tering (that is, with D = 0) if the boundary-scatter-
ing parameter E were made much smaller than

unity. However, E should be unity for completely
diffuse scattering of phonons at the boundaries
and should be larger than unity if partof thephonons
are specularly reflected. Not only were the re-
quired values of I', as small as 0.01, physically
unreasonable, but data obtained for samples of
different cross-sectional areas showed that the
low-temperature thermal conductivity of p-type
Hg Te was not measurably dependent upon sample
size. Only for very small samples with cross-
sectional areas of about 0. 01 mm should boundary
scattering dominate scattering by holes. Bound-

ary scattering was, nevertheless, included in the
curve fitting with I arbitrarily taken to be unity.

Because the parameters B„B2,and a for the

umklapp and normal processes were not expected
to vary for the different samples, the data for all
of the samples were fit simultaneously with only
the parameters A, D, and O~ allowed to vary from
sample to sample. The va, lues thus found for the
parameters giving the least-squares fit are com-
piled in Table V. If we take [ C', „/(x-s)]'~, where
s is the number of adjustable parameters, to be
the standard error So, then for this fit with 217
data points and 18 adjustable para, meters, the
standard error was 0.0239. The plus and minus
increments in Table V are those for whichthevari-
ance ratio, (@—C', „)/sS~, has the value 2. 05;
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TABLE V. Phonon-scattering parameters determined
by curve fitting the thermal conductivity of all Hg Te
samples simultaneously. The parameters Bf, B2, and
a were required to be the same for all samples. and the
least-squares fit was obtained with B( = (9.37+ 0. 66)
&& 10 ~ sec K ', B&=(2.89+ 0.44) &10 sec K 3, and
a=1.30 + 0.06. See Table III for summary of inverse
relaxation time expressions containing these parameters.
The hole density p (OH&) is derived from p = (KO~&./2cS) /37t. .
Probability is 99.0~/p that the true value of a parameter
is within the given plus and minus increments.

Hg Te
sample

No.

2-1
2-2
2-3
3-1
3-2

10'4 a
(sec3)

93.0 + 8. 6
74.9+ 7.4
56.8 + 5.0

160 + 14
67.7 + 6.2

10 D

1.35 (+0.62, —0.36)
l. 12 (+ I.20, —0.43)
3.02 (+ 5.38, —1.28)
1.24 (+0.32, —0.23)
1.38 (+ 0.52, —0.33)

Op

(K)

9.02+ 0.40
8.22+ 0.44
9.21+ 0.30
9.29+ 0.50
9, 71+ 0.38

10- P(O~)
{cm 3)

10.0+ 1.4
7.5+ 1.2

10.7 + 1.1
10.9 + 2.7
12.4 + 1 ~ 4

Probability is based upon Snedecor's F (variance ratio)
distribution tables in Handbook ot' Mathematical Eunctions,
Natl. Bur. Std. (U. S. ) Appl. Math. Series 55, edited by
M. Abramowitz and I. A. Stegun (U. S. GPO, Washington,
D. C. , 1964), pp. 986-989.

this value for the variance ratio implies a prob-
ability of 0.990 that the true values of the param-
eters lie within the given limits. Because of the

high degree of correlation of the pa.rameters D

and O~, the variation of these parameters from
sample to sample was statistically not significant.
A second fit was made, for which D was required
to be the same for all samples and only A and O~

were allowed to vary from sample to sample. This
second fit, the results of which are compiled in

Table VI, had a slightly greater standard error of

Q. Q245. In Figs. 4 and 5, the curves were calcu-
lated by using the parameters from Table V.

The values of the parameters required to fit the
thermal conductivity data are of the same magnitudes
that usually are found for other materials. The
theoretical basis for these parameters is not suf-
ficient to insist upon agreement with experiment
better than to within a factor of two. The param-
eter 8, in the expression for the unklapp relaxa-
tion time, Eq. (7), is about 9x10 's sec K '. The
formula of Slack and Galginaitis, '7 Eq. (8), gives
in the case of HgTe, B,=3.0&10-' sec K ', if
the Gruneisen constant is 2. 0 and if the appropriate
sound velocity is 1.91x 10' cm/sec. This agree-
ment must stand as satisfactory inasmuch as Eq.
(8) is an approximation, the Griineisen constant
for HgTe is not known, and the appropriate values
that should be used for the Debye temperature and

speed of sound in HgTe are not unequivocally estab-
lished at temperatures for which umklapp scatter-
ing is dominant. The parameter a in the exponen-
tial term of the expression for the umklapp relax-

ation time, Eq. (7), should be of the order unity,
and the data fitting always required a value for a
near unity.

The Rayleigh scattering parameter A is given to
within +10% by the empirical formula

A = (6. 1 x 10- ~ 2. 3 x 10-e'p} sec', (17)

where p is the low-temperature hole concentra-
tion in cm-3. The concentration-dependent term
is given by Eq, (13) if p is substituted for N; and
if $, =0.60. The constant term in Eq. (17} is
larger than A„„[Eq.(9)] by a factor of 13, and
such a large discrepancy forces one to conclude
that other scattering processes are operative. A
simple hypothesis is that each sample had a con-
centration of neutral defects, N= 9&& 10"cm
with a scattering factor of unity. Then Eq. (13)
yields a neutral defect contribution to A of 5. 7
&10 4 sec, which added to the calculated value of
A„„givesthe constant term in Eq. (17).

The best collective value for D, 1.40 && 10 ' as
given in Table VI, implies that Ed„=Q. 52 eV if the
hole effective mass is 0. 53m. The 0~ values, be-
tween 8. 1 and 9.8 K, imply hole concentrations
between 7&10' and 1.3&&10' cm, whereas the
analysis of the electrical data gave a range of hole
concentrations from 5. 0&& 1016 to 4. 4&& 101 cm.

The value for D of 1.4 x 10 ', whichgives 1/r~
=1.4&10 '& sec '=2. 7q sec ', is of the magnitude
predicted by theory. The expression for D, Eq.
(15a), should be multiplied by some factor less than
unity because the polarization of the longitudinal
acoustic waves is not parallel with the wave vector

Hg Te
sample

No.
1044&

(sec3)
OH

(K)
10 p(8 )

(cm 3)

2-1
2-2
2-3
3-1
3-2

92.0 + 7.7
73.7 + 6.5
55.0 + 4. 6

159 + 13
66.9+ 5.5

9.01 + 0.38
8. 12 + 0.39
9.82+ 0.35
9.07 + 0.41
9.73 + 0.35

9.9+ 1.3
7.3 + 1.0

12.9+ 1.4
10.1+ 1.5
12.5 + 1.4

TABLE VI. Phonon-scattering parameters determined
by curve fitting the thermal-conductivity data of all HgTe
samples simultaneously. In addition to Bf, B2, and a,
the hole-phonon-scattering parameter D was required to
be the same for all samples. The least-squares fit was
obtained with B&' = (9.30 + 0. 63) x 10 sec K, B2= (3.00
+ 0.41) && 10 sec K, a = 1.30 + 0.05, and D = (1.40 + 0. 21)
&& 10 . See Table III for summary of inverse relaxation
time expressions containing these parameters. The hole
density p(O&) is derived from p =(KO'$2ch) /Sr . Probe,;
bility is 99.0/g that the true value of a parameter is within
the given plus and minus limits.
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FIG. 6. Thermoelectric power as function of tempera-
ture for HgTe 3-1. The dash-dot curve is the phonon-
drag contribution calculated from thermal conductivity
parameters, and the dash curve is the calculated elec-
tronic contribution. The solid curve is the calculated
total thermoelectric power.

as is assumed in the derivation of I/r~. Further-
more, D should be different for longitudinal and
transverse phonons. If Eq. (15a) were to give an

effective average value for D, it would need to be
multiplied by some factor less than unity —perhaps
as small as one-third. The deformation potential
is, therefore, substantially underestimated if the
experimental value for D is substituted into Eq.
(15a) as it stands. Compensating to some degree
for this, however, is the effect of the probable re-
entrant shape of the hole Fermi surface, as will be
pointed out in Sec. VI.

The result that the cutoff temperature ~ is be-
tween 8. 1 and 9.8 K for all samples implies two
things. First, relatively small-wavelength phonons
can be scattered even for quite low hole concentra-
tions. Second, the minimum wavelength of phonons
which interact with holes is not significantly depen-
dent upon the hole concentration. Neither of these
implications can be valid for a simple parabolic
valence band. On the contrary, the valence band
cannot have its maximum at the center of the Bril-
louin zone, and its shape must be such that the
maximum wave number for holes changes relatively
little as the hole concentration changes.

The preceding discussion of the hole-phonon-scat-
tering parameters must be tempered by pointing
out that the thermal-conductivity data reported here
do not extend to temperatures sufficiently low to
yield unequivocal values for O~ and D. Only at
temperatures lower than 1 K would the major con-
tribution to the thermal conductivity be by the long-
wavelength phonons which can interact with holes
(those for which q & K8~/hc). At l. 7 K, the lowest
temperature for data reported here, only about one-

In Figs. 6 and 7, the thermoelectric power Q is
shown as a function of temperature for Hg Te samples
2-3 and 3-1, respectively. The peaks at low tem-
peratures are caused by phonon drag, which may be
related to the hole-phonon scattering evident in the
thermal conductivity.

The total thermoelectric power is the sum of an
electronic part Q~ and a phonon drag part Q~. For
a two-carrier system the electronic part is

Qa = (o„Q„+a~Q~) / (o„+o~),

where o is the electrical conductivity and the sub-
scripts n and p refer to the electron and hole con-
tributions, respectively. This relation may be re-
written as

300—
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FIG. 7. Thermoelectric power as function of tempera-
ture for HgTe 3-1. The dash-dot curve is the phonon-
drag contribution calculated from thermal-conductivity
parameters, and the dash curve is the calculated elec-
tronic contribution. The solid curve is the calculated
total thermoelectric power.

third of the heat is transported by long-wavelength
phonons, and at 4. 2 K, only about one-tenth. To
satisfactorily establish the precise nature and hole-
concentration-dependence of the hole-phonon scatter-
ing, data for temperatures between 0. 1 and 1 K
would be required. Nevertheless, the results here
demonstratethathole-phonon scattering is important
at low temperatures, although they do not exclude
the possibility that other scattering mechanisms also
may contribute.

To complement the results presented here, data
are required for HgTe samples which are unequivo-
cally n-type; for such samples the scattering of
phonons by electrons should be small because of the
low electron effective mass, and boundary scatter-
ing of phonons should prevail at low temperatures.
Ne were not able to prepare suitable n-type Hg Te
to verify this prediction.

V. THERMOELECTRIC POWER
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e.= lap+ (~/j) be.) /[1+ (~/j) b], (19)

where n is the conduction-electron density and b is
the ratio of the electron mobility to the hole mobility.
For either electrons or holes, the electronic part
of the thermoelectric power is given~6 by

m K T 8 lnA; BlnA~&

3e ~E] 8E] (2O)

where i stands for n or p, E is the energy, g is the
Fermi energy, A" is the Fermi-surface area, e is
the magnitude of the electron charge, and A is the
carrier mean free path. For spherical Fermi sur-
faces A, = (2E;/m, )'~ax', and AP = 8vm, E,/8 '. For
low temperatures v', is determined by the scattering
of charge carriers by ionized impurities and is,
according to Conwell and Weisskopf, 3'

(-,' m, )'"(2a, /w) (2/E, )'E
in[1+ (2E, /E, )~] (21)

where a& = (N„+Nz&)
'~' (N„is the ionized acceptor

density, and ND is the ionized donor density) and

El =2e /ea, (e is the dielectric constant). With
this formula for r, , Eq. (20) becomes

v K T 2(2f, /Ei)
3eg; [1+(21;;/Ei)a] in[1+ (2f, /Ez)a]

(22)
To evaluate this expression for Q„NDwas neglected
and values for N„were taken from Table I. Equa-
tions (32)—(34) of the Appendix were used to calcu-
late n, p, and g, as functions of temperature. For
the value of the ratio b, (mp/m„)'~a was used in Eq.
(19). For samples HgTe 2-3 and HgTe 3-1, the
electron contribution to Q~ is small in comparison
with the hole contribution for temperatures below
3P K, and neglect of the electrons causes errors
certainly no larger than other errors inherent in

the formulation.
To relate the phonon-drag part of the total thermo-

electric power to the lattice thermal conductivity,
the following crude analysis was made. Under the
influence of a, positive temperature gradient ST/Bx,
the long-wavelength phonons which can interact with
holes gain a net momentum P~ in the —x direction.
A fraction of this momentum is transferred to the
holes causing a hole concentration gradient and con-
sequent negative voltage gradient SV/Bx. The rate
at which momentum is transferred to the holes by
the phonons, &Pz/st= —Pz/(v'p), added to the rate
at which hole momentum, P~, is induced in the op-
posite direction by the voltage gradient, &Pp/St
=-pe(SV/&x), must be zero for a steady state.
Now, Pz =j z/c, where j z is the total heat current
carried by the long-wavelength phonons, and j~
= —xz(&T/&x), where xz is the thermal conductivity
attributable to long-wavelength phonons. Thus,
[x~/(c'(rp))](aT/ax) = Pe(&V/&x), or

(sv/sx)
(8T/ex) pec'(rp)

This is substantially the result derived by Ziman '
from a variational calculation. If Eq. (15a) is
used for vp, the main deficiency of Eq. (23) is that
the effect upon the relaxation time by the perturba-
tion of the hole distribution function is ignored. If
the calculation of the phonon drag were done in a
completely self-consistent manner, the saturation
effect~9 caused by the simultaneous displacements
of the hole and phonon distributions would reduce
the magnitude of the calculated thermoelectric pow-
er. The average of &~ over the long-wavelength-
phonon distribution is

J,(O, /T)
DKT 44(O~p/T)

(24)

where D is given by Eq. (15a), ep by Eq. (16), and

op/r

(25)

The values for the parameters from the second
group fit were used in Eqs. (3)-(5), but with the
limits of integration Kep/b rather than Ke/h, to
calculate x~ and in Eq. (24) to calculate (rp) for
Hg Te 2-3 and Hg Te 3-l. Finally, Q = Q~+ Q~ was
calculated for these two samples from Eqs. (22)
and (23). The results are plotted in Figs. 6 and 7.
The agreement between the calculated and measured
values is good in view of the crudity of thecalcula-
tions, and we believe that this strongly supports
the hypothesis that hole-phonon scattering is the
dominant mechanism limiting the low-temperature
thermal conductivity in p-type HgTe.

VI. DISCUSSION

The item of main interest for discussion is the
depression of the thermal conductivity at low tem-
peratures which we attempt to account for by hole-
phonon scattering. Boundary scattering can be
eliminated as a limiting factor. Not only is the
calculated boundary scattering much too small to
account for the observations, but the low-tempera-
ture thermal conductivity was not measurably de-
pendent upon the sizes of the samples. Although
the data, do not extend to sufficiently low tempera-
tures to provide a test for the presence of a reso-
nance scattering process, the low-temperature data
reported here can be fit very well by any of the
resonance formulas generally employed. We dis-
regard resonance scattering because the calculated
hole-phonon interaction is the correct magnitude to
fit the thermal conductivity data, and these data in
turn predict reasonably well the phonon-drag con-
tribution to the thermoelectric power.

To fit the low-temperature thermal-conductivity
datawith a hole-phonon relaxation time given by



C. B. WHITSETT AND D. A. NELSON

E fb

10

hole concentrations the maximum dimension of the
Fermi surface, and hence O~~, is relatively large
compared with the parabolic band model; (2) the
maximum dimension of the Fermi surface increases
slowly as holes are added; (3) the re-entrant sur-

100

FIG. 8. Qualitative depiction of overlap of conduction
band in HgTe with valence band in various directions.
The positions g„g„,and f, for the Fermi energy give
the hole Fermi surfaces shown in Figs. 9(a)-9(c), re-
spectively.

Eq. (15a), it was necessa, ry that O~ be nearly the
same for all samples even though the electrical data
imply that the hole concentrations of the different
samples vary by two orders of magnitude. This
inconsistency is a result of the assumption of a
parabolic valence band, upon which Eq. (15a) is
based, whereas the actual valence band structure
in HgTe is not simple.

From symmetry considerations the valence band
must overlap the conduction band for k in the (ill)
and (100) directions as indicated in Fig. 8. ~ An
unsolved problem is the magnitude of the energy
overlap, although on the basis of calculations which
have been performed, the overlap must be quite
small" and probably much smaller even than 0. 001
eV. If for sufficiently small hole concentrations,
the Fermi energy is at the level P, shown in Fig. 8,
then the hole Fermi surface will be eight ellipsoids
oriented along the (ill) directions as shown in Fig.
9(a). As more holes are added, the Fermi level
will drop to g, in Fig. 8, andtheellipsoidalsurfaces
will be joined with one another to form the re-en-
trant Fermi surface, with many empty states at
small k values, as shown in Fig. 9(b). Finally,
with the addition of many holes, the Fermi energy
will fall below the I", energy to alevel g, as indicated
in Fig. 8, and the highly warped Fermi surface
shown in Fig. 9(c) will result. For very large hole
densities, the Fermi surface will be relatively more
smooth and the parabolic valence band will be better
as an approximation. The magnitudes of the valence
band overlaps do not qualitatively change this picture
of the evolution of the hole Fermi surface, but of
course the rate of evolution as the hole density is
increased does depend upon the amounts of overlap.

The essential features of the hole Fermi surface
that affect the dependence of hole-phonon scattering
upon hole concentration are (1) even for very small

(a)

(b)

(c)

FIG. 9. Evolution of the hole Fermi surface of HgTe
as the hole concentration is increased: (a) Fermi energy
just below maximum valence-band energy in (111)direc-
tion; (b) Fermi energy just below maximum valence-band
energy in (110) direction; (c) Fermi energy below bottom
of conduction band.
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face makes possible a larger number of momentum-
and energy-conserving hole-phonon interactions than
would a Fermi surface everywhere convex. The
inverse of the relaxation time of the phonon distri-
bution function when hole-phonon scattering domi-
nates is"

1 (E„,) q
4m pc2 dk„dk, dk,

&& [f.'(1 —f'- g) s (~&) 1 (25)

where f is the Fermi-Dirac distribution function,
s (Z) = [sin(Et/k)]/wZ, and aZ=Z~+ k(u, —E.„„..
E=h k /2m~, Eq. (25) reduces to

2

f - (1 f- -) k dk-
2mS~ pc

(27)

where ko= ~(q/2) —m~c/k[ and where the integration
is over only the modulus of k. Forstrongdegeneracy,
provided ko &k~, the integral has the value no~&,/5,
and Eq. (15a) follows. If q is larger than 2k+, the
integral in Eq. (27) is zero and Eq. (15b) is the re-
sult. For a more complex dependence of E upon k,
such as in the case of the HgTe valence band, some
qualitative aspects of Eq. (27) can be readily ascer-
tained. The product fo (1 —f& -) restricts the in-
tegration to those k vectors which terminate on or
very near the Fermi surface. The function & (AF)
has an appreciable magnitude only for 4E=0, or
Eg= E- ~

—@~,. For a Fermi surface which is
everywhere convex, this energy conservation re-
quirement defines a surface in k space, and only k
vectors which terminate on this surface contribute
to the integral in Eq. (26). However, for a re-
entrant Fermi surface such as in Figs. 9(a) and

9(b), the energy conservation requirement defines
two or three surfaces for a range of q vectors, and
the integral correspondingly should be two or three
times larger. Thus, in the case of HgTe, not only

is it reasonable to expect O~ to vary only slowly
with p, but the parameter D obtained by curve fit-
ting shouldbe appreciably larger than would be pre-
dicted on the basis of a parabolic valence band.
This compensates to some degree for the error of
the assumption in Sec. IV that longitudinal and
transverse phonons are scattered equally by holes.

Yet another factor may be of importance in con-
sidering the magnitude of hole-phonon scattering in

HgTe. Qn a Fermi surface such as depicted in Fig.
9(c), there will be many nonequivalent points for
which the corresponding hole group velocities will
be either parallel or antiparallel. For q vectors
joining such points, the phonon dispersion curve
may have a larger than average slope33; tha.t is,
the phonon group velocity will be increased. This
is the so-called Kohn anomaly. " The phonons with
such wave vectors will interact with holes consider-

We are grateful to E. C. Paxhia who did the com-
puter programming for the least-squares deter-
mination of nonlinear parameters. We appreciate
the aid and the many helpful discussions with Dr.
A. Lehoczky and Dr. J. G. Broerman. We are
particularly indebted to Dr. D. P. Ames for his
helpful technical consultation, encouragement, and

support of this research.

APPENDIX

The method used to calculate the electron and hole
concentrations as functions of temperature will be
outlined here. Because of the slight overlap of the
conduction and valence bands, and because of the
large density of states in the valence band, the elec-
tron concentration in moderately p-type Hg Te will
be appreciable even at very low temperatures.
Since the electrons are much more mobile than the
holes, their effect upon the electrical properties
cannot be ignored, and this of course makes it dif-
ficult to calculate either of the charge carrier con-
centrations.

For a two carrier system, the electrical con-
ductivity and Hall coefficient are

o = e(n p,„+P p,~), (29)

8„=—e(n p,'„Pp,,') /a' . - (29)

In these equations, n and p are the conduction
electron and hole densities and p,„and p~ are the
electron and hole mobilities. Knowledge of 0 and

B„is insufficient to determine the four unknowns

v, p, JL(,„,and p&. There is no justification for as-
suming that the mobility ratio b= y.„/p~ is indepen-
dent of temperature or that this ratio at a given
temperature is the same for all samples. The elec-
tron mobility is, however, much larger than the
hole mobility at all temperatures: Near room tem-
perature, where the electron and hole concentrations
are comparable in magnitude, we therefore assume

ably more strongly than the other phonons, and the
net effect may be not unlike a resonance scattering
for phonon wave numbers a few times smaller than
the maximum value of 2k~.

The thermal-conductivity curve fitting yields O~
-9 K. This temperature corresponds to a value
for q of 6. 0 & 10' cm '. If the k value at the point
of maximum overlap is about one-half the maximum
0 value on the Fermi surface, and if q „=20,„,
then one deduces that the maximum overlap occurs
for 0 -1.5 &&10 cm '. If the phonon dispersion curves
for Hg Te were well known, one might contemplate
the seemingly unlikely prospect of using thermal
conductivity measurements to determine the valence
band structure.
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mined, and from this value the net acceptor con-
centration for the sample was calculated by the
method described next.

Both n and p, as functions of temperature, were
calculated for the simple band structure shown in
Fig. 11. The valence band of the simplified model
is assumed to be parabolic and to have its maximum
at the zone center at an energy A relative to the
minimum energy of the conduction band. Except at
very low temperatures, this model is adequate be-
cause the effects of the detailed nature of the over-
lap and the shape of the valence band are obscured
as the temperature is increased. The conduction
band is assumed to be given by the Kane formula,

)016
10 ~04

Electron mobility {cm /CI

I le'

)05

FIG. 10. Electron concentration as function of mobility
at 290 K. The lines for the various HgTe samples are
based upon the measured Bz and 0. values substituted into
the relation g =(-gyr/e} jp„.The actual value of ~ for
each sample is determined from the intersection of its
line with the dashed line connecting points A and 8, which
is the empirically determined dependence of n upon p„
at 290 K.

E= A k /2m —2 Eg+ (E + +P k ) /2 (31)

P-x=N~-N~, (32)

8/8 1/I

]

where rn is the free™electron mass, E~ is the I"6
—I', band separation at zone center, and P is the
interband momentum matrix element. If N„and
N~ are the ionized acceptor and donor concentra-
tions, respectively, then

that n p,„»p p~. With this assumption, the combina-
tion of Eqs. (28) and (29) gives

n= —elf„o/g„.3 2 (30)

Equation (30) can be used to calculate n near room
temperature if ILt.

„

is known, or p,„.if n is known,

from the measured values of R~ and a. On a log-
log plot, the possible solutions for n as a function
of p,„must lie on a straight line with a slope of -2.
Such plots for the five HgTe samples, derived from
R„and a values at 290 K, are shown in Fig. 10.
The point A in Fig. 10 for HgTe 2-3 was established
by assuming that for this sample at 290 K the Hall
coefficient was very nearly'„= —1/ne, whichgives
n= 3. 7 && 10" electrons/cm . The net acceptor con-
centration for HgTe 3-1 was assumed to be identical
with the low-temperature hole concentration which,
for this sample, is p= 1/RHe=4. 4 & 10'~ holes/cm~.
Using a method outlined in the following paragraph
and the above value for the net accepter concentra-
tion, the value of n at 290 K was calculated to be
7. 5 && 10'6 electrons/cm~, and this value determined
the point B in Fig. 10. It next was assumed that
at 290 K the electron mobility varied as some power
of the electron concentration '; thus, in Fig. 10,
the solution for n and p,

„

for each sample should be
the intersection of its log e-log p,„plotwith the
straight line through points A and B. In this manner
a value for n at 290 K for each sample was deter-

E
9

FIG. 11. Simplified band structure used for calculations
of charge carrier densities in HgTe. Actually, the con-
duction and valence bands are degenerate at the zone
center, and the overlap occurs away from the zone center
in only certain directions (see Fig. 8).
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4v(2m)'~'
~

[E+ (E /p)B]'+[(R+ p)/(R+1)]dE
a' e(E-0)l&~ 7

(34)

where g =A —f, p, = (3R~E~) /(4P m), and &= [1
+ (4Ep/E~) , (1 —p) ]'~~ —1. We assume N„-N~ to be
independent of temperature and use the following
parameter values: m~ = 0. 53m, ~7 Eo = 0. 30[1

0-00.167(r 4-2).] eV, "P=3.3&«0-'eV cm, "4'
and A = 0.001 eV." For each sample the value for
e at 290 K was read from Fig. 10 and substituted
into Eqs. (32)-(34), which then were solved simul-
taneously to yield N„-ND. The results are given
in Table II.

To this point all of the samples have been con-

sidered to be p-type (p &n), and on this basis all
of the electrical data can be analyzed in a self-con-
sistent manner. However, the behavior of Hg Te
2-2 is qualitatively similar to that of n-type samples
as reported by Ivanov-Omskii et gl. 43 It is not
possible to self-consistently analyze the electrical
data for Hg Te 2-2 on the basis that it is n-type be-
cause its room-temperature Hall coefficient is
significantly larger than that for intrinsic samples
reported in the literature as well as larger than
that calculated on the basis of our assumed band
model. The actual character of HgTe 2-2 cannot
be resolved beyond the statement that it must be
highly compensated and have nearly intrinsic con-
centrations of electrons and holes at temperatures
above 10 K.
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The ref lectivity of a thick sputtered film of VO2 has been measured in the energy range
0.5-11.0 eV at room temperature. The complex dielectric constant (e~ E'2) and the complex
index of refraction (n, k) have been obtained from the ref lectivity measurements using the
Kramers-Kronig relations. We have also measured the transverse electroabsorption spectrum
of a thin sputtered film of VO2 at liquid-nitrogen temperature. Comparison of the electroab-
sorption spectrum with theoretical predictions identifies the edge at 2.011 eV as corresponding
to a direct transition at an Mo edge. In spite of the lack of a band-structure calculation for
VO2, the singularities in e& at 0.6, 1.04, 1.32, 1.82, 2. 64, 3.6, 5.89, and 9.6 eV are assign-
ed to specific interband transitions.

I. INTRODUCTION

Transition-metal oxides which show a phase
transition from a semiconducting to a metallic state
have been the subject of considerable interest. '&

Of all these materials VO~ is the most interesting
in terms of applications. ' The transition in VO&,
which is a first-order semiconductor-to-metal
transition, occurs at 68'C. This transition is ac-
companied by a lattice distortion from a low-tem-
perature monoclinic to a high-temperature tetrag-
onal structure. The origin of this transition has
been the subject of considerable controversy. '~ '
The electrical and optical properties of VOz have
been studied extensively. " However, in most
cases the stoichiometry, chemical purity, and
freedom from defects of the measured VOP have
not been high, at least by the standards of semi-
conductor technology, and this fact has produced
a very large dispersion in the published data.

The electronic contribution to the optical prop-
erties of VO2 has been studied by Verleur et al. '
and by Borisov et al. ' The temperature and pres-

sure dependence of the energy gap has been mea-
sured by Ladd and Paul, "and photoemission mea-
surements have been performed by Powell et a)."
These measurements indicate that in the low-tem-
perature phase VO2 has an energy gap between 0.6
and 1.0 eV due to the crystal-field splitting of the
uppermost partially filled vanadium 3d conduction
band. Optical transitions at energies higher than
2. 5 eV have been assigned to interband transitions
between an oxygen 2p valence band and the lowest
empty vanadium 3d conduction band.

Standard optical measurements, such as reflec-
tion and absorption, do not provide very high reso-
lution for solids whose optical spectra show very
large structureless backgrounds. Several modula-
tion techniques have been developed in the last few
years. By measuring the derivative of the optical
spectrum with respect to some parameter, these
techniques eliminate the background and enhance
the structure to allow very precise determination
of the energies of the transitions. These methods
have proved to be useful in determining the energy
of the interband transitions in semiconductors, in-




