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this T term. Thus an analysis which does not in-
clude the direct phonon processes as contributors
to the temperature variation of the spectral line-
width could not possible hope to obtain a good cor-
relation between theory and experiment, even if
there appears superficially to be correlation.

The obvious extension of this work is to carry out
a similar analysis of ion-lattice interactions in
magnetic materials, to see if analogous magnon
relaxation processes are observable. As the pho-
non system surrounding an ion provides a ready re-
servoir and means of ion-lattice interaction, so too
should the surrounding system in a magnetic lat-
tice. The main problem is to obtain a system in

which such processes will have measurable contri-
butions to spectral linewidths. This has been dis-
cussed in a previous paper, "and we hope to carry
out these and related studies on the systems
RbMnF3:Pr ', RbMnF3.'Co~', and YIG:T13'.
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Temperature Dependence of the Electronic Structure of Solid and Liquid Copper-An
NMR Study
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The Knight shift and spin-lattice relaxation rate in copper metal were measured using pulsed—
NMR methods. The temperature range of the measurements extends in the solid from room
temperature to the melting point (1083'C), and in the liquid from 875 (supercooled phase) to
1250'C. From these measurements the temperature dependence of 3'(e), the reciprocal en-
hancement factor of the Korringa relation, is obtained. The recent developments in the theory
of exchange enhancement of the Pauli susceptibility in metals are used to interpret this tem-
perature dependence of 3!{e). Thus the temperature dependence of the band effective mass ~*
and of the conduction-electron spin density at the nucleus, (I $(0) ) ), is derived. It is shown

that these quantities are strongly influenced by s-P hybridization, and their temperature de-
pendence is explained as being due to the volume dependence of the hybridization. Similarly, the
change in both m* and (I $(0) )t) on melting is shown to be caused by the accompanying volume

change, and to be only weakly influenced by loss of structure and order.

I. INTRODUCTION

In a previous paper (referred to henceforth as
I) we presented measurements of Knight shift K and

spin-lattice relaxation Tj in copper, both in the
solid and liquid states. We have tried to explain
the temperature dependence of these quantities in

terms of copper band structure.



II. EXPERIMFNTAL DETAILS
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FIG. 2. Knight shift of Cu 3 in copper as function of tem-
perature.

prepared as described in I. We used two different
sources' for preparing the copper samples. The
purity in both cases was 99. 999%.

Spin-lattice relaxation times were measured
with n 7 z/2 -pu-lse sequences. The amplitude of
the free-induction decay following the v/2 pulse
was measured with a boxcar integrator, as a func-
tion of v. It can be shown that the boxcar opening
must be about T2 in order to get maximum signal-
to-noise ratio for a specific learning time. The
data were fitted by a least-squares computer pro-
gram to M=MD(1-A e '~ ~). This method brings
both convenience and accuracy in deriving Tj from
the experimental data.

All the measurements were made at a frequency
of 22 MHz, with an H& field in the rotating frame
of 60 Oe. The magnetic field was measured by a
proton magnetometer with accuracy of 5&10 ' at
a field of 20 kG.

III. EXPERIMENTAL RESULTS

A. Knight Shift

The Cu Knight shift K was measured in solid
copper from room temperature to the melting point
(1083'C), and in the liquid from 875 (supercooled
liquid) to 1240'C. The data are given in Fig. 2,
where the solid line is the best fit. We see that
in the solid, K increases from a room-tempera-
ture value of K (20 C) = (2. 375 s 0. 004) x 10 ' to its
melting-point value of K(sol. 1083 'C) = (2. 496
+ 0. 001)x 10 and increases on melting to
K(liq. 1083'C) = (2. 605 a 0. 001)x 10 '. The accura-
cies quoted are not absolute, as they do not include
the systematic error arising from measurement
of the reference compound. The absolute value of

Spin-lattice relaxation time Tj for both Cu and
Cu ' was measured in the same temperature range
in which the Knight shift was measured. The ex-
perimental data are presented in Fig. 3, where the
solid lines are best fits for the data. We see that
(TqT) ' of Cu increases by (24. 5+0. 7)% from room
temperature to the melting point, and jumps by
(17.5+0. 7)% on melting. These results are in

agreement, within experimental error, with the
measurements in I. However, the accuracy in the
present work is far higher than that in I, and it in-
cludes measurements of T& in the supercooled
phase, which were not included in I. Warren and
Clark' have also measured T, but their results dis-
agree with the present results, especially in the
solid before melting. This disagreement is ex-
plained by the large quadrupole contribution to
relaxation in their sample, which was caused by

TABLE I. Relative changes of the Knight shift in copper. .

Referenc e

Increase in
solid from room temperature

to melting temperature
Change

on melting

Odle and Flynn
(Ref. e)

Warren and Clark
(Ref. 8)

Present work

(5~1.5)%

(6 8 +1~ 6)%

(5.15 +0.15)/p

(5.1 +0.3)%

(3.6 ~1.6)%

(4.37 +0.08)%

AND D. Z AMIR

K when measured relative to a reference of CuBr
was at room temperature K(20'C) = (2. 375 a 0. 012)
x10 . CuBr was selected as a reference because
it is the least covalent among the cuprous halides. '
It seems that the difference between our value and
the value of K(23 C) = (2. 34 + 0. 02) x 10 3, measured
by Warren and Clark, is because they used CuCl
as a reference.

In Table I we compare the relative changes in
K, as measured in this work, with earlier results.
Our results fall within the experimental errors of
the previous works. As to the jump on melting,
our results in the present work agree, within ex-
perimental accuracy, with those in I. However,
they do not exhibit the anomalous increase in the
Knight shift from 700 to 800 C measured there.
This instrumental effect was caused by the tem-
perature-dependent residual magnetism of the
probe used in I. Due to the method of measuring
described in I, this magnetism influenced both the
sample and the Hall probe stabilizing the magnet.
Thus, it induced an artificial line shift, especially
in the region where the line is motionally narrowed.
Unfortunately, the method of calibration of the
probe in I was not sufficiently sensitive to detect
such an effect.

B. Spin-Lattice Relaxation
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volume, and P~ =-(I $(0) l')z is the conduction-elec-
tron spin density at the nucleus, averaged over all
the Fermi-surface states. The subscript s in K,
emphasizes that only conduction electrons with s
character contribute to this shift.

The same interaction gives rise to spin-lattice
relaxation

(I/Tq), = ART (y, y„) [(8m/8) QPz N(Ez)]~, (2)

where y, and y„are the electronic and nuclear
gyromagnetic ratios, respectively, and N(EJ, ) is
the density of states at the Fermi energy.

For independent electrons, that is, assuming
there is no electron-electron interaction, one gets
Xp= 2(ky, )'N(E~). One might expect, then, that
K, and (1/T~), would satisfy the Korringa relation'2:

solid

+
~++ ++

Ill. p.

I

500
C

I l~

1000 1500

diffusing impurities.
In our samples there was no quadrupole contri-

bution to relaxation, as was proved by the accurate
measuring of the ratio of spin-lattice relaxation
times T8,'/T6~'. In the solid, this ratio was be-
tween 1. 150(8) and 1.160(8), whereas in the liquid
it was between 1. 141(8) and 1. 151(8). However,
spin-lattice relaxation caused solely by magnetic
processes should satisfy the condition T&63/T6&'

=(y /y ) = 1. 1477(6), while spin-lattice relaxation
caused by quadrupole processes should satisfy
TP/T, '=(Q '/Q ) =0. 856(5). Therefore, the
measured ratio of spin-lattice relaxation proves
that in the solid this quadrupole contribution is at
most 2% of the total relaxation, whereas in the
liquid it is (2+2)% only.

Thus we can safely say that the measured spin-
lattice relaxation in copper is a result of magnetic
hyperfine interaction only.

IV. THEORETICAL BACKGROUND

A. Hyperfine Interaction in Metals

In most nontransition metals the dominant mech-
anism which couples nuclear spins with the conduc-
tion electrons is the contact hyperfine interaction.
Such interaction gives rise to a Knight shift'

FIG. 3. Spin-lattice relaxation of Cu63 and Cu as a function
of temperature.

The Pauli spin density interacts with the nucleus
not only directly, as presented by (1) and (2), but
also i ndi meetly through core polarization. When
the polarizing Fermi electrons have only s char-
acter, this interaction enhances I'z and therefore
Eq. (8) is still satisfied. Thus, when non-s core
polarization and orbital contributions may be ne-
glected, the Korringa relation is obeyed. We shall
show later that this is true in the case of copper.

In fact, experimental values of K T, T almost
never obey the Korringa relation. This discrep-
ancy is due to electron-electron interactions which
were disregarded while deriving Eq. (8). This in-
teraction enhances the independent electron sus-
ceptibility X~ so that the Pauli susceptibility is
rather'

X, = X,'/(I —n), (4)

and the Knight shift, which is proportional to X&,
is enhanced similarly. When the electron-electron
interaction can be represented by an effective po-
tential V(q), then the enhancement parameter is
n = V(0) N (Ez). This interaction has been calculated
for a free-electron gas at metallic densities in
various many-body techniques. ' '"

The spin-lattice relaxation rate is also enhanced
by electron-electron interactions, though less than
K . Mor jya has shown that

(I/Ti) = (I/Ti) ( [I —nF (q) V(q)/V(o)] '), (5)

where F(q) is the static response function of the
noninteracting electrons, and the outer brackets
indicate averaging over all the momenta q connect-
ing states on the Fermi surface. Thus the Kor-
ringa relation will have a new form [see Eqs. (4)
and (5)]:

K, = (8m/8) QP~ Xp,

where X& is the Pauli susceptibility of the conduc-
tion electrons (per unit volume), Q is the atomic

K Ti T=q/X(n),

where X(n) is a complicated function of n and is
dependent on the band structure of the metal.

(6)
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where the subscript f stands for a free-electron
model, and (m*/m) is the band effective-mass
ratio, excluding electron-phonon effects. The in-
dependent electron susceptibility y& is also depen-
dent on the effective mass

0.6 y,'= y,'(m+/m), (8)
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FIG. 4. Reciprocal enhancement factor of the Korringa
relation Q(0.'), as against the enhancement parameter n.
The different calculations were made assuxning for the
interaction (A) g-like behavior (Ref. 17), (B) short but
finite range (Ref. 2), and (C) long range.

n= nq(m*/m), (7)

Narath and Weaver" have calculated X(n) as-
suming a spherical Fermi surface and V(q) = const,
which means that V is a 5 function in real space.
The result of this calculation is presented by curve
A of Fig. 4. One of the main conclusions of Narath
and Weaver's work was that a zero-range electron-
electron interaction potential [that is, V(q ) = const]
is not realistic, and should be replaced by V(q ),
which is momentum dependent. However, the ap-
proximations made by these authors limited their
calculation to momentum-independent potentials
only.

The recent work of Shaw and Warren extended
Moriya's theory to include interaction potentials
which are momentum dependent. Their calcula-
tion of X(n) is presented by curve B in Fig. 4 and
is based on recent theoretical studies of electron-
gas response, which are reviewed in their paper.
They have shown that the enhancement of the Kor-
ringa relation in alkali metals is explained by this
X(n). Therefore we have chosen to use Shaw and
Warren's X(n) throughout this work.

Curve C of Fig. 4 is X(n), calculated under the
assumption of a long-range interaction potential,
in which case the relaxation rate is not enhanced
and X(n) = (I —n) . Thus, curves A and C repre-
sent X(n) calculated under different extreme as-
sumptions for the electron-electron interaction
range.

The calculation of n ' ' has been made for a
gas of free electrons. We shall include band-struc-
ture effects in the method used by Silverstein,
namely,

where X& is the independent free-electron suscepti-
bility. Thus, from Eqs. (4), (7), and (8) the de-
pendence of the susceptibility on density of states
may be obtained at the Fermi level, because m~/m
= N(EJ„)/Ny (E~).

B. NMR and Electronic Structure of Liquid Metals

We have seen that Knight shift and spin-lattice
relaxation depend directly on electronic quantities
such as N(Ez) and Pz. It has therefore been
argued ' that NMR measurements in metals
should be very sensitive to changes in electronic
structure accompanying melting. However, Knight
shift for most metals changes only slightly upon
melting, which indicates that almost no change of
N(E~) and Pz takes place. '

This conclusion seems to contradict the informa-
tion received from transport and optical measure-
ments in liquid metals. ' ' Hall coefficient and
optical properties change considerably upon melting
and show free-electron-like characteristics in the
liquid, whereas in the solid they seem to be in-
fluenced strongly by band-structure effects.

This apparent contradiction has been a challenge
for a long time. Some ' have explained the fact
that the Knight shift does not change upon melting
as being due to preservation of short-range order
from solid to liquid. This explanation does not
seem plausible, as short-range order is not pre-
served, even on melting of close-packed metals.
The structure of most liquid metals is rather that
of "random close-packed liquid" suggested by
Be mal.

Another explanation has been offered by Ziman, '
that K does not change on melting because the sus-
ceptibilities of both solid and liquid metals are
free-electron-like. This explanation also seems
inadequate, at least for some metals, such as
lithium, which is certainly not free-electron-like
in the solid, and nevertheless shows no change in
K upon melting.

In the case of copper metal we shall show that
its electronic structure, both in the solid and the
liquid, is strongly influenced by nonstructural ef-
fects. Thus, the main effect of melting will be ex-
plained by the accompanying volume change, while
there is almost no effect brought about by loss of
order.

V. INTERPRETATION

It can be shown that in copper the only important
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contribution to the hyperfine field is due to contact
interaction. In the atomic 3d' 4s' configuration
this contribution of the one 4s electron produces a
hyperfine field of about 1600 kOe. The indirect
contribution of this electron, via core polarization,
is evaluated as 10-50% of the direct contribution.
A value of 2600 kOe for the total hyperfine field was
obtained from atomic-beam measurement in cop-
per. ' However, this contribution of the s core
polarization to the spin density has no effect on the
value of the Korringa relation, and therefore will
not hinder the interpretation of the experimental
data (see Sec. II).

Qn the other hand, the d core polarization may
change the value of the Korringa relation. It can
be shown to be negligible in the case of copper, in
which the hyperfine field induced by an unpaired
3d electron through core polarization is about
—125 kOe. As we shall see later, there is at
most 30'%%uo of 3d character in the Fermi electrons
of copper, and therefore the contribution of the d
core polarization to the Knight shift, K~, is no
more than 2% of the total K. The d contribution to
the spin-lattice relaxation, (I/T~)~, is even small-
er, as it is proportional to K„.

Similarly, the contributions of the orbital inter-
action both to K and I/T~ are estimated to be very
small in copper; they may be large in heavy met-
als, 8 or in transition metals having half-filled
narrow bands. Thus, we shall assume that there
is only s contact contribution to the hyperfine field
in copper metal.

Under this assumption, we used Eq. (6) to derive
X(n) from the measurements of K and T~. We
present X(n) in Fig. 5 as function of volume, uti-
lizing thermal expansion data in copper. We pre-
ferred to plot it thus, rather than as function of
temperature, as the temperature dependence of K
and 7& is not intrinsic and is due chiefly to effects
of thermal expansion. This point will be discussed
in greater detail in the course of this paper.

In Fig. 6 there is a plot of the Knight shift, this
time as a function of volume. The points were
measured by Benedek and Kushida3 as a function
of pressure, thus giving the explicit volume de-
pendence (BK/Bv)r. The solid line, on the other
hand, presents our measurements, whichwere car-
ried out as function of temperature, thus giving
(BK/BT)~. Comparison of both these independent
measurements shows that the explicit temperature
dependence of the Knight shift (BK/BT)„ is quite
negligible.

This point is also proved by direct estimation,
using the semiquantitative model of Benedek and
Kushida. ' From the volume dependence of PF
(derived later), we obtained for (BK/BT)„an upper
limit of 20% of the total temperature dependence
(BK/BT), .

We shall show now that the volume dependence
of m* and PJ, can be explained by the band struc-
ture of copper.

Copper has an atomic configuration 3d 4s . Its
band structure in the solid consists of a wide near-
ly-free-electron conduction band, intersected by

0.65—

super —cool
liquid

0.60—

0.55

0.50
I.OO

I

I.05
I

I.IO
V/Vo

I

I,I 5

FIG. 5. Reciprocal enhancement factor of the Korringa
relation X(n) in copper xnetal, as function of volume.

I

As we see in Fig. 5, X(n) changes considerably
over the present volume and temperature range.
We used the dependence of X(n) on o., calculated
by Shaw and Warren (graph B of Fig. 4), and thus
obtained the volume dependence of n.

This volume dependence of n may be brought
about by both o.

&
and m* [see Eq. (I)]. However,

the dependence of n& on volume, no matter how it
is calculated, is negligible in comparison to that
of n. For instance, according to Rice's calcula-
tion, "n&=0. 27 for a free-electron gas, the den-
sity of which is that of copper, (0=80 a. u. ), and
its volume dependence is (dine. &/dlnQ)- 0. 2 only.

Thus we assum d that the whole volume depen-
dence of n is brought about by m*/m. Using Eqs.
(1) and (4) we obtained also the volume dependence
of QP~.

Both these dependences are plotted in Fig. 7.
The heavy drawn graphs of m~/m and QPz were
derived using X(n) according to Shaw and Warren. '
The upper and lower graphs, in each case, are ob-
tained assuming 6-function-type and long-range
electron-electron interactions, respectively. It is
interesting to note that the relative behaviors of
both these functions, referred to their room-tem-
perature value, are not too sensitive to the model
assumed for V(q). Their derived absolute values,
on the other hand, do depend strongly on X(o.')

VI. DISCUSSION
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Such a shift will influence the density of states
at the Fermi level. The general expression for
the density of states is

0.260— super - cooli
1 d 0

(27r) (dE/dK) (12)

0

V-

M 0.250—
I

Z

hC

where the integration is over the whole Fermi sur-
face. In the case of copper metal, a good approxi-
mation for the Fermi surface i,s a sphere with eight
necks. Thus, Eq. (12) can be approximated as

0.240—
1 1

(2w) (dE/dZ) „„

I

I.OO
I

I.05
V/Vo

I

I.IO I.I5

where S is the face area of the Fermi surface. It
equals approximately the surface of a sphere, the
radius of which is the average radius of the actual

FIG. 6. Knight shift of copper as a function of volume.
The points present the results of Benedek and Kushida
(Ref. 30), whereas the solid line is the least-squares fit
to our measurements.

2.0

a full 3d band. The 3d band is about 3. 2 eV wide,
and its center of gravity is about 3. 7 eV below the
Fermi level Ez. ' The Fermi surface of copper
is contained in the first Brillouin zone, and touches
its face by the so-called "necks" in the (111)di-
rections. "

Let us analyze a simple model of a free-electron
band, intersected by a d level. We shall see that
such a simple model explains semiquantitatively
the dependence of m* on volume derived from our
measurements.

Both the free-electron band k k /2m, and the d
level E„are presented in Fig. 8 by the dashed lines.
Such a system is described using a 2x 2 model
Hamiltonian '

I e'k'/2m
V~

1.6—

1.2

QPF
/

/
/ y

l yg//

/~l~

where V,„is a hybridization matrix element arising
from the distortion of the atomic d state in the
metallic state.

The solution of detllX&& -E5&&ll =0 is

E= —,
' (E~+5 k /2m+[(E~ —k k /2m) +4V,~] ),

(10)
which is described by the solid line in Fig. 8, for
a special case of V,„=-,'E„. At the intersection
point K~ there is an energy gap of 2V,„. Far from
K~, that is, for k k /2m -E„»V,„, there is a
second-order shift of the free-electron energy:

1.00
I

1.05
Q/0

I

I.IO 1.15

FIG. 7. m*/m and OP& as against volume, derived
from the experimental data of K and T& (see text). Both
quantities are presented as relative to their room-tem-
perature values. The dashed lines are an analytic extrap-
olation from the solid.
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FIG. 9. m*/m as against volume (relative to room-
temperature value). The solid line is the experimentally
derived value whereas the dashed line is theoretical (see
text).

FIG. 8. Hybridization between a free-electron band and a
a d level (the dashed lines), for the case V+ = 4E&.

Fermi surface, minus the total cross section of
the eight necks.

In this way the band-structure effective-mass
ratio, defined as N(Er)/N&(EJ, ), will be obtained
from Eqs. (11) and (13):

m* S 1
m S~ 1 —[V,J(EJ, —E~)]

where S& is the face area of the equivalent free-
electron Fermi sphere. We estimated S from
de Haas-van Alphen measurements ' as S- 0.88S&
(the total cross section of the necks is about I%%uo of
S&). The value of (E~ —E„) was taken from optical
measurements, whereas the value of V,„-2. 1 eV
was evaluated from band-structure calculation of
copper. 3'

In this way we obtained a value of m*/m = 1.28.
This value is in very good agreement with the value
obtained for the density of states by direct band-
structure calculations. ' It is also in good agree-
ment with values obtained from specific-heats and
cyclotron-resonance experiments, after excluding
electron-phonon effects. It is interesting to note
that this agreement is good in spite of the simplifi-
cations used in this model; we did not take into
consideration, for instance, the width and struc-
ture of the d band.

In order to obtain the volume dependence of
m*/m, we had to know S, EF —E~, and V,~ as a
function of volume. This information for both S
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FIG. 10. Density of states in copper in the vicinity of EJ;.
(Ref. 38).

and E~ -E„was derived from experimental data:
in the former case from de Haas-van Alphen mea-
surements under pressure, '3 and in the latter
from optical measurements as afunction of tempera-
ture and pressure. ' The volume dependence of
V,~, on the other hand, was taken from b"nd-struc-
ture calculations made by Jacobs. ' The volume
dependence obtained in this way was confirmed by
an independent estimate based on the measurement
of the Lq Lz direct optical transition as function of
temperature.

In Fig. 9 the dashed line represents the volume
dependence of m~/m in the solid and liquid states,
derived using the described procedure. We as-
sumed that in the liquid state the necks disappear,
thus causing an increase in m*/m. The necks dis-
appear because order is not preserved upon melt-
ing and the Fermi surface, which in the solid
touches the face of the Brillouin zone, becomes a
sphere (see Sec. IV).

The solid line in Fig. 9 presents m*/m as de-
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rived from our measurements. One can see that
in the solid the agreement betmeen the experimen-
tal and calculated m*/m is very good. In the liq-
uid, there is a considerable difference; m~/m in
the liquid is almost an extrapolation from the solid,
in contrast to the positive jump on melting pre-
dicted by the model.

The reason for this discrepancy seems to be the
following one. While calculating m*/m in the solid
we neglected those contributions to the density of
states which are due to singularities in the energy.
These singularities arise from actual contact of
the Fermi surface with the Brillouin-zone bounda-
ries. The contributions are positive and equal to
a few percent of the total density of states, as
shown in Fig. 10 t which gives a detailed calcula-
tion of N(E) near E», by Faulkner, Davis, and

Joy ]. Upon melting, as order is destroyed, these
singularities disappear together with the Brillouin
zone and the necks. Thus, the melting brings
about a decrease in m*/m which seems to cancel
the increase caused by the disappearance of necks.

The change in m*/m presented in Fig. 9 is chief-
ly due to expansion of the lattice. The explicit
temperature dependence of the band structure of
copper is negligible. This can be evaluated fol-

g»= ~k) -Q ~n)(n(k), (15)

where the summation n is made over all the popu-
lated core states I n) = )nlm). Thus, P~ is ap-
proximately

lowing a procedure similar to that used by Kasow-
ski and Falicov 3 in calculating the ternperature-
dependent band structure of cadmium. In that case
the parameter characterizing the change in the
band structure is the Debye-Wailer factor
e ~"' '. However, in copper near the melting
point this parameter is not significantly different
from unity —about 0. 90 even for q= 2K~. Thus, the
rise in temperature has only a small direct influ-
ence on quantities which are order dependent, such
as the necks and the singularities in the density of
states. The hybridization presented by the param-
eter V,„is not dependent on order and structure.
Therefore it is a function of volume only and not of
temperature.

Let us see now what is the volume dependence of
P~ predicted by the described model. The simplest
approximation of P~ is made assuming a single
orthogonalized-plane-wave (OPW) behavior of the
Fermi electrons:

f M

Pg = 1 —Q l Jo(kg r) R„o(r) 4nr dr R„o(0)
n ~0

I&
, 1 — —

~
Q (2l+1) j,

(kyar)R„,

(r) 4vr dr) n. s 0 J
(16)

Micah et al. ,
' using Herman-Skillman core func-

tions, obtained a value of Pz = 5. 43 a.u. for cop-
per. This value is much greater than that derived
from experimental results, as we shall see later.
In addition, their value for P~ is almost indepen-
dent of volume, in contrast to our results (see Fig.
7).

In Eq. (16) we have disregarded the influence of
hybridization. Its influence on the Fermi wave
function can be approximated by rewriting Eg. (15)
as

(1V)

where the last term is mixing of the d function into
the OPW function, brought about by hybridization.
The addition of this last term modifies P~ of Eq.
(16), by adding + V,»/(E» —E~) to its denominator.

Using V,~=2. 1 eV and E~-E„=3.7 eV, as be-
fore, this denominator will be 1.18, instead of 0. 86
calculated without hybridization. Thus, the new
value of P~ would be 3. 95 a.u. instead of 5. 43 a.u. ,
with no hybridization.

The volume dependence of Pz, in its new form
is brought about via V,» and (E» -E»). Employing
the values with which we calculated the volume de-
pendence of m~, we calculated that P~ increases
by about 15% when the volume is increased by 15%%uo.

This increase is much smaller than that derived
from our measurements, which is aboutfivetimes
greater (see Fig. 7).

The OPW model not only predicts too small a
volume dependence of P~, but also too high an ab-
solute value. The value of P~ is derived from the
room-temperature Knight shift %= 0. 237/~, using
Eqs. (1), (4), and (8). We assumed m*/m= l. 3,
n = 0. 5 [from the experimental value of X(n)) and
used the free-electron values of X&= 0. 97 and 0
= 80 a. u. Thus we obtained an effective value of
(P»),«- 1.38 a. u. However, this value includes the
contribution of the s core polarization (see Sec. IV),
which is 10-50%%uo of the direct contribution. ~

Therefore, the experimental derived value of the
direct spin density is P~= 0. 92 —l. 25 a. u.

This value of P~ is about three to four times
smaller than that predicted by the OPW model in
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FIG. 11. Pz as against d character of the Fermi elec-
trons (defined in the text). The shaded area is experimen-
tally derived, whereas the dashed line is calculated by the
OPW .method.

agreement between the m*/m = 1.32, whichthey have
calculated and the m*/m = 1.27 deduced from the
model.

In Fig. 11 we present P~ as against d character
of the Fermi electrons, keeping the volume an
implicit parameter. The uncertainty in the experi-
mental value is due to the doubtful value of the core
polarization. When one extrapolates P~ to zero
hybridization (zero d character), one gets a value
near to that calculated by the OPW method. It is
reasonable to conclude, therefore, that hybridiza-
tion not only reduces the value of P~, but also
brings about its strong volume dependence.

The dependence of Pz on volume in the liquid is
an extrapolation of that in the solid. The only ef-
fect of melting on PJ, is that of the accompanying
volume change. This yicture agrees well with the
conclusion that copper band structure is dominated
by hybridization, which is a nonstructural effect,
and is very weakly influenced by structure and or-
der.

its modified form. The reason for this great dif-
ference is apparently the inaccurate way in which
we introduced the effect of the hybridization. In
Eq. (16) its only effect is due to renormalization
caused by mixing of the d core states into the Fermi
states. We did not take into consideration, for in-
stance, the influence of hybridization on the core
states through correlation.

More realistic values are obtained by direct cal-
culations. Davis, 4 using the Korringa-Kohn- Ros-
toker (KKR) method of calculation, obtained Pz -2.0
a.u. Misetich, Hodges, and Watson, who made
a model Hamiltonian fit to a recent augmented-
plane-wave (APW) calculation, 4 attained a value
of P~ = 1.V a. u. It is interesting to note that in the
last calculation, it was found that the Fermi elec-
trons have 28% of d character. This value agrees
with the 27% derived from our model ]the fraction
of d character in our case is x/(0. 8+ x), where x
= [V,g(Ez —E~)] j. There is also a very good

VII. CONCLUSIONS

We have seen how information on the volume and
temyerature dependence of band structure in met-
als can be derived from detailed measurements of
Knight shift and spin-lattice relaxation.

In copper we have derived the temperature de-
yendence of m* and P~, and have shown that it is
caused mainly by thermal expansion. This volume
dependence of m* and P„has been explained semi-
quantitatively using the known band structure of
copper which is governed by hybridization. The
effect is nonstructural and thus there is almost no
effect brought about by loss of order accompanying
melting. Thus, the derived behavior in the liquid
is almost an extrapolation of that in the solid.
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