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TABLE VI. Summary of main structure in the cal-
culated &»(&) for SnS2 and the measured ref lectivity.

along the c axis. We summarize the structure in
ez(&) and the measured ref lectivity in Table VI.
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The frequency- and wave-vector-dependent complex dielectric function &(q, &) is calculated

for silicon. The energy eigenvalues and eigenvectors which are used have been obtained from

energy-band calculations based on the empirical pseudopotential method. Explicit results are

given in the t100] direction in the range 0 ~ q —(2 7t /a) and 0 ~ S~ ~ 24 eV. A comparison is
made between the present results and the results of a calculation of e (q, u:) for a free-electron

gas in the random-phase approximation.

I. INTRODUCTION

We have calculated the frequency- and wave-
vector-dependent dielectric function e(q, &u) in the

[100]direction for silicon. This is the first cal-
culation of &(q, ~) for a semiconductor in which

realistic energy eigenvalues and eigenvectors are
used. Previous calculations of dielectric functions
have concentrated either on the wave-vector-de-

pendent dielectric function' for zero frequency
&(q, ~ = 0) or on the frequency-dependent dielectric
function e(q= 0, ~). The former case is important
in determining the static screening of electric
fields, and the latter case is important in analyzing
the optical properties of semiconductors because

q is approximately zero for optical wave vectors.
The more general dielectric function e(q, ~) de-
scribes the screening of a longitudinal field which
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First we calculate the longitudinal wave-vector-
dependent and frequency-dependent dielectric func-
tion e(q, ~) for silicon which describes the response
of a crystal to an electric field parallel to q and
varying sinusoidally in time:

i(Z'w ~()
&(q ~) E ((q P ~t) (2. 1)

Using the expression for a, (q, ~) given by Ehren-
reich and Cohen, we obtain

(q, ~) =1+-"2 ~ l(k, , lk+q, .
r, c, u

x J [E,(k) -E„(k+q) -@~J '

+[E,(k) —E„(k+q)+h(u] '}, (2. 2)

where k is summed over the first Brillouin zone,
v labels the valence bands, and c labels the con-
duction bands. For the purposes of calculation,
Eq. (2. 2) is written as follows

&)(q, ~)=1+ 2
—

z L; l(k, clk+q, ())l '(Lg)'

x([E,(k) -E„(k+q) -g~J-'

[E.(k) -E„(k+q)+a~]-'$, (2. 3)

where the summation is over cubes of volume (A&)'
in the first Brillouin zone, with suitable truncations
at the zone boundaries. The summation index p
spans the top-four valence bands and the index c
spans the bottom-eleven conduction bands. E„(k)

varies in both space and time. A knowledge of
e(q, m) permits us to obtain the following properties
of the solid: the response to weak external longi-
tudinal fields, the density-fluctuation excitation
spectrum (energy loss of a fast charged particle),
and the time-dependent correlations between the
density fluctuations (plasmon modes).

In the present calculation the real pa.rt of the di-
' electric function c,(q, &u) is calculated directly, and

the imaginary part e,(q, cu) is ca,lculated using the
Krame rs -Kronig transformation. The functions
e,(q, (c) and &,(q, (d) are then used to calculate the
imaginary part of the inverse dielectric function
Ime (q, u), which is proportional, for small q,
to the energy-loss function of a fast charged par-
ticle passing through the solid.

The details of the calculation are given in Sec.
II along with the results for silicon. In Sec. III the
silicon calculations are compared with a calcula, -
tion of e, (q, (d), e2(q, &u), and Ime (q, u) for a free-
electron gas in the random-phase approximation,
that is, the Lindhard dielectric function. A com-
parison of the various dielectric functions for sili-
con and the free-electron gas illustrates the prin-
cipal difference between the two cases.

II. CALCULATIONS

is the energy eigenvalue of band z at state k, and
I k, n) is the corresponding eigenvector.

The energy eigenvalues and eigenvectors are cal-
culated using the empirical pseudopotential method,
as described in Ref. 2. Since spin-orbit effects
are small for silicon, they have not been included
in this calculation. The pseudopotential form fac-
tors have been adjusted so that the ref lectivity and
the principal optical gaps agree with experimental
measurements. '~ Fifteen energy eigenvalues and
eigenvectors are computed for each of 3360 points
in the Brillouin zone. The coordinates of the grid
of calculated points are given by I6(2s+1, 2m+1,
2g+ I) in units of 2v/a, where s, m, and n are in-
tegers.

For an arbitrary direction of q, the summation
in Eq. (2.3) must be performed over the entire
Brillouin zone. Fortunately, symmetry properties
can be exploited to reduce the computation time by
a factor of 8 in the [100]direction. The computa. -
tion time for a particular value of q can be reduced
by an additional factor of 15 if q is chosen such that
(k+q) also lies on the grid of calculated points.

For certa. in values of c, v, k, q, and ~, [E,(k)
-E„(k+q) -h~] ' can have singularities and it
varies rapidly as k varies over the cube of volume
(c4)'. For such cases, the cube is divided into
216 equal subcubes. The contributions of (E, E„-
-ff(c) are calculated by interpolation and are
added together and multiplied by the new volume of
(&0)'/216. The values of l(k, c I k+q, v)l and

[E,(k) —E„(k)+h(()], which are not singular, vary
much more slowly and are given the values they
assume at the center of the larger cubes.

An indication of the accuracy of the present cal-
culation of &,(q =0, &u) is given by a comparison with
a much more accurate calculation done in conjunc-
tion with the work on silicon presented in Ref. 6.
In this previous calculation, 356 points in 48 of the
Brillouin zone were accurately computed and then
the energy eigenvalues and the dipole matrix ele-
ments were both determined on a much finer grid
of 175 000 points in 48 of the Brillouin zone by means
of an interpolation scheme. The comparison in
Fig, 1 shows that the present calculation of
z, (q =0, (d) is approximately correct, and this, in
turn, indicates the accuracy of our calculations of
e(q, (d).

After we calculate e, (q, (()), the imaginary part
of the dielectric function e2(q, (c) is calculated by a
Kramers -Kronig transform of z((q, (d). The imag-
inary part of the inverse dielectric function
Ime '(q, ~) is then easily computed. Figures 2-6
display plots of e, (q, (d), e2(q, &u), and Ime '(q, ~)
as a function of co for q = 0, —,', —,', —,', and 1 in units
of 2v/a in the [100]direction. In Ref. 1 we have
shown that e,(q, &u = 0) is nearly isotropic with only
minor deviations for q parallel to the [111]direc-
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co, whereas it should be zero because of the energy
gap. This incorrect result is caused by small er-
rors in the calculation of », (q, &u). Small errors
in &i and &~ can cause larger errors in Imc ', and
for this reason the smaller structure in the plots
of Im~-' is not to be regarded as accurate.

IH. DISCUSSION

In this section we compare the results for the
silicon», (q, ~), »2(q, ~), and the Im[» (q, ro)] with
these functions calculated for a free-electron gas
in the random-phase approximation. This RPA,
or Lindhard dielectric function, has the form

Et ((((()= (+, —-' [( (((+ w)-'] In ' (( —((( w)'( &-+4(()
BPq 1 —P-y I -P+W (3.1)

8 when P&l and a& l4P'-4Pi
[I-(P—y) ]when ~4P —4Pl &5& ~4P'+4Pl

8p
~~ 0 when 5& l4P'+4P~Q'

0 when p& I and 5 & l4p —4pl
3 (3.2)

where P= q/2k+, 5 =&(d/Ez, @=6/4P, K~ is the in-
verse Fermi-Thomas screening length, k~ is the
free-electron Fermi wave vector, and E~ is the
Fermi energy.

»&(q, u&) for silicon is displayed in a perspective
plot (Fig. V) whicll more clearly illustrates how

», varies in the (q, v) plane. In Fig. 8 we give a
similar plot of the Lindhard», (q, e) obtained from
evaluating Eq. (3.1) for a density of free electrons
that give a plasma frequency co~ identical to the

calculated silicon value. [The plasma frequency
, (d~ is given by the high-frequency zero of », (q, (d)].

For q = 0 and ~ small, the silicon &, and the
Lindhard &l differ markedly. In particular, the
Lindhard», assumes the familiar form», (q= 0, &u)

= I —e~/(d2, which has a singularity at ~ = 0. This
is in complete contrast with the silicon E„which
is an increasing positive function for small (d. The
significant difference between the two functions at
q= 0 is that the lower zero of the silicon &l occurs
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I"IG. 6. Plots of e&, g&, andImg for silicon as a function of Scu for q= (1, O, O)2g/a.

at about 4.5 eV, whereas the zero of the Lindhard

e, occurs at zero. The behavior of the lower zero
in &, is discussed later in greater detail. For
small cu at all nonzero values of q, the silicon &&

increases with ~ until the function reaches a max-
imum, but for the Lindhard case, e, decreases with

increasing ~, so that the maximum value of the
Lindhard E& always occurs at co = 0.

At high cu for all q the silicon and Lindhard 6y

functions are similar. This is reasonable, since
at high &u (such that h&u is much larger than the
energy gap), we expect silicon to resemble a free-

SILICON
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I'IG. 7. Perspective plot, of e&(q, ~)
for silicon.
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electron gas because the high-energy excited states
correspond to loosely bound electrons.

In Figs. 9 and 10 &2(q, &u) is plotted for the silicon
and Lindhard cases. Because of the gap, the sili-
con e2 is identically zero at small co, while in the

Lindhard case E2 differs from zero for small ~
for all q. The Lindhard &2(v) first increases lin-
early and then falls quadratically with ~ for each
q [see Eq. (3.2)]. The quadratic dependence is
not clearly visible in Fig. 10 because of the per-
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FIG. 9. Perspective plot for
&2(q, v) for silicon.
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FIG. lo. Perspective plot of
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spective nature of the graph and the rapid depen-
dence of &~ on co in these regions. As in the case
of z, (q, &u), the differences in &2(q, &u) between the

silicon and Lindhard cases are most prominent at
low q and ~.

Figures ll and 12 show Irn[& '(g, cu)] for the

1.0

FIG. II. Perspective plot of
ImI& (q, cg)) fox silicon.
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silicon and I indhard cases. These cases differ
considerably. In the Lindhard case the function
approaches zero as q and (d approach zero except
for the characteristic 5 function at v = v&. It be-
comes finite and increases in magnitude as q and
~ become larger. The sum rules are satisfied by
appropriate contributions at &u~(q). The function
beconles finite for eae1l nonzel o g as K incr'eases
from zero, whereas for silicon the gap in the &~

spectrum causes the Im[» '(q, &u)] function to be
zex'o at sxna11 (d, Comparison witll experiment can
be made with optical work and electron-energy-
loss measurements. The agreement is good with
respect to amplitude, width, and position of the
peak, but we caution the reader against taking the
small structuxe near co~ seriously in Fig. 11. In
this energy range &«and &3 are close to zero, and
small errors are magnified in the 1m[a '(II, &u)]

function.
For the Lindhard case (Fig. 12), pair-excitation

(lower &u) contributions to Im[» '] eventually merge
with the plasmon contribution at larger q. This
occurs for q's where the &d(q) line satisfying
cl[q, &u(q)]= 0 enters the continuum. For the pres-
ent case, this happens when 1.176&qa/21I& 1.IVV.
The upper end of the spectrum 18 still sharply
peaked resembling a plasmonlike contribution.
For silicon (Fig. 11) this occurs even at q = 0, and
the &z coming from pair excitations damps the
plasmon peak.

It is interesting to examine the q and ~ depen-
dence of tile zeros of tile cl(q, (d) fullctloll 111 tile
(q„Id) plane. The results are given in Fig. 13.
For the I indhard case the lower zero wo of &«oc-
curs at frequencies which are linear in q. This
can be seen by expanding the I.indhard function
given in EII. (3.1) for small q and &u. An easier
method is to use the precursor to EII. (3.1):

4118 f(k+ II) -f(&)
Z(%+II) -Z(I ) -a~
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p. =k ~ q/kq .

20

) 15

3
F

10
2= »nl (1+~)/(1 - ~)

I
~ (3.6)

This condition requires a fairly linear e(q) curve,
l. e. ~

Dropping terms in q in the integrand, the dielec-
tric function becomes

1

&(q, &u)=1+; =1+ ', 2-pinp.dp, K,' 1+y
P 1 —y

(3.5)
where y= &u/qvz. The lower zero (which looks like
a damped transverselike mode in the continuum)
arises when

5 (3.7)

0.25 0.50 0.75 1.00 1.25

For small q, the difference in the Fermi factors
becomes

(3.4)f(k+q) -f(k) = q ~ = qp. 6(k kz), -
Bk

where

q 7l

a
FIG. 13. Plots of the zeros of e &(q, ~) for silicon and a

free-electron gas in the (q, ~) plane.

which agrees well with the computer calculations.
For silicon the lower zero does not result from

a linear dispersion curve, but a gap appears in the
spectrum. This is the most significant difference
between the two dielectric functions. At higher q,
the two curves tend to merge, but it is more dif-
ficult to calculate the zeros of &, in this region of
the plane. In other words, it is the gap in the
spectrum at smaller q which distinguishes the sili-
con case from the free-electron-gas case as ex-
pected.
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