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We have calculated the shift in ground-state energy of an electron bound in a Coulomb poten-
tial in a crystal, to second order in the electron-phonon coupling and for arbitrary values of
the electron-impurity coupling.

The problem of an electron, in semiconductors,
bound in a Coulomb center and weakly interacting
with optic phonons, has been of considerable in-
terest. ' 7 The first term in the perturbative ex-
pansion of the ground-state energy in terms of the
electron-phonon coupling constant is a function of
the electron-impurity coupling. We have calculated
this term exactly. Qur result, for the ground-
state energy, is in amazingly good agreement with
the energy shift obtained using lowest-order ef-
fective-mass theory. ~ In this theory, the energy
shift is calculated by replacing the conduction-band
effective mass at the bottom of the band by the free-
polaron mass at zero momentum. Another ap-
proach (Platzman-Sak's) is to develop the exact

expression of second-order perturbation theory in
the electron-phonon coupling as a power series in
the electron-impurity coupling P. The first term
in this series is identical to that obtained using
effective-mass theory. The next term (- P4) has
also been calculated. Qur exact result is, on the
other hand, almost identical to the effective-mass-
theory result, for values of the unperturbed ground-
state energy E~, lying between zero and the ener-
gy of one optic phonon.

The ground-state energy shift has been calculated,
numerically, for arbitrary values of the electron-
impurity potential strength. It is compared with
the approximate calculations for b,E. These are
(i) a power series in the strength of the impurity
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potential which has been reported, '-' (ii) approxi-
mate calculations for ~E, appropriate for large
electron radius or small impurity potential, which
have been recently published, ' and (iii) effective-
mass theory.

The Hamiltonian of our system, which describes
an impurity atom in the presence of optical lattice
fluctuations is given, in dimensionless units, by

H=H, +Hp+H; („t,

G(r, r ) is the Coulomb Green's function which, fol-
lowing Hostler, ' is given by

g I'(1 —8/2a) s 9
G( r, r ) = ——— Wg«»q (ax)4' lr —r l ~x

xM„„„,(ay), (8)

where

a= (1+8)»', x= r+ r'+
I
r —r' I, y = r+ r'- fr —r'

I

H, = P —P/r, H~ = Q I a-„ar, , (2)

Hg~g =Q vf (af e + H. c. ) . (3)

The natural units of length and energy in our
problem, are given, respectively, by (k/2nz~)'~2
and S~. Here m is the effective mass at the bot-
tom of the conduction band, assumed to be a scalar
for simplicity, and ~ is the dispersionless optical-
phonon frequency. The normalized binding energy
H is given by Jt = —,

'
P =me'/(2eoh'~), where eo is

the low-frequency dielectric constant of the crystal
and v;= (4'/k2V)'~2 represents the electron-phonon
interaction. The operators ay and a~ are, respec-
tively, the destruction and creationoperators of the
I 0 phonons having wave vector k.

The energy of the ground state consisting of a 1s
electron and no phonons, to second order in the
electron-phonon interaction, is given by

In Eg. (8), I' represents the y function, and W and

M are the Whittaker functions. To cast our re-
sult in its final form we make a series of trans-
formations. First, we go to center-of-mass co-
ordinates Ti= —,'(r+r ), p= r —r and carry out the
three trivial angular integrations to get

hE —2P I'(1 —p/2a)
I

g
2

dg dp dZ

xexp[ ——,
'

p(f vy+ —,'pf + fyl- —,
'

pf)7 ax 6$

&& W@«»z (ax) Mzg2, ,g2 (ay), (] 0)

where Z=g ~ p. Next we change, at fixed p, from

(g, Z) to (X, I'), where. X=
I q+ —,

'
p I + I $ ——,

'
p I, 1'

= Ig+ 2 p j
—lg —

2 p ) . The integral over F is now

trivial and after a little algebra we obtain our final.
result:

E= Eo+ &E,

where

~ {0I e '"'In) (n I e "'I0)E= v~ E —E„—1

(4)

(5)

where

C = O'I'(I —P/2a)/16a',

I=+ f dx x e " 'M„2, », (x) W@«»,(x)

(12)

(18)

Here, the sum is over all eigenstates of the Cou-
lomb Hamiltonian, given by (P —P/r) In) = E„ln)
with Eo= —R. The change in energy, as given in

Eg. (5), is due to the virtual emission and absorp-
tion of a phonon.

The main difficulty in the evaluation of AE lies
in the sum over the infinite number of negative en-
ergy states. To date no calculation which over-
comes this difficulty has been presented. Our
solution to this problem lies in the observation
that by carrying out first the sum over n, &E is
reduced to an integral over the unperturbed Cou-
lomb Green's function. Integrating next over all
wave vectors k in EcI. (5), we obtain

dr dr P (r) ', P,(r'),
j r-r'j

where

P {r)= (P'/8v)' e~" '

is the 1s-wave unperturbed ground state. Here

J=i f dxe " 'M@&„»z(x) f pdpe

x W&&«»z(x+ p) . (14)

We have thus replaced the integration over the
wave vector k and the sum over all states n in Eq.
(5) with a double integration over the Whittaker
functions, which are well known. The depen-
dence of the &E on P was obtained numerically
using an IBM 360/50 computer (see Table I and

Fig. 1), and represents the exact change in the
bound-electron ground-state energy resulting from
weak electron-phonon interaction (i. e. , to order
o.)

At this point we would like to compare our cal-
culation with other known results. Platzman, '
starting with Eq. (5), developed a power series ex-
pansion in R. Using his expansion procedure, Sak
was able to show that up to the order of R one ob-
tains
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FIG. l. Graphical presen-
tation of the theoretical calcu-
lations of I ~/0'1: dashed
line, numerical; solid line,
effective mass; dots and dashes,
PlatzIQan-Sak connected dots
Stoneham-Bajaj.

1 05.

—(~Z/o. )= l+~6ft+ ~~ft'.

No higher-ox'der terms caD be obtRlned us1ng the
Platzman procedure, because of divergent integrals.
A different approach is to begin with the quantized
Hamiltonian of the fx'ee polRron and add to lt the
Coulomb potential. Here

.P (l —. o) —P/~+ k ~P —++& ~~P ~(r),
as was considered by Sak. s His calculations, using
the last two terms as a perturbation indicate 4E/o.
to be identical to the result obtained using the Platz-
man procedure as given by Eq. (15). Again, be-
cause of divergent integrals, one cannot obtain in

a. straightforward may any higher-order terms in
A very different approach was taken by Stone-

ham and similarly by Bajaj. ' They write for the
energy shift

gfithin this approximation one 8ums over Rll plRne
waves q the values of 4E„ the energy shift of the
free polaron having momentum q, weighting each
value by the probability i (0[@}i of finding the par-
ticular plane wave in the unperturbed ground-state
wave function. One thus neglects quantum-mechan-
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TABLE I.

Rydberg
=R

0. 2
0. 5
0. 8

l. 0
10.0

100.0
400. 0

5g 1/2

—1.031 7
—1.084 097
—1.134 0
—1.166 581
-2.201 5
—6.3242

—12.537 2

—1.9764
—6.25

—12, 5

Numerically evaluated, effective-mass theory, Platzman-Sak, Stoneham-Bajaj, and large-8 values of
~jr (in units of Ru).

Numerically Effective P latzman-
evaluated mass Sak Stoneham

—l. 033 33 —1.0350 —0. 0396
—1, 083 33 —1.0933 —1.0887
—1.13333 —1.1609 —1, 1135
—1.166 67 —1.2071 —l. 1195
-2, 666 67

—17.666 67

ical interference of plane waves, which should

be a good approximation for large Bohr radii or
small values of P. The integrals in Eq. (16) can
be analytically performed, and we obtain'

—(r E/n) = (1+It) -'"+ -'It (1+ft)-"'+ It '(1+Z)-'"
(IV)

We finally want to compare the various approxi-
mation with our exact calculations for &E. All
these approximate calculations are good at small
R and, in fact, to first order in R, are identical.
It is their behavior at intermediate R which is of
interest.

In Table I" and in Fig. 1 we show our numerical
results in comparison with the leading terms of
the effective-mass theory, the power series solu-
tion' and the Stoneham-Bajaj approximation. '
Our "exact" results for 4E shows an excellent nu-

merical agreement with the energy shift calculated
using lowest-order effective-mass theory. From
our solution, given by Eqs. (11)-(14), it follows
that the power series around P= 0 will contain all
powers of R. However, the terms have coefficients
that are small and alternate in sign such that, up
to about R = 1, the solution for &E is practically
linear in the Rydberg with slope -d(&E)/dR = 6+ &.

To lend support to our numerical integrations,
we point out that we obtain the correct result for
small R and also, as given in Table I, have checked
the validity of our calculation for large R, Here,
using Eq. (5), in the limit of A- ~, AE/n must

approach --,' R' . ' Indeed, our numerical results
does so. Interestingly enough, even for R= 10,
the percentage difference between the numerical
and effective-mass values is only 20%. It is im-
portant to mention that in order to calculate the
ionization energy one should subtract the lowering
in energy of the lowest continuum state. This is
taken to be -1.0, the value of the free-polaron self-
energy, as is customary. For R small this is un-
doubtedly a good approximation, but for la.rger R
one will have to use the Coulomb continuum eigen-
states instead of plane waves.

The ionization energy as given by Platzman-Sak
is +R (1+ —,'8). This leads one to assume a radius
of convergence of R -4 for their power series.
However, our results indicate that the real radius
of convergence is much smaller. Indeed, the actual
discrepancy is already greater than 10% forfar = 0. 2.

In conclusion, polaron effective-mass theory
works extremely well for the ground-state energy
of the Coulomb Hamiltonian for 0& R ~1. Whether
the same can be said for the excited states re-
mains to be investigated. Furthermore, lowest-
order effective-mass theory predicts that the
Lamb shift, i. e. , energy difference between the
2p and 2s state, is zero. The method used here
can check the validity of this prediction. One can
also, finally, get some insight close to the regions
where perturbation theory itself breaks down, i.e. ,
where some pair of Coulomb eigenstates differ in
energy by about one optical phonon.
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' Stoneham evaluated the integral numerically. His re-
sults are qualitatively correct. Bajaj has obtained an
analytical expression. As some of his symbols are un~
clear to us, we cannot compare his result to our Eq. (17).

The numerical integrations were done using 60 points
for each one-dimensional integral. A glance at Table I
and Fig. 1 shows that the agreement with the exact asymp-
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totic I 0, R- ~) values is excellent. However, for
R =0.5 it, was found necessary to improve the accuracy of
the numerical calculations, since the other theories give
values for the ionisatfon energy not too different from the
calculated one. The numerical integrations were, there-
fore, carried out using 120 and 250 points. The values
obtained for ~/a were -1.084102 and —l..084097, re-

spectively. Additionally, for R =1.0 the integrations were
done with 60 and 120 points. The values obtained were
—1.665 13 and -1.665 81, respectively.

~2It follows from this and the low-R behavior that the
power series for &ATE/o must have a finite radius of a con-
vergence.
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We have employed the differential technique for stress modulation in an extensive study of
low-temperature (30 K), interband magnetoreflectivity at the fundamental edge of GaSb and of
GaAs. The data for GaSb were compared to the coupled-band theory of Pidgeon and Brown by
means of an iterative "parameter-optimization" computer program. The following self-con-
sistent set of band parameters was determined: (m, /m) = 0.042 + 0.001; (m&h/m) =0.042
s 0.002; (mhh/m)~00=0. 29+ 0.09; (mhh/m)~~0=0. 36+ 0.13; (mbb/m)gtg=0. 40+ 0.16; ye=13.3
+ 0.4; y&

——5.7+ 0.2; yf —
y2

——1.3+ 0.2; g =3.5+ 0.6; g~= —7.8+ 0. 8; E&= (25+ 2) eV; and

F = (1.5 + 0. 5)-m /m. Here m is the free-electron mass, m~ is the conduction-band effective
mass, m&h and mhh are the light-hole and heavy-hole valence-band effective masses, y~, y2,
y3, and g~ are the Luttinger valence-band parameters, g~ is the conduction-band effective g
factor, E& is the interaction energy introduced by Kane, and F represents the interaction of the
conduction band with higher-lying bands.

I. INTRODUCTION

%e have employed the differential technique of
stress modulation~'~ in an extensive study of inter-
band magnetoreflectivity at the fundamental edge
of gallium antimonide and of gallium arsenide. The
greatly enhanced sensitivity afforded by this tech-
nique has enabled us to obtain magnetooptical spec-
tra of considerably greater detail and resolution
than have previously been reported. ' ' For example,
for GaSb at 30 K transitions involving Landau levels
as high as the 18th conduction-band level were ob-
served over the spectral region from 0. 8 to 1.25 eV.

The spectra for GaSb were quantitatively com-
pared to the coupled-band theory of Pidgeon and

Brown by means of an iterative computer program
based on a generalized least-squares method. The
best fit of this theory to the experimental datayield-
ed a self consistent set of band parameters for
the conduction band, the light-hole and the heavy-
hole valence bands, and the spin-orbit splitoff
valence band.

This paper is organized as follows. The exper-
imental details are contained in Sec. II. The theo-
retical results necessary for the analysis of the ex-
perimental spectra are summarized in Sec. III. The
experimental results and their analysis for GaSb
are presented in Sec. IV. The zero-field spectra

for GaSb are discussed in Sec. IVA and the magneto-
optical spectra are discussed in Sec. IV B. A pre-
liminary analysis of the main features of the data
based on the parabolic band theory of Roth et al. 7

is given in Sec. IVC. The detailed analysis of the
data in terms of the coupled-band theory is described
in Sec. IVD, and the set of band parameters thus
obtained is compared with previous results in Sec.
IVE. Finally, the experimental data for GaAs are
presented and discussed in Sec. V.

II. EXPERIMENTAL DETAILS

The stress-modulation technique used in this
work is essentially the same as that developed by
Engeler et al. ' and adapted for low-temperature
experiments by Aggarwal. This technique and the
associated apparatus have previously been de-
scribed. ' Briefly, this consists of a thin sample
bonded to a piezoelectric transducer with vacuum
grease. The transducer is driven by an ac voltage
at an audio frequency and the resulting modulation
in the ref lectivity is detected by a phase-sensitive
technique.

Data were taken in both the Faraday and the Voigt
configurations. For the Voigt configuration, linear-
ly polarized light was obtained by means of Polaroid-
type HN332 or HR sheet polarizers. For the Faraday
configuration, circularly polarized light was obtained


