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Magnetoconductance Oscillations of n-Type Inversion Layers in InSb Surfaces

Nobuo Kotera, Yoshifumi Katayama, and Kiichi F. Komatsubara
Central Research Laboratory, Hitachi I-td. , Kobubunji, Tokyo, Japan

(Received 7 September 1971)

The galvanomagnetic properties of conduction electrons in n-type inversion layers of InSb
have been investigated. The motion of electrons in an inversion layer is quantized in the di-
rection normal to the surface by the surface electric field associated with the inversion layer.
In a strong magnetic field normal to the surface, the motion parallel to the surface is also
quantized into Landau orbits. In such a condition, the conductance of the inversion layer was
measured as a function of surface electric field and a Shubnikov-de Haas-type oscillation
was observed. A change of the surface electric field results in a change of the density of
conduction carriers and also in a change of the energy levels due to the above quantizations
relative to the bulk Fermi level. The conductance oscillation is the result of the successive
passage of Landau levels through the Fermi level. In the experiments, two series of con-
ductance oscillations were observed, which are reasonably ascribed to the two series of
Landau levels associated with the two quantized energy levels, i.e. , the lowest and the next-
to-lowest electric subbands. The observed oscillation pattern of the conductance was com-
pared with the one deduced from a simple theoretical model, and a good agreement was found.
Besides the Shubnikov —de Haas-type oscillation, other galvanomagnetic properties are also
discussed.

I. INTRODUCTION

Electrons have three-dimensional freedom of
motion. However, when these electrons are con-
fined in a one-dimensional potential well whose
width is smaller than the wavelength of the elec-
trons, the motion of electrons is quantized in one
dimension, and the motion in the other two dimen-
sions is left free. Thus, the energy spectrum is
given by the discrete levels for the one-dimensional
quantization, each of which has a continuum for
the two-dimensional free motion. In a strong mag-
netic field normal to the surface, the two-dimen-
sional motion parallel to the surface is also quan-
tized into Landau orbits. The energy spectrum of
such an electron system is completely discrete,
and many Landau levels are associated with each
one-dimensionally quantized state.

In such a system, the electrons do not have any
average velocity in the direction of the electric
field applied perpendicular to the magnetic field,
preventing them from carrying the electrical cur-
rent in the direction of the applied electric field
in an ideal case. However, they are able to carry
the electrical current as a result of scatterings.
That is, the center of the Landau orbit jumps in
the direction of the electric field with the aid of
scatterings. Because the probability of such scat-
terings is large where the density of states of the
carriers is large, the electrical conductivity would
be related to the energy spectra of the conduction
carriers. In contrast to our case, note that in the
usual transport phenomenon, the scattering of car-
riers acts as a resistance to the electrical cur-
rent.

Vfith the recent progress of semiconductor
technology, it has become possible to make use
of the semiconductor surface as a narrow one-di-
mensional potential well of conduction electrons.
The transport phenomena of such one-dimensional-
ly confined electrons at the semiconductor surface
have recently been studied with growing interest. '

In a metal-oxide-semiconductor (MOS) structure
as shown in Fig. I, an g-type inversion layer is
produced by applying a positive gate voltage V~ on
the metal electrode at the surface of a p-type
semiconductor. Since the electric field associated
with an inversion layer is strong enough to produce
a potential well as shown in Fig. 2, the energy
levels of the electrons are grouped into "electric
subbands, " each of which corresponds to a quan-
tized level for motion in the z direction, with a
continuum for motion in the plane parallel to the
surface. %ithin one electric subband, the elec-
trons behave as a two-dimensional electron gas
due to the surface quantization effect.

The two-dimensional quantization effect of an
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FIG. 1. MOS structure used for the experiment.
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1 x10' cma/V sec, so it has become possible to ob-
serve the phenomena due to quantum effects such
as SdH-type oscillations.

The principal purpose of this paper is to present
experimental evidence for the lowest and the first
higher electric subbands of n= 0 and 1 in n-type
inversion layers of InSb surfaces. The transcon-
ductance G (the differential change of the conduc-
tance with respect to the gate voltage V~) under the
magnetic field normal to the surface oscillated as
a function of gate voltage V~. The observed oscil-
lation pattern was found to be composed of two
series. The oscillation pattern was compared with
one deduced from a theoretical model and good
agreement between them was found. So the trans-
conductance maxima were assigned to Landau levels
associated with the ground and the first higher
electric subbands. Spin splittings were observed
above 20 kGe.

II. ELECTRON STATES IN SURFACE INVERSION LAYER

electron gas in an inversion layer was first ob-
served by Fowler et al. in 1966.' They observed
oscillatory magnetoconductance of n-type inversion
layers in a metal-oxide-p-Si structure. The two-
dimensional property of the electron gas occupy-
ing only one electric subband with the quantum
number n= 0 was also confirmed by their experi-
ments. ' Since the first observation of the surface
quantization effect, much work relating to the
electronic structure and the transport properties
of electron gas in the inversion layer has been re-
ported. ' ' The direct observations of such quan-
tized levels also have been reported by Tsui with
tunneling measurements on a metal-oxide-InAs
structure, and additonally by ourselves with mea-
surements of oscillatory magnetoconductance of
InSb surface inversion layers. " In the case of
Si surface inversion layers, the energy splitting
of electric subbands is larger than the Fermi en-
ergy over most of the range of surface electric
field available. Therefore, observation of such
a quantized level is possible only in one electric
subband. However, in the case of a semiconductor
with a small effective mass such as InSb, the den-
sity of states of the conduction band is small and
electrons can populate in higher electric subbands
with the moderate strength of the surface electric
field. Therefore, many interesting phenomena
due to the occupancies of several electric subbands
by electrons should be observed.

Prior to the present study, there have been sev-
eral experiments on the n-type inversion layer of
InSb. " ' However, the mobilities of specimens
used were less than 5x10 cm /V sec and they were
not sufficient for the observation of the Shubnikov-
de Haas (SdH)-type oscillations of the conductance.
Gur samples have shown a mobility larger than

The energy levels of inversion-layer electrons
with isotropic effective mass m* moving in a po-
tential well which depend only on z, the distance
from the surface, may be expressed as

e„,,„,, = e(n) + (e'/2m*) (u„'+ u, '), (1)

where h is Planck's constant divided by 2v, k„and
0, a,re wave vectors, and e(n) is the energy of one-
dimensionally quantized states with quantum num-
ber n. The density of states for electrons in the
inversion layer, including a factor of 2 for spins,
1S

p")(e)™,2 e(e —e(n)),
7tk

where 8(e) = 1 if e & 0, and 8(e) = 0 otherwise. The
energy &(n) of the surface-(luantized states can be
obtained by solving the effective mass equation'
for motion in the potential well of the semiconductor
surface. ' By assuming a linear triangular poten-
tial well"' for the inversion layer and a simple
application of the WEB method, ' the quantized en-
ergy levels are given as

2 1/3
( )

((swe)))".) (,)„,
8~n*

n=O, &, 2, . . .
where the I, is the electric field in the inversion
layer. The surface electric field is related to the
surface electron density n, as

F,= (4ve/e, ) n, ,

where &, is the dielectric constant of the semicon-
ductor. Thus, the surface electric field E, con-
trols the electron system through the potential
gradient of the inversion layer as well as through
the surface carrier density n, . From E(ls. (2)-(4)
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and the Fermi-Dirae distribution function, the
quantized energy «(n) and the Fermi energy «r were
calculated self-consistently as functions of the car-
rier density n., for the In8b surface inversion layer
where the effective mass of bulk In8b,
m*=0. 013mo, was used. The use of the bulk ef-
fective mass in the surface inversion layer is justi-
fied because the surface potential spreads over
many unit ce].ls."

In Fig. 3, the bottom of the electric subbands
«(n) and the Fermi level «r are plotted as a function
of n, where the zero of the energy is set at «(0).
The Fermi level crosses the bottom of the first
higher electric subband «(1) where the carrier
density n, reaches the value of n, =3.3x10" cm
Electrons occupy both the ground and the first-
higher electric subbands above this carrier density.

In a strong magnetic field II, the continua of the
energies of the electric subbands become quantized
into discrete Landau levels and the energy levels
are expressed as

«„,, „=«(n)+ (1+-,')h&u, +sg p~,
1=0, 1, 2, .. . , s=+-,', --.' (5)

where h~, =keH/m*c is the separation of Landau
levels, s the spin quantum number, g the g factor
of the conduction electron, and p, ~ the Bohr mag-
neton. It should be noted that &„,~, is indepen-
dent of quantum number jg and is written as &„, ,
below. Because the number of states p allowed
in one Landau level is given by

p = —,'(m*/wa') @(u,= eH/hc,

the density of states for electrons in the inversion
lRyel 1Q R magnetic field 1s w'rltteQ as

p„"'(«)= p 2 &(« —«„,&,.)
ny fgS

in the absence of scattering. '
The energy levels &„, , and the Fermi level z~

for the In8b inversion layer were calculated as
functions of the carrier density n„where the g
fRctor of —51 for conduct1on electrons ln the bulk
was used. The result of calculation undex the
magnetic field H= 20 kOe is shown in Fig. 4. The
notation 0+, 0 —,1+, 1 —,. . . indicates the sets
of the quantum numbers (f, s) = (0, +-,'), (0, ——,'),
(1, +-,'), (1, ——,'), . . . for the electric subband n=0
and the circled notation indicates the same sets
for the subband n = 1. As the carrier density n,
is increased, the electrons occupy Landau levels
fx'om the lower to the higher. The bold line in Fig.
4 shows the Fermi level at temperature T= 0 as
a function of the surface carrier density n, .

While the electrons are occupying the "«(0) Lan-
dau level, " the Fermi level in Fig. 4 is expressed
by the horizontal lines. When the Fermi level ex-
ceeds the value of «(1), electrons occupy "«(1) Lan-
dau levels" and the Fermi level varies with the
«(1) Landau level as n, ~ . Even after the Fermi
level exceeds the value of «(1), electrons some-
times occupy «(0) Landau levels and the Fermi
level is represented by horizontal lines. The whole
tendency of the variation of the Fermi level is
similar to thecurve in the zero magnetic field.
At finite temperatures, the stepwise curve is
rounded and the Fermi level varies smoothly with
the 1Qcx'eRslng sul fRce CR1x'lex' deQslty.
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III. EXPERIMENTAL PROCEDURES

FIG. 4. Energy of the Landau levels e„,&,,—e(0) be-
longing to the electric subbands (dashed lines) and the
Fermi level e&- e (0) at T = 0 (bold line) as functions of
surface carrier density z~. The Landau quantum numbers
are inserted in the figure. The theoretically expected SdH-
type oscillations as a function of surface carrier density
are inserted in the upper part of the figure. The traces
marked (S) and (L) are the oscillation patterns when spin-
splitting states are observable and unobservable, respec-
tively.

of protons with energies of 200 keV. The source
and the drain electrodes were made by soldering
with indium-tin alloy on the spots where the in-
sulating oxide layer was removed and rhodium film
was electroplated.

Measurements of capacitance C of the MQS struc-
tures, surface conductance o„and transconductance
6 of the inversion layer were made as functions
of the gate voltage V~ at liquid-helium tempera-
tures. For the SdH-type experiments, magnetic
fields were applied by an electromagnet up to 21
kOe and by a superconducting solenoid up to 40
kOe.

The electrical circuit for the capacitance mea-
surements is shown in Fig. 5. An ac signal of a
few mV was superposed on the dc gate voltage V~
and the capacitive current was picked up with a
small resistor and detected with a lock-in ampli-
fier. In general, the measurements were made at
3. 3 kHz, since no dependence on frequency was
observed from 30 Hz to 330 kHz.

Measurements of the conductance cr, and the trans-
conductance 6 were taken simultaneously by the
circuit shown in Fig. 6. Measurements were con-
ducted by applying a constant voltage U,„smaller
than 0. 2 V between the source and drain contacts.
The length l. of the surface conducting channel was
2 mm and the width W was 3 mm. The drain volt-
age V,~ was kept small enough to avoid hot-electron
effects and to ensure uniformity of the surface
electric field. In the measurements, the gate volt-
age V~ was varied slowly so as to keep the electron
system in thermal equilibrium, and was swept from
negative to positive to avoid the influences of po-
larization in the oxide layer and charging of the in-
terface states.

The induced charges Q per unit area on the semi-
conductor surface is related to the surface capac-
itance" as

C = dQ/dVp .

The samples used in the present experiment are
insulated-gate field-effect transistors, as shown
in Fig. 1, fabricated on single crystals of p-type
InSb with the acceptor concentration of about
2&&10' cm . On the surface of the specimen, sil-
icon dioxide glass, SiO~, was deposited around
5500 A, using a chemical-vapor-deposition method
in a glow discharge of oxygen gas flow mixed with

vapor of tetraethoxysilane. Before the deposition
of Si02, the (111) B surface of InSb was polished
optically flat and etched with a CP-4A solution.
Aluminum was evaporated on the glass with the
area of 2x 3 mm as a gate electrode. To obtain
good Ohmic contacts for current electrodes at both
sides of the inversion layer, n' regions were
formed by a technique involving ion implanatation

X-Y RECORDER Y(C signal)

(reference)
DRAIN

DETECTOR

O'GATE

VG

~C
SOURCE

Smal I resistor

FIG. 5. Circuit for measuring capacitance C as a function
of gate voltage V&.
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FIG. 6. Circuit for measuring surface conductance
0~ and transconductance G~ as a function of gate voltage
Vc under the bias voltage of V,&.

If the trap centers of the carriers or the surface
states produced at the interface of the MOS struc-
ture are much less than the conduction carriers in
the inversion layer, the surface carrier density
n, can be estimated by integrating Eq. (8) as

n, =e 'J"-C(V,)dV, . (9)

The transconductance 6 is the differential con-
ductance with respect to the gate voltage Vc and
is written as

t' do

c
(10)

Because the mobility p, , is expressed as y, ,= o,/
n,e, the 6 can be rewritten as

%'C d p,,6 = V„p,,+n,
n8

where the capacitance C is assumed to be constant.

IV. EXPERIMENTAL RESULTS

A. dc Conductivity

A typical result for the measurement of capaci-
tance C and the surface carrier density n, calculat-
ed with Eq. (9)are shown in Fig. 7. The n, in-
creases with an increase of the gate voltage Vc. 26

The linear dependence of n, on Vc was assured in
most of the specimens above n, = 1.0&&10 cm

Typical results for the measurements of the
surface conductance p, in the zero magnetic field
and in magnetic fields normal to the surface at 4. 2
K as a function of the gate voltage are shown in
Figs. 8 and 9, respectively. The conductance in
magnetic fields displayed SdH-type oscillations with
an increase in the surface carrier density n, . The
differentiation of the conductance curves with re-
spect to Vc revealed the clear characteristics of
the oscillations; this is given later.

The angular dependence of the conductivity in
transverse magnetic fields where the fields were
rotated about the axis parallel to the current is
shown in Fig. 10. The conductance became mini-
mum when the magnetic field was normal to the
surface (e= 0'). lt changed in proportion to
(Hcos8) ~ in the region of 0 & 8& 60'. It is seen that
the parallel component of the magnetic field is in-
effective in comparison with the normal component.
However, negative magnetoresistance was observed
near the region of 8= 90', where the bias voltage
V~ was set at 1.0 V. Similar tendency has been
shown for magnetoresistance of Si surface inversion
layers 27& 28

B. Transconductance

Typical results for the measurement of transcon-
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ductance G in magnetic fields normal to the sur-
face as a function of the gate voltage are shown in

Figs. 11(a)—11(c). The result without magnetic
field was already shown in Fig. 7, which corre-
sponds to the mobility curve in the sense as men-
tioned at Eq. (11). The SdH-type oscillations are
visible in the wide range of the magnetic fields.
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FIG. 10. Angular dependence of surface conductance
O„where 0 is the angle between the surface normal and
the magnetic field. The open circles inserted in the
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where the diffusion constants D„are assumed to be
the same at the two levels. As shown in Appendix
B, g takes maxima at near n', = —,

' and —,
' if &~ —cg

&2. 6kT; if not, it takes a maximum atn', =1. The
latter is due to thermal broadening of the Fermi
level. In the above, &„'=e„—a(0) is taken to be con-
stant because we considered the Landau levels &„
belonging to the ground electric subband c(0). In
Fig. 15, we considered the case where a Landau
level /I is associated with an &(0) electric subband
and a Landau level 8 is associated with an e(1) elec-
tric subband. The energy &~ increases in proportion
to n', and overtakes the energy E'„at the carrier
density n', o. Then, the expected two maxima gen-
erally come close to each other and the reduced
conductivity maxima are broadened. The oscilla-
tion amplitude decreases in this case.

The pattern of SdH oscillation can be obtained
from variation of the Fermi level in Fig. 4, based
on the above consideration. In the upper part of
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FIG. 12. Gate voltage positions at which the maxima
of the transconductance oscillations are observed for the
sample of Fig. 11 plotted in various magnetic fields normal
to the surface. The two series of Landau levels are shown
by solid and dashed lines. The elongated circles indicate
the regions where the oscillation amplitudes decrease.

o = (e~/kT)K„D„f(e„) [I -f(e„)],

where E„denotes the quantized energy a„, „and
D„ is the diffusion coefficient of the orbit center of
Landau electrons. From this relation, the conduc-
tivity v was calculated as a function of surface car-
rier density. In calculation, the density of states
of Landau levels is assumed to be a series of 6

functions to clarify the dependence of conductivity
on surface carrier density. The scatterings are
only taken into account in the diffusion constant.
Details of the calculation are shown in Appendix B.

When the adjacent Landau levels are separated
more than the thermal broadening of the Fermi
level, conductivity o is parabolic as a function of
the normalized carrier density n', n, /p and b=—e-
comes maximum near &~ = a„; i.e. , n', = integer
+ —,'. In Fig. 14, we considered two Landau levels
denoted by a& and z~ taking zero of the energy as
&(0). Here, we introduce the reduced conductivity
gp
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FIG 13 Same as Fig 12 except that the magnetic
field is kept at 20 koe and tilted up to 70 from the normal
to the surface. The tilted angle 0 is shown in the upper
part of the figure.
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FIG. 14. Illustration of the reduced conductivity as a
function of the normalized surface carrier density g~ in
case (2) in Appendix B. The Fermi level e$ and the Landau

levels e~ and ez as functions of ys~ are shown. Bold line
is the Fermi level at T =0.

Fig. 4, the schematic curves of SdH oscillations
are shown. In these patterns, we discriminate be-
tween the peaks originating in c(0) Landau levels
and those originating in e(1) Landau levels by using
solid lines and dashed lines, respectively. In the

upper pattern marked (L), spin splitting is neglected.
The coalescence of spin-split maxima will occur
when the level broadening is much larger than the

spin splitting, as well as when the two levels draw
near and break the condition &„—&~ & 2. 6kT. The
number inserted in the pattern represents the Lan-
dau quantum number /. In Fig. 4, we have a case
where the level crossings occur as shown in Fig.
15. In this case, the oscillation pattern becomes
nonparabolic and broadened. The oscillation am-
plitude is expected to become small near the level-
crossing region. This phenomenon may well be
regarded as interference of the I.andau levels of
the different electric subbands.

VI. DISCUSSION

A. Evidence of Surface Quantization

The surface-quantization effect would be washed

out if electrons suffered frequent scatterings. The
Landau quantization effect would also be smeared
out if the Landau electrons were scattered frequent-
ly in one cycle of the cyclotron motion. Thermal
disturbance also prohibits observation of the quan-
tized states. Thus the following condltlons al'e
required to observe these quantization effects:

I-
LU

OCl
UJ

O

~s

LLj

A

II
0 n'so

6F I4j/

NORMALIZED CARRIER

where kT is the thermal energy and 7 is the col-
lision frequency.

To estimate the collision broadening of the quan-
tum levels, we calculate the 7' from the mobility
measured. The mobility in zero magnetic field was

p, = lx10 cm /Vsec and the temperature T=4.2 K;
thus, 5/r = 7 me V and kT = 0. 36 me V. Since & (0)
and «(1) are of the order of 10-100 meV, as dis-
cussed below, condition (14) is well satisfied. Con-
dition (15) will be satisfied for magnetic fields above
5 kOe. From the g factor of —51 for the conduction
electrons in the bulk, ~ the spin splitting of InSb is
estimated to be 0. 361~„ thus, for observing spin
splitting, strongex' magnetic fields are needed. e

The order number corresponding to the series of
the oscillation maxima shown in Fig. 11 was plotted
in Fig. 16 as a function of the gate voltage. %ell-
defined oscillation peaks were observed above 10
kOe for every sample that we measured. Figure
16 confirms that the oscillation period is constant.
The oscillation period also changed linearly with
increasing the magnetic field strength as shown in
Fig. 12.

From the experimental results, it is possible to
determine the number of states of electrons which
fill up one Landau level in the InSb surface inversion
layer. From the same procedux"es as shown in

Fig. 16, we can determine the oscillation periods
of the gate voltage (&Vo /order) and the carrier den-
sities (nn, /order). According to Eq. (6), the num-
ber of the states in each Landau level is given by

bn, /order=2. 4&&10 g„H cm ~, (16)

where g„shows the degeneracy factor of the Landau
level and H is measured in unit of kOe. Combining
the experimentally determined period with Eq. (16),
we determined the level degeneracy g„ for a11 the

~(1)—~(0) &a/~, ~T,

hu&, &K/v', kT,

(14)

(16)

DENSITY

FIG. 15. Illustration of the reduced conductivity; same
as Fig. 14 in case (3) in Appendix B.
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FIG. 16. Order numbers of the
oscillation maxima observed for
two different samples in a magnetic
field H= 20 kOe plotted as a function
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the oscillation maxima occur. The
numbers inserted along the ordinate
are the assigned Landau quantum
numbers according to the theory
discussed in the text.
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samples measured. The degeneracy factor g„
thus determined is 2. 0+ 0. 2, which is reasonably
ascribed to the spin degeneracy of the Landau
levels. This result indicates that it is difficult
to observe the effects of spin splitting in con-
ductance oscillation in the range 13-21 koe
shown in Fig. 11(b) because ot' the broadening of
Landau levels. However, in strong magnetic fields
above 20 koe, the same oscillation maximum splits
into a pair of peaks as seen in Fig. 11(c). The spin
splitting is clearly evident in Figs. 11(c) and Fig. 16.

B. Two Series of Landau Levels

Referring to the curves as shown in Fig. 4, we
plotted the surface carrier density calcula, ted theo-
retically where the maximum of the conductance
should occur in the different magnetic fields in Fig.
17. In calculation, the inversion-layer potential
was assumed to be linear, as discussed in Sec. II.
Connecting the points belonging to the same Landau
quantum numbers, two groups of lines intersecting
the abscissa at n, =0 and n, = 3. 3&&10 cm are ob-
tained. The intersection point at n, = 3. 3&& 10 cm
corresponds to the onset of occupancy of the first
higher electric subband n = 1 with electrons. It is
observable that the calculated curve (Fig. 1 I)
closely approximates the curves obtained from the
experiments (Figs. 12 and 13). Assignment ot' the
Landau levels is easily made as shown in Figs. 11-
13.

From Fig. 12 is obtained the difference of the
gate voltage 4V~ between the points &'0 and c', .
From 4V~, the surface carrier density An, atwhich
the Fermi level e~ meets the bottom of the higher
electric subband n = 1 can be calculated. The quan-
tity (m*/mo) [e(1)—e(0)], which is proportional to

8
8, Qi,

I-

Cl 5

w&i

0) 2

3f
2

0
0 0~

~ ~ I I I I I I I I I I I

0 4 8 I2 I 6 20 24 28 32
MAGNETIC FIELD ( I Oe )

FIG. 17. Surface carrier densities at which the con-
ductivity maxima of SdH-type oscillations occur plotted
theoretically in different magnetic fields.

bn„was estimated. The values of e(1) —e(0) ob-
tained from experimentally determined &n, and the
effective mass of m* = 0. 013mo were one-half or
one-third the value calculated under the assumption
of the linear triangular potential well with the sur-
face carrier density n, =3 3&& 10."cm (Fig. 3). The
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TABLE I. Occupation order of Landau levels (theoreti-
cal). Landau quantum numbers l are listed here as 0, 1,
2, ~ ~ ~ for ~(0) Landau levels (n=0) and O, Q1, Q2, "~ for
&(1)Landau levels (g =1). Parenthesized terms indicate
the simultaneous occupation of two Landau levels (see
text).

H=12 kOe 0, 1, . .. , 5, 6, (0, 7), 0, (0, 8), 9, (Q1, 10),
0'~ (QI, 11), 12, (0', 13), , ...

H= 16 kOe 0, 1, 2, 3, 4, (0, 5), 0, 6, 7g 8g O~y (QI, 9),
10, 11, .. .

H=20 kOe 0, 1, 2, 3, (0, 4), (0, 4), (0, 5), 6, 7, QI,
(I, 8), 9, 10, O2, 11, 12, ...

discrepancy by a factor of 2 or 3 between the experi-
ment and the theory might be due to difficulty of the

SdH measurement in weak magnetic fields and also
due to roughness of the linear-potential assump-
tion. This assumption is possible when the Coulomb
potential associated with electrons in the inversion
layer is neglected in comparison with the potential,
due to the external field applied on the surface.
Before the Fermi level reaches the bottom of the
higher electric subband, the lowest subband is oc-
cupied by many electrons.

The linear-potential approximation is inadequate,
especially for the higher electric subband, because
the electron wave function of the higher subband is
more spread out, than that of the lowest subband.
Howarda and Stern~ ' ' calculated the energy of the
electric subbands with a self-consistent surface
potential by solving the coupled equation of the Pois-
son and Schrodinger equations. According to the
self-consistent calculation by Howard, the ground-
state energy &(0) is reduced to 80%%u, of that calculated
from the linear-potential assumption, and the en-
ergy difference e(1) —&(0) becomes about 30%%up in a
special case of Si(100) surface. In the case of InSb,
the situation might be the same. Thus, the dis-
crepancy in energy difference between the theory
and the experiment in our case might be due to
roughness of the linear-potential assumption.

C. Effect of Higher Electric Subband on SdH-Type Oscillations

The lines interconnecting the points in Fig. 12
bend superlinearly in the high-V& region. This fact
is also seen in Fig. 17, the diagram obtained the-
oretically. This is due to a slowdown of the filling
rate of electrons for each electric subband in this
region where electrons occupy both the ground
and the higher electric subbands, and the
Fermi level increases more slowly.

Referring to the pattern of the SdH oscillation
marked (L) in Fig. 4 where the spin-splitting was
unobservable, we tabulated the "occupation order"
of electrons into the Landau levels in Table I. The
parenthesized terms express that the electrons have
to occupy both Landau levels in the parentheses

simultaneously, even at T=0, where broadened
maxima of the SdH oscillation are expected as shown
in Fig. 15. In comparison with the occupation order
in Table I, we can put the Landau quantum numbers
into the ordinate of Fig. 16. Here we see the co-
incidence of the vanished peaks to the e(1) Landau
levels, even in different samples. The skipping of
the oscillation maxima and the decreased amplitude
of the oscillations in Figs. 11(b) and 11(c) are due
to simultaneous occupation of the two Landau levels.

In magnetic fields below 12 kOe, we observed a
long period of oscillations among the levels marked
by the circled numbers in Figs. 12 and 11(a). The-
oretically, no simple oscillation maxima are ex-
pected in such weak magnetic fields because separa-
tion of the Landau levels Ice, is comparable to or
smaller than the broadening of the levels 1'-10
meV. As seen in Fig. 12, the oscillation period
in 6 kOe is comparable to that in 18 kOe. The os-
cillation in 6 kOe belongs to the higher electric sub-
band c(1), and the oscillation in 18 kOe belongs to
the ground electric subband a(0). The result means
that while the oscillation period in 18 kQe is 2p, the
oscillation period in 6 kOe is 6p because p itself
is three times larger in 18 kOe than that in 6 kOe.
Theoretically, the fundamental period of e(0) Lan-
dau levels is p when spin splitting is included, but
that of e(1) Landau levels is five to six times larg-
er, as seen in Fig. 17. This is caused by oscilla-
tion maxima which enter those which belong to
another series of Landau levels. Thus the experi-
mental long-period oscillation shown in Fig. 11(a)
is attributed to the modulation of the fundamental
oscillations by the e(1) Landau levels.

D. Spin-Splitting States

The experimental oscillation maxima assigned
to the spin-splitting states occur in pairs in the
oscillation patterns shown in Fig. 11(c), while an
elementary theory predicts equal spacings of the
oscillation maxima. This pairing may be attributed
to the effect of a finite temperature T which causes
broadening of the Fermi level: Electrons must oc-
cupy two Landau levels simultaneously; thus, more
electrons are needed in order that the Fermi level
can reach the lower Landau level of the two in
question, as already explained in Fig. 14 of Sec.
V and in Appendix B.

The oscillation period in tilted magnetic fields
shown in Fig. 13 indicates that the existence of the
parallel component of the magnetic field H sin~ is
negligible. Moreover, in the dc conductance mea-
surement as in Fig. 10, the conductivity in trans-
verse magnetic fields varied in proportion to
(H cosa) '. On the other hand, the resistance in
magnetic fields normal to the surface varied linear-
ly with the magnetic field strength H shown in Fig.
18, where SdH-type oscillations were blurred.
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electric subbands. Two-dimensional property of
the electron gas was confirmed by quantitative anal-
ysis of the number of states of a discrete Landau
level. The observed Landau levels could be assigned
in comparison with a theoretical model deduced
from the linear-potential assumption in the inver-
sion layer. This model explains the oscillation of
the magnetoconductance caused by a change of the
surface electric field.
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FIG. 18. Normalized resistivity as a function of mag-

netic field normal to the surface with the gate voltage as
a parameter.

Both data reveal that only the normal component
of the magnetic field H cosa was effective in the
conductance measurements. Thus, it is confirmed
experimentally that the Landau quantization is
caused only by Hcos~.

When the magnetic field is tilted at an angle 0

from the normal to the surface, the spin splitting
belonging to each Landau level may be assumed to
be determined by the total magnetic field H, while
the Landau quantization was caused only by the
normal component H cos~. At a certain tilted angle
~ = ~p the spin splitting g p~H becomes equal to the
Landau level separation he, , and the levels of the
different Landau quantum numbers have the same
energy. If we increase the Fermi energy in such
a situation, the oscillation maxima arise at points
where the Fermi level meets the duplicated Landau
level. If we apply the magnetic field of Hcos8p
normally to the surface, the oscillation maxima
occur in the middle of the two Landau levels with
the same Landau quantum number l when broadening
of the levels is present. Thus, the oscillations
wQl be out of phase in both cases. The phase re-
versal is evident in the experimental data shown by
the arrow in Fig. 13. From Fig. 13, we assume
~p= 65 -VO . Then the spin-splitting factor g is
estimated from

(m*/mo)g= 2cos&o .
Experimentally, we have obtained the value of
2cos~p as 0. 76+0.l. If we use the values of m*
= 0. 013m p and g = —51, the parameters of the bulk
InSb, then the value of 2cos~p is 0. 66.

VII. CONCLUSION

Shubnikov —de Haas-type oscillations of an elec-
tron gas with discrete energy levels confined in n-
type inversion layers of InSb surfaces have been
studied. Two series of oscillations have been ob-
served which correspond to the series of Landau
levels associated with the ground and the first higher
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valuable discussions and encouragement throughout
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APPENDIX A: ELECTRICAL CONDUCTIVITY OF
ELECTRON GAS IN STRONG MAGNETIC FIELD

The Landau states do not have an average velocity
perpendicular to the magnetic field, since the ve-
locity operator has no diagonal matrix elements.
The nondiagonal part of the density matrix in the
Liouville equation is required to describe the elec-
tric current carried by the Landau electrons; The
second-order perturbational treatment of the Liou-
ville equation with respect to the scattering poten-
tial gives the following expression for the conduc-
tivity a:.= .SD„(„')

= —e D„c„— p c„dc„,
6= 6V

D„=& —,'W. , „(X,-X„)',

W „=(2v/g) ~M~ p~a5(e„—e„),
M„,=( pIv~ v),

(A1)

(A2)

(A3)

(A4)

(A5)

(r = (e'/kr) Z„D„f(g„)[1 -f(g,)] . (A6)

If scattering centers with a 5-function-type short-
range force are distributed randomly, the scatter-
ing potential is expressed as

where f is the Fermi-Dirac distribution function
and p(e) is the density of states for a Landau elec-
tron. p, and v are quantum numbers which denote the
quantum states. D„ is the diffusion coefficient, X„
the cyclotron-orbit center, W„„the transition
probability, M„„the matrix element, and v the
scattering potential. X„ is equal to —$, k„where
l, is the classical radius of a Landau orbit and 0,
the wave vector perpendicular to the magnetic
field. The expression indicates that the current
is brought about by jumps of the cyclotron-orbit
centers X„caused by a certain scattering potential
v. Equation (Al) is rewritten as
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e2 a~N, df
16~ AE~~ dC 6=6 -O

(A8)

where the density of states of the Landau level is
approximated by Eq. (7) in the text and the wave
function by an Airy function.

NI

v=a Z 6(r —r,), (Av)

where r; and NI denote the position and the number
of the scattering centers, respectively. Then, a
simple calculation for the conductivity caused only
by the ground-state Landau level (l = 0) gives

(ii) 0&&„—ac&2. 6kT: q takes a maximum at
n,'= 1.

The conductivity takes two maxima when the two
Landau levels are well separated. The two maxima
come closer to each other when the temperature
T becomes higher. In the latter case, the two
maxima coalesce into a maximum owing to ther-
mal broadening of the Fermi level. This situation
is shown in Fig. 14. The following inequality ex-
plains the proximity of the two peaks at higher

temperatures:

APPENDIX B: CALCULATION OF SdH-TYPE
OSCILLATIONS AS FUNCTION OF SURFACE

CARRIER DENSITY

1-n',
c~ = && —kTln

ns
(B2)

The Fermi level varies from —~ to +~ when n',

varies from 0 to 1. At the maximum of cr, c~ = E&.
Case (2): Two Landau levels are occupied

(p=A, B). We assume that e„—es is positive and
not changed by increasing n„and that the diffusion
coefficients of the adjacent Landau levels are not
much different; thus

D~= DB

Then, the conductivity cr is

o= (e'/kT)D„q,

where

R=E„f(e„)[l-f(&„)].

(B4)

(S6)

The calculated result is as follows.
(i) &„—e~ & 2. 6k T: q takes maxima at n', = 1 a —,

'

(P —1) '(J3' —14P+ I)' and takes a minimum at
n,'=1, where

p=e (6g-6B) / k T ~

One or two Landau levels are considered here
for convenience of the calculation. The normalized
surface carrier density n', is varied from 0 to 1 or
2 corresponding to the number of Landau levels.

Case (1): Only one Landau level is occupied
(v=A). If only one Landau level is contained in the
energy range where the value of df/de is not zero,
the conductivity is expressed as

o = (e2/kT)D„n', (1 —n,') .
The oscillation pattern is parabolic and o is maxi-
mum when the level is exactly half occupied. The
Fermi level is obtained as

Case (3): Two Landau levels are occupied where
the level crossing occurs (v =A, 8). We shall con-
sider the case where the energy eB increases and
overtakes the energy &„at the carrier density n.
The two Landau levels degenerate at n, = n+. For
simplicity, we assume Eq. (B3) in this case. Then,
the conductivity is

o=(e /kT)D~g,

0 0&+OB t

n~=f(e&) P -f(~dJ,

~s =f('s) ~1-f('s) ~ ~

(Ss)

(Bl0)

(Bl1)

The conductivity 0 as a function of n,' is analyzed
as follows.

(i) 0 & nz & 1. Since conductivity depends on the
energy separation between the Landau levels and
the Fermi level, we follow the variation of the
Fermi level when the carrier density is increased.
As shown in Fig. 15, the Fermi level passes
through the point just below the level-crossing point
at n,'=n,'o and also passes through the mean point
of the two levels at n', = I. The bold line in Fig. 15
is the Fermi level at T=O. At a finite temperature,
the curve becomes rounded off as shown by dashed
lines. Thus, curves g„, gB, and g can be drawn.
It should be noted that q is asymmetrical about the
line n', = 1 and has two broad peaks. This broadness
is due to the fact that gB has a small hump or
shoulder in the region of n', & 1, and that the two
peaks are close together.

(ii) 1&n~&2. The situation is the same as
above.

(iii) n~=1. The two Landau levels become de-
generate at n,'=1. Both g„and gB have maxima at
the point and the curve g is symmetrical about the
line where n,'=1. The height of the peak is twice
that of the g„or gB peak.

F. F. Fang and W. E. Howard, Phys. Rev. Letters
16, 797 (1966).

F. Stern and W. E. Howard, Phys. Hev. 163, 816
(1967).

F. P. Pang and A. B. Fowler, Phy. s. Rev. 169, 619
(1967).

E. D. Sigga and P. C. Kwok, Phys. Hev. B 2, 1024
(1970).



3078 KOTERA, KATAYAMA, AND KOMATSU HARA

'A. B. Fowler, F. F. Fang, W. E. Howard, and P. J.
Stiles, Phys. Rev. Letters 16, 901 (1966); J. Phys.
Soc. Japan Suppl. 21, 331 (1966).

6F. F. Fang and P. J. Stiles, Phys. Rev. 174, 823
(19O8).

'A. F. Tasch, Jr. , D. D. Buss, R. T. Bate, and
B. H. Breazeale, in Proceedings of the International
Conference on the Physics of Semiconductors, Boston,
1970, p. 458 (unpublished).

D. C. Tsui, Phys. Rev. Letters 24, 303 (1970).
Y. Katayama, N. Kotera, and K. F. Komatsubara,

in Ref. 7, p. 464.
Y. Katayama, N. Kotera, and K. F. Komatsubara,

Japan. J. Appl. Phys. Suppl. 40, 214 (1970).
S. Kawaji, H. Huff, and H. C. Gatos, Surface Sci.

6, 234 (1967); S. Kawaji and H. C. Gatos, ibid. 6, 362
(1967).

K. F. Komatsubara, H. Kamioka, and Y. Katayama,
J. A,ppl. Phys. 40, 2940 (1969).

K. F. Komatsubara, Y. Katayama, N. Kotera, and
T. Kobayashi, J. Vac. Sci. Technol. 6, 572 (1969).

L. M. Luttinger and W. Kohn, Phys. Rev. 97, 869
(1965).

A. Kobayashi, Z. Oda, S. Kawaji, H. Arata, and K.
Sugiyama, J. Phys. Chem. Solids 14, 37 (1960).

S. Kawaji and H. C. Gatos, Surface Sci. 7, 215 (1967).
The accuracy of this approximation is within 0.7%

even in the worst case of n = 0.
~ O. Madelung, Physics of III-V Compounds (Wiley,

New York, 1964), pp. 53, 76, 90, and 101.
The spreads of the electron wave functions z~ from

the surface estimated from the classical turning points
of the potential edge are z~=147{n~/10 ) A for n=0
state and z, =260(n, /10 )

' A for n=1 state.
C. Kittel, Quantum Theory of Solids (Wiley, New

York, 1963), p. 219.
When the appropriate level broadenings are taken

into account, the p function may be replaced by a Lorent-
zian or a more complicated function. See Ref. 22 and
K. Ohta, Japan. J. Appl. Phys. 10, 850 (1971).

F. Stern, in. Ref. 7, p. 451.
G. Bemski, Phys. Rev. Letters 4, 62 (1960). M.

Gueron, in Proceedings of the Seventh International Con-
ference on the Physics of Semiconductors, Paris, 1964
(Academic, New York, 1965), p. 433; K. F. Komatsu-
bara, Phys. Rev. Letters 16, 1044 (1966); R. A. Issac-
son, Phys. Rev. 169, 312 (1968).

24A. G. Foyt, W. T. Lindley, and J. P. Donnelly,
Appl. Phys. Letters 16, 335 (1970).

'A. Many, Y. Goldstein, and N. B. Grover, Semi-
conductor Su+aces (North-Holland, Amsterdam, 1965),

p, 221 ~

The capacitance curves measured at 300 Hz did not
change even in a strong magnetic field except for a shift
due to shift of the band edge caused by the Landau quan-
tization. Anomalous dips in the capacitance curve re-
ported by Kaplit and Zemel were not found [M. Kaplit
and J. N. Zemel, Phys. Rev. Letters 21, 212 (1968)].
Though we found a similar series of dips, they dis-
appeared with decreasing frequency. The results indi-
cated that the observed dips did not result from the capac-
itive current but from the resistive current because

- the component of the capacitive current increased as the
frequency was lowered in our measuring circuit.

S. Tansal, A. B. Fowler, and R. F. Cotellesa, Phys.
Rev. 178, 1326 (1969).

Y; Uemura and Y. Matsumoto, J. Japan. Soc. Appl.
Phys. Suppl. 40, 205 (1971).

~ J. R. Schrieffer, in Semiconductor Su+ace Physics,
edit ed by R. H. Kingston (Pennsylvania U. P. , Philadel-
phia, 1957), p. 55.

Stern has argued in Ref. 22 that the energy broadening
parameter I' enters in the amplitude of conductance oscil-
lations through the factor exp(-2gI"/h&, ).The I' estimated
from the oscillation amplitudes in different magnetic fields
(15-21 kOe) was the order of 10 meV, where the bulk
effective mass of m* =0.013mp was used. Though the
value I should be the sum of kT and 8/27, the latter
term was dominant here. This was consistent with the
fact that the oscillation amplitudes did not differ greatly
at 1.5 and 4. 2 K.

F. Stern, J. Comput. Phys. 6, 56 (1970).
Increase of the electron effective mass with the elec-

tron concentration (O. Madelung, Ref. 18, pp. 86 and
95) also causes the energy difference e (1) —e (0) to de-
crease. However, as the density of states of the band
is more strongly increased by nonparabolicity, the ex-
pected M, of the quantity (m*/mp) [~ (1) —e (0)] increases
by the degree of nonparabolicity.

3A. H. Kahn and H. P. R. Frederikse, in Solid State
Physics, edited by F. Seitz and D. Turnbull (Academic,
New York, 1959), Vol. 9, p. 270; P. N. Argyres and
L. M. Both, J. Phys. Chem. Solids 12, 89 (1959);
E. N. Adams and T. D. Holstein, ibid. 10, 254 (1959);
L. M. Roth and P. N. Argyres, in Semiconductors and
Semimetals, edited by R. K. Willardson and A. C. Beer
(Academic, New York, 1966),Vol. 1, p. 159.

R. Kubo, S. Miyake, and N. Hashitsume, in Solid
State Physics, edited by F. Seitz and D. Turnbull (Aca-
demic, New York, 1965), Vol. 17, p. 276.

'For example, see the paper in Ref. 21.


