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Electronic Energy-Band Structure of SnS2 and SnSe2
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The local-empirical-pseudopotential method is used to calculate the electronic band struc-
ture of SnS2 and SnSe2. The pseudopotential form factors for the constituent elements Sn, S,
and Se are determined from previous pseudopotential calculations for other crystals. Slight
adjustments were made to give the correct fundamental gaps. A group-theoretical study of
the symmetry properties of these crystals is included. The imaginary part of the dielectric
function, e2(~), is calculated for SnS2. Some comparison is made between the theory and the
existing experimental data.

I. INTRODUCTION

Compounds with layer structure show a wide
range of electronic properties —from insulator to
metal. ' We concentrate here on two semiconduct-
ing tin chalcogenides, SnSz and SnSe2. The semi-
conducting characteristics of SnSe2 was predicted
by Mooser and Pearson. ~ This prediction was veri-
fied experimentally by Busch et al. and Asanabe'
from conductivity, Hall effect, and thermoelectric
measurements. The first ref lectivity data was re-
ported by Greenway and Nitsche' in the range 0.05
—12.0 eV with polarization perpendicular to the c
axis of the SnSz crystal. Their results give a shoul-
der at 3.8 eV and other structure at 4. 9, 5. 8, 6. 9,
and 7. 6 eV. The indirect fundamental-optical-ab-
sorption edges were found ."o be at 2. 07 and 0. 97
eV for SnS3 and SnSe~, respectively, by Domingo
et al. 6 These authors also found forbidden direct
gaps at 2. 88 eV for SnSz and at 1.63 eV for SnSe2.
Recently, Lee and Said' measured the absorption
coefficient for SnSe~ and determined the energy of
the indirect gap to be 1.03 eV.

The first energy-band calculations for SnS~ and
SnSe3 were reported by Au-Yang and Cohen. ' Their
results have several errors. The group theory was
done incorrectly resulting in errors both in the
symmetry assignments and in the calculated band
structures. This work supersedes Ref. 8. In the
present work the band structures were calculated
using methods similar to Ref. 8. Because the most
reliable experimental data relate only to the funda-
mental energy gaps, we determine the pseudopo-
tential form factors by making small adjustments
in the form factors extracted from other known
pseudopotential calculations to give the experimental
values for the band gaps. The paper is arranged as
follows: In Sec. II, we give a group-theoretical

analysis for the crystals. The method of calcula-
tion, the results, and comparisons with the experi-
mental data are discussed in Sec. III.

II. GROUP-THEORETICAL ANALYSIS
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FIG. 1. Primitive translation vectors a and b and some
of the symmetry operations of the crystal in the x-y plane.

The crystals SnS~ and SnSez crystallize in the
CdI~ type structure. The Bravais lattice of the
structure is hexagonal. There is one molecule,
e. g. , CdI2, per primitive cell. If one chooses the
origin of the cell at the Cd atom, then the coordi-
nates of the two I atoms are given by + u, where u
= (—,'a, —,

' a, —,
' c). The first two components in u are

along two vectors a and b in the x-y plane placed
120' apart (Fig. 1), and the third component is along
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that A. has the same symmetry properties at 1.
For example, in Fig. 2(b), &A is transformed to
IA' under inversion. However, the difference
between IA and I'A. ' is AA' which is a reciprocal-
lattice vector with length 2v/c; I'A and I'A'

are therefore equivalent. The symmetry op-
erators associated with M and I. are the iden-
tity operator E; a two-fold rotation, C2, about
an axis, containing I'M; a reflection, Oh, about
plane containing I'A. and perpendicular to IM;
and the inversion operator, i. The group associated
with these two points is Ca„." Points E and JI have
the same symmetry operators as I" and A except
for the operators involving i, the inversion op-
erator. They are associated with the group D, .
Vectors along the lines Z, R, and U are invariant
under E and O.„defined for points M and I.. These
two operators form a group C». The group as-
sociated with vectors along 6 is C3„. Finally, T'
and S belong to C&. A summary of the groups
for various symmetry points and symmetry lines
is listed in Table I. The character tables for two
important small groups at F(A) and M (L) and the
compatibility relations are given in Table II.

To study the optical properties of these two crys-
tals, one has to measure the spectra by polarizing
the incident light along and perpendicular to the
c axis. The selection rules for the optical transi-
tions are calculated for these two different po-
larizations. We give our results in Table III.

FIG. 2. (a) Two shortest reciprocal-lattice vectors A

and B in the x-y plane. (b) First; Brillouin zone for Cdl2
structure.

the vector c in the z direction. a and c are the usual
lattice constants for the hexagonal structure.

The point group associated with CdI~ structure is
D3„. There are 12 symmetry operations which leave
the crystal invariant. They are the identity opera-
tor E, two threefold rotations (2C~) about the c axis,
three twofold rotations (3Cz) about the axes in the
x-y plane and perpendicular to the sides of the hex-
agon (Fig. l), the inversion operator i, two three-
fold rotations about the c axis followed by an in-
version (2iC, ), and three twofold rotations fol-
lowed by an inversion (3iCq). The last three opera-
tions are equivalent to 3o„, the reflection in a
"diagonal" plane (Fig. l).

The first Brillouin zone (BZ) of the hexagonal
unit cell is also a hexagonal prism which is shown
in Fig. 2(b). The two shortest reciprocal-lattice
vectors A and 8 in the x-y plane determined from
a, b, and c are shown in Fig. 2(a). The smallgroups
associated with symmetry points and symmetry
lines of the BZ are discussed as follows: The
group at I' is obviously D3„. Qne can easily show

The weak pseudopotential V(r) is expanded in the
reciprocal lattice

v(G)= f v( le 'd'r
0cell cell

— [n„V"(6)+2n, V'(5) cos(G u) ],
~~ce ll

(3)

TABLE I. Small groups associated with various sym-
metry points and symmetry lines in the Brillouin zone.

Symmetry
points and

lines

Group

I', A. , K, H 6 M, L Z, R, U T', S'

DM Dg C3v C2h ~ ih

III. CALCULATIONS AND RESULTS

The method of calculation has been described
elsewhere. We just give a few important expres-
sions to define the form factors.

The local-pseudopotential Hamiltonian neglecting
spin-orbit interaction has the form
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TABLE II. Character tables for groups DM and Cpi„
and compatibility relations for various symmetry points
in the Brillouin zone.

r1
I'2

r,
r, ,
I'pi
I' s.

F. 2C3 3C2 2iC3

1 1 1 1
1 —1 1 1

—1 0 2 —1
1 1 —1 —1
1 —1 —1 —1

—1 0 —2 1

3iC2 =3o~

1
—1

0
]
1
0

X $ 8

Cp&

Mi
Mfi
Mp

Mp.

Cp

1
1

—1
—1

1
—1

]
1

1
—1

1
—1

I', , Q ,.)
rp Qp)

rs rs &3»s) &3

Z2$2)
z, (R,)

zi+z 2(Rf+Rp)

Ti (Si)

T, (s,)
T, (s,)

T, +Tp(sf+s, )

Mfaf)
Mi. (L1.)
Mp(L2)
Mp. (Lpi}

Ui

Up

Up

Ui

z, (R,)
zp(R, )

z, (R,)
z, (R,)

T, '(s, ')
Ti'(Si')
T, '(s, ')
T,'(s, ')

Ki (Hi)
K, (H, )
K, (H, )

Pi Ti (Si) Ti'(sf')
T,'(s, ')

3 Ti Tp {Sf S2) Ti T2 (Sf S2 )

where 0„» is the unit-cell volume of the crystal
under consideration. Qs, and 0& are volumes per
atom in SnS2. We truncate the expansion in 5 at

I P ~ I
= '4 (2m/a) . This limits the expansion to

16 nonvanishing pseudopotential form factors for
Sn and 15 for S. Equation (1) is then solved by ex-
panding the periodic part of the Bloch state in plane
waves. The cutoff energies as defined in Ref. 12
are &f = 9. 1 and Ep,,

= 25. 1, which give the conver-
gence of energy gaps at I", M, and I- to the order
of 0. 1 eV. The size of the matrix is about 55&&55.
There are roughly 190 plane waves contributing to
the Lowdin perturbation scheme as modified by
Brust. ' Because of the fact that the best known
data for these two compounds are the forbidden
indirect and direct energy gaps, we simply adjust
(slightly) the scaled potentials of Sn, S, and Se
from other calculations as discussed in Ref. 8 to
fit these experimental data. The comparison of
the resulting elemental pseudopotential form fac-
tors from the present calculations and the extracted
ones from other calculations are shown in Fig. 3,.
The form factors are normalized to the following
volumes: 67. 50 A' for Sn and S; and 76. 67 A for
Se. The pseudopotential form factors are given in
Table IV. The I Cl 2's are in units of (2m/a»)2,
where a zs- v2a and ZB refers to the zinc blende
structure. We use the form factors obtained by
Animalu and Heine' for Sn, because their results
give the form factors at large I 5 I. For S and Se,
we compare the results of present calculations
with the results obtained by Cohen and Bergstres-
ser' (CB) and Walter and Cohen" (WC).

The symmetry properties of crystals of the Cdl~
structure allow us to diagonalize the pseudopoten-
tial Hamiltonian on a mesh which is ~ of the
Brillouin zone. The total number of points in the
mesh is 225. The band structure along symmetry

TABLE IV. Pseudopotential form factors in Ry.

SnSp SnSep

TABLE III. Selection rules for allowed transitions.

Perpendicular polarizations

) —r Q., ), r Q ) —ri (A ~), rp Qp )—r (A. ),
rs(A3) —rs Qs), rPQ. P) —rs Qs).
Mf(+f) Mp (Lp ) and Mf (Lf )

Mp(L2) —Mf. (rf ) and Mp. (rp.).
61~63, 63~63, 62~6,s,
Pi ~Ps.
Ki(Hi) Ks(H3), Ks(H3) ~Ks{H3), Kp{Hp) Ks(H3).
Zf (Ui) Zf (Ui) ~ Z2(U2) Zp (U2} ~ Zf (Uf) Z2(U2) ~

Parallel polarizations

2'( 2') 1'( 1') 2( 2) 3( 3) r3'( 3') ~

~f( f) M2'L2') ~ M2( 2) Mi'Lf')'
s
—Zs Zp —~2 ~

Pf ~Pf, Ps~Ps.
Kf (Hf) Kp (Hp) K3 (Hs) K3 (Hs) .
Zi (Ui) Z 1 (Ui) ~ Z2 (U2) . Z2 (U2) '

G V,„.(Hy) V, (Ry) Va„(Ry) Vs, (Ry

(001)
(100)
(002)
(1o1)
(1o2)
(oo3)
(21o)
(211)
(1o3)
(2oo)
(212)
(2o1}
(Oo4)
(2o2)
(1o4)
(213)

—0. 117
—0.0362
—O. 0208
—0.0185

0. 0181
0. 0247
O. 0322
0.0318
0. 0294
0. 0273
0. 0265
0. 0261
0. 0241
0. 0193
0.0145
0. 0145

—0. 126
—0. 0987
-0.081
—0. 0237
-0.0088

0. 0019
0. 0091
0. 0146
0. 019
0. 0205
0. 0217
0. 0225
0. 0201
0. 0158
0. 0158

—0.0985
—0.048
—0.0386
—0.0358

0.0096
0.0173
0.0222
0.0222
0.0251
0.0236
0.0236
0. 0229
0.0214
0.0185
0.0159
0, 0159

—0, 125
—0.086
-0.071
—0. 0338
—0. 0098

0. 0018
0.0098
0. 0124
0.0153
0. 0167
0. 0178
0. 0178
0. 015
0. 0132
0. 0132

All V's normalized to the respective unit hexagonal
cell volume.
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I'IG. 3. (a) Comparxson
of pseudopotential form fac-
tors for Sn. AH is Ref. 14.
(f3) Comparison of pseudo-
potential form factors for S.
WC and CB are Refs. 15
and 12, respectively. (c)
Comparison of pseudopo-
tential form factors for Se.
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lines areplotted in Figs. 4{a) and 4{b) for Sn8s and

SnSe&, respectively. There are three points for
SnS2 along U such that the lowest conduction-band
energies are 0. 2 eV less than the corresponding
value at L, . If this were the case, then the indirect
fundamental transition would be an allowed transi-

tion. This is not consistent with the experimental
results. Furthermore, it is very difficult to push
the lowest conduction band up along V by changing
the form factors. %e use a technique discussed by
Cahn and Cohen' to calculate the lowest conduc-
tion-band energy at these points by using rn*= 0. 98
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FIG. 4. (a) Band structure of SnS2. (b) Band structure of SnSe2., the second and third conduction bands along A to I-
become close in energy near A, but do not cross.
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m. In SnSe„ there are two points which cause
the same difficulty. It is resolved by the same
method.

These band-structure calculations are considered
to be preliminary because of a lack of sufficient
experimental data, especially for SnSe, . There-
fore, we calculate the e2(v), the imaginary part
of the dielectric function, for SnS~ only. Using the
results of the energy-band-structure calculation,
we eve, luate &z(&) by

the corresponding values from the calculations are
2. 19 and 0. 91 eV. Both these transitions are from
l to I, and are forbidden transitions. The calcu-
lated lowest direct energy gaps for Sn82 and SnSe2
are 3. 15 and 1.75 eV. They occur at M and are
forbidden by parity. The forbidden direct gaps
measured by Domingo et al. are 2. 88 (SnSz) and
1.62 eV (SnSez). The theoretical and experimen-
tal results for the lowest-energy gaps therefore
agree quite well. A summary is given in Table V.
The structures in e~, (&) occur at 3. 9, 4. 8, 5. 4,
5. 8, and 6. 8 eV. They correlate quite well with

TABLE V. Summary of fundamental energy gaps for
SnS2 and SnSe2 ~

where e2„and ez, are ez(~) with light polarized
parallel and perpendicular to the c axis. u, f, and

u„,„- denote the periodic part of the conduction-band
and valence-band pseudo-wave-functions at k. V„
and 7', are the gradient operators parallel and per-
pendicular to the c axis. h, „ is the energy gap be-
tween the conduction band and the valence band.
The results for ez„(+) and ez~((a&) are plotted in Fig.
5.

The fundamental gap is indirect and forbidden
for both compounds. The experimental values are
2. 07 and 0. 97 eV for SnS& and SnSe~, respectively;

Forbidden
indirect
transitions SnSe2

Forbidden
direct
transitions

SnSq

SnSe&

Optical
trans itions Material

SnS2

Ref. 6
(expt. )
(ev)

2. 07

0.97

2. 88

1.62

Ref. 7
(ev)

1.03

This work
{ev)

0. 91
(I') -I-g)

3, 15
(M, -M, )

l. 75
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TABLE VI. Summary of main structure in the cal-
culated &»(&) for SnS2 and the measured ref lectivity.

along the c axis. We summarize the structure in
ez(&) and the measured ref lectivity in Table VI.

Structure in
reflectivity

(eV)

Structure in
e 21(Cu)

(eV)
Identification

main transitions
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The frequency- and wave-vector-dependent complex dielectric function &(q, &) is calculated

for silicon. The energy eigenvalues and eigenvectors which are used have been obtained from

energy-band calculations based on the empirical pseudopotential method. Explicit results are

given in the t100] direction in the range 0 ~ q —(2 7t /a) and 0 ~ S~ ~ 24 eV. A comparison is
made between the present results and the results of a calculation of e (q, u:) for a free-electron

gas in the random-phase approximation.

I. INTRODUCTION

We have calculated the frequency- and wave-
vector-dependent dielectric function e(q, &u) in the

[100]direction for silicon. This is the first cal-
culation of &(q, ~) for a semiconductor in which

realistic energy eigenvalues and eigenvectors are
used. Previous calculations of dielectric functions
have concentrated either on the wave-vector-de-

pendent dielectric function' for zero frequency
&(q, ~ = 0) or on the frequency-dependent dielectric
function e(q= 0, ~). The former case is important
in determining the static screening of electric
fields, and the latter case is important in analyzing
the optical properties of semiconductors because

q is approximately zero for optical wave vectors.
The more general dielectric function e(q, ~) de-
scribes the screening of a longitudinal field which


