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Vacancy-formation entropies were computed for a number of face-centered-cubic solids
from vibrational frequency distributions which were computed from pair potentials. The forma-
tion entropy is a monotonic function of the vacancy relaxation, computed from the same pair
potential. It is shown that the relaxation of the nearest neighbors to the vacancy in fcc solids
can be described by h~ = —5. 8 & 10 R/&V}, where 0& is in percent, K is the compressibility,
& the linear thermal-expansion coefficient, and V is the molar volume. The computed vacancy-
formation entropies are described by M=1.83+3.4 && 10 (K/eV) in units of k/vacancy.
Similar relations are obtained for bcc metals. The experimental relations found for model
solids are used to predict vacancy relaxations and formation entropies from experimental val-
ues of K, e, and V. Vacancy relaxations are predicted to be less than 0.2/o of the normalneigh-
bor distance in most fcc metals and 2-5% in bcc metals. Vacancy-formation entropies are
predicted to be 1.Sk-2. 0k in most fcc metals and 2. 2k-2. 6k in bcc metals. The predictions
for the entropy are in satisfactory agreement with experimental data, where reliable data
exist.

I. INTRODUCTION

There are questions as to the self-diffusion
mechanism in rare-gas solids' and noble metals.

It is known that vacancies play an important role.
This has motivated a number of workers to attempt
tp calculate the formation entrppy, mptjpn en-
tropy, ~' formation energy, '7' '"' '6 and motion
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energy '4' ""of vacancies in rare-gas sol-
ids ' ' '' ' and simple metals ' ' ' ' ' These
works have assumed a potential to describe the
atom-atom interactions in the solid and have used
this interaction to calculate the defect properties.

There are two serious difficulties in the works
cited above: (a) The computed defect properties
are quite sensitive to the assumed potential, "'8
which is generally not known well enough to give a
definitive result; (b) there are considerable prob-
lems involved in calculating defect entropies. In
the standard approach, 3 one calculates force con-
stants from the potential, and uses the Einstein
approximation to calculate the entropy. Unfor-
tunately, the Einstein approximation is sufficiently
inaccurate that it is difficult to assess the validity
of the numerical results.

Both problems mentioned above can be sur-
mounted. In the case of the inaccurate potential,
one has available two approaches. One may look
for a new "best" potential. This approach has the
disadvantage that the new "best" potential may not
be good enough or may give results which differ
from those obtained with some other "best" poten-
tial. The second solution to the inaccurate poten-
tial problem is to seek results which do not depend
strongly on the potential and then to attempt to
relate these model-independent results to experi-
ment. This is the approach of the work presented
here. We calculate, with a method described be-
low, the vibrational-vacancy-formation entropy in
a number of solids described by several different
types of pair potentials. We show that there is a
simple relation between the vacancy-formation en-
tropy and vacancy relaxation (distortion around the
vacancy). This vacancy relaxation is related to the
anharmonicity of the pair potential, which is, in
turn, related to the high-temperature thermal-
expansion coefficient and the compressibility, which
can be determined experimentally. Thus, for any
solid, it is possible to use computationally deter-
mined correlations to estimate the vacancy-relaxa-
tion and -formation entropy from experimental ob-
servables. In this work we examine face-centered-
cubic (fcc) and body-centered-cubic (bcc) metals
and estimate vacancy properties. The same pro-
cedures could be applied to noncubic metals and
possibly polyatomic solids.

The inaccuracy of the Einstein approximation for
the entropy can be avoided by employing a procedure
first used by Land and Goodman 0 to calculate defect
vibrational frequencies and then by the author'2 to
calculate the entropy of mono- and divacancies in
rare-gas solids. In creating a vacancy, one goes
from a lattice with n sites and n atoms to a lattice
of n+1 sites and n, atoms. The only effect of this
process on the vibrational frequencies of the lattice
(and hence on the entropy) is through the change in

the force constants near the vacant site . (The re-
moved atom becomes just another bulk atom. ) The
vibrational frequencies and the entropy of vacancy
formation can be calculated by considering a per-
fect cluster of n atoms in an infinite lattice and then
a cluster of n sites and n-1 atoms in the same
lattice. Comparison of these two clusters gives an
approximation to the vacancy properties. As n,
the cluster size, approaches infinity, the above
procedure gives the vacancy properties.

We used the above procedure to calculate the
formation entropy of a single vacancy and the bind-
ing entropy of the divacancy in argon. '3 In the
earlier work, we obtained adequate agreement with
experiment for the single vacancy and showed that
the Einstein approximation gives seriously incor-
rect results for the divacancy.

In this paper, we calculate the vacancy-formation
entropy for a number of models of cubic metals
and then show how our model results can be used
to estimate the formation entropy of vacancies
in real metals. The paper is organized as follows:
In Sec. II we express formally the relations re-
quired to calculate the vacancy entropy for a model.
In Sec. IG we describe and discuss the models em-
ployed in this work. In Sec. IV we show that the
computational technique does give a well-defined
result and compute the vacancy entropies. In Sec.
V we discuss the possible relation of our computa-
tions and real materials. Finally, in Sec. VI we
attempt to predict the vacancy-formation entropy
of several solids and examine the relation between
our predictions and existing experimental data.

II. THEORY

Consider a cluster of n atoms on n sites within
a perfect crystal. The n atoms vibrate as coupled
harmonic oscillators and the remainder of the crys-
tal is held fixed. The vibrations of the n atoms can
be described by a an& Sn force-constant matrix
K„„. This force-constant matrix may be diagonal-
ized by suitable matrix operations to give its 3n
eigenvalues, k„„(i), i = l, . . . , 3n. The normal
vibrational frequencies are

where rn is the mass of the atom. Finally, the en-
tropy per atom, in this cluster approximation, is

s„„(r)=—5 „(,) ( —)n(1 —e "")),e""'—
where

If a central atom is removed from the original
n-atom cluster, we have left n —1 atoms plus a
vacancy. The vibrations of these n —1 atoms are
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described by a (3n —3) & (3n —3) matrix, K„,„, with
eigenvalues b„, „(i), i=1, . . . , 3n —3, and normal
mode vibrational frequencies v„, „(i). The entropy
per atom for the cluster with a, vacancy, S„,„(T),
may then be calculated from the frequencies.

At this point, we may calculate an approximation
to the entropy of formation of the vacancy. We
started with n atoms having entropy S„„(T)per
atom. After forming the defect, we have n —1
atoms with entropy S„,„(T) and one atom which has
been removed to another bulk site. But S„„(T)
is the appropriate approximation to the entropy of
a bulk atom. Hence, in the n-atom-ccluster approx-
imation, the entropy of forming a vacancy is given
by

(4)

The entropy of forming a vacancy in an infinite lat-
tice is then

TABLE II. Helaxations of near neighbors about a
vacancy in fcc metals in percent of normal distances.
Negative values refer to motion into the vacancy. Data
are from Girifalco and Weizer (H,ef. 25).

Metal

Pb¹i
Cu
Ca

1st
—1.42
—2. 14
—2. 24

20 73

2nd

0.43
0.39
0.40
0.41

cluster in bcc. Though the potential is not strictly
applicable to bcc, its use is instructive. One fea-
ture of the nearest-neighbor harmonic interaction
is significant: there are no relaxations around the
vacancy.

(ii) IVIorse Potential The .interactions between
two atoms separated by x is given by

y(r) D(e-2a&r-ro) 2
- 0(r-ro&) (6)

We have employed several standard models of
simple solids. All of these models utilize empiri-
cal pair potentials. The particular models to be
employed were chosen because they have previously
been used to calculate relaxations around vacancies.
Thermal-expansion effects are omitted in all of these
models.

(i) Nearest neighbor h-armonlc interactions only.
The only parameter in this potential is a scale fac-
tor, the force constant. All nearest-neighbor har-
monic potentials are identical except for the scale
factor. We have used this potential for both fcc and
bcc solids. It is well known that infinite bcc lat-
tices are unstable for this potential. The surround-
ing rigid matrix in our calculations stabilizes the

TABLE I. Morse-potential parameters for cubic metals.

Metal

Pb
Ni
Cu
Ca
Fe
Ba
Na

1.1836
1.419 9
1.3588
0.80535
1.3885
0.656 98
0.589 93

yo(A)

3.733
2. 780
2.866
4.569
2. 845
5.373
5.336

D(eV)

0.2348
0.420 5
0.342 9
0.1623
0.4174
0.1416
0.063 34

We will show in Sec. Ill that nS„(T) is well defined
and that our limit process converges. In this def-
inition of b, S„, we have neglected entirely any ef-
fects which come from other than the lattice vibra-
tions, such as the temperature dependence of the
energy. We also neglect surface contributions to
the entropy, ' which are thought to be small. 8

III. MODELS

where D, n, and ro are coefficients which must be
fit to the properties of the material. We used the
coefficients which were determined by Girifalco and
Weizer for the fcc metals Pb, Ni, Cu, and Ca
and the bcc metals Fe, Ba, and Na. The potential
parameters were obtained by fitting experimental
values for the energy of vaporization, the lattice
constant, and the compressibility and are in Table
I. These potential parameters do not necessarily
exactly describe the materials. Lincoln et al. 3

used the same experimental quantities and obtained
Morse-potential parameters differing from Girifal-
co's by as much as 10/o, theyalsoshowedthatthe
Morse potential does not adequately describe the
third-order elastic coefficients. In addition to
these objections, it is well knowna' that pseudopo-
tentials describe metals more accurately than
Morse potentials.

Several authors~'26 have used Girifalco and
Weizer's Morse-potential parameters to calculate
the relaxations around a vacancy (Tables II and
III). As can be seen with the bcc metals (Table
III), the calculation of the relaxations from the po-
tential is subject to some uncertainties. We are
not able to ascertain which set of relaxations is
best and employ Grimes and Rice's data. We do
this as these are the most recent and hopefully
eliminate earlier mistakes, and because Grimes
and Rice suggest that their discrepancies with Wyn-
blatt and Gostein may result from different crys-
tal sizes and shapes. Grimes and Rice point out,
however, that even more neighbor relaxations may
be important.

(iii) Lennard Jones 6-12 potenti-al. The interac-
tion between two atoms separated by x is given by

V(r) = 4e[(o/r)" —(o/r)'] .
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TABLE III. Relaxations of near neighbors about a
vacancy in bcc metals in percent of normal distances.
Negative values refer to motion into the vacancy. Data
are from Girifalco and Weizer (GW) (Ref. 25), Wynblatt
and Gjostein (WG) (Ref. 26) and Grimes and Rice (GR)
(Ref. 27).

Metal 2nd 3rd 4th Ref1st

Ba

—6.07
—6. 8
—6.96

-7.85
—8.4
-8.21

—10.80
—10.0
—9.74

2. 12
2.3
2.71

2. 70
3.3
2. 66

3.14
3.2

2.26

—0.25
—0.7
—0.66

—0.70
—1.0
—0.80

—3.43
—1.2
—1.01

0.27

0.33

0.21

0.20

0.05

GW
WG
GR

GW
WG
GR

of near neighbors around a
Lennard-Jones 6-12 potential.
normal distanc e. Negative
the vacancy. rp is the zero-
distance; r is the nearest-
in the calculations. Data are
33).

TABLE IV. Relaxations
vacancy in fcc argon with a
Distances are in percent of
values refer to motion into
pressure nearest-neighbor
neighbor distance assumed
from Burton and Jura (Ref.

r/rp 1st 2nd

In this work we have used potential constants appro-
priate to argon. The Lennard- Jones 6-12 poten-
tial is often applied to the study of defects in rare-
gas solids, ' ' '@' '" though it is not the best pos-
sible pair potential ' and many-body effects may
be quite important. '&4, sc, s2 Burton and Jurass cal-
culated the relaxations of argon around a vacancy
for the normal zero-pressure interatomic distance
and for a number of compressions and dilations of
the solid. In this work we use some of their data—
namely the normal nearest-neighbor distance and

distances which give relaxations comparable to the
Morse-potential relaxations, Table II, or give zero
relaxation as given by nearest-neighbor interac-
tions; one distance was examined because of the
outward relaxation of the neighbors to the vacancy.
The values of r/ro and the neighbor relaxations em-
ployed here are in Table IV.

(iv) Lennard Jones 6-7 po-tential. Theinteraction
between two atoms separated by x is given by

V(~) = D[(o/~)' (/~o)'] . - (8)

Burton and Jurass also used this potential, with con-
stants appropriate to argon, to calculate relaxa-

tions around a vacancy for a number of values of the
nearest-neighbor distance. In this work, we use
some of their data, ; the values of r/ro and the relax-
ations employed are in Table V.

IV. COMPUTATIONS

The first computations' were made for nearest-
neighbor atomic interactions, model 1. The force-
constant matrices were diagonalized on an IBM
360/91 computer using a matrix-diagonalization
routine developed by Kortzeborn of IBM. In pre-
vious studies involving matrix diagonalization,
we have found that the standard IBM-Scientific-
Subroutine-Package matrix-diagonalization proce-
dure does not give sufficiently reliable eigenvalues.
Calculations were made for clusters of up to 88
sites. All of the clusters were formed by adding
closed shells of near neighbors to a central site.
The central site was the vacancy in the cluster.
The values of LS„, Eq. (4), were calculated in the
high-temperature limit, where they no longer are
temperature dependent. Table VI contains the
computed values of AS„ for the nearest-neighbor
interactions for an fcc lattice.

As can be seen from Table VI, the vacancy-for-
mation entropy converges nicely as e increases.
Based on Table VI, it appears that clusters includ-
ing fourth-nearest neighbors are adequate to esti-
mate defect properties. All further computations
in this paper are for clusters of six shells (O'I sites)
in fcc solids and seven shells (88 sites) in bcc sol-
ids. We could not examine larger clusters without
using very elaborate matrix-manipulation proce-
dures 6 as our computer does not have sufficient
storage. Diagonalization of the 261' 261 matrix
for a 8V atom cluster requires 850000 bits of
storage on our IBM 360/91 computer and costs ap-
proximately 25 dollars.

The high-temperature vacancy-formation entropy
6$„[Eq. (6)] was computed for all the models de-
scribed in Sec. III using 87 site clusters for fcc
solids and 88 sites for bcc solids. The results of
these computations are in Tables VII (fcc) and VIII
(bcc).

TABLE V. Relaxations of near neighbors around a
vacancy in fcc argon with a Lennard-Jones 6-7 potential.
Distances are in percent; of normal distance. Negative
values refer to motion into the vacancy. rp is the zero-
pressure nearest-neighbor distance; r is the nearest-
neighbor distance assumed in the calculations. Data are
from Burton and Jura (Ref. 33).

0.92
1.00
1.00
1.03
1.05

—1.377
—0.606
—0.606

0.010
0.660

0
0

0.171
0
0

r/rp

0.88
1.00
1.06

1st
—2. 199
—1.375
—0.506



n
(No. of sites)

13
19
43
55
79
87

N
(No. of shells) (0/vacancy)

l. 50
1.53
l.68
1.81
l. 84
l. 83

V. RELATION BETWEEN COMPUTATION AND EXPERIMENT

Three conclusions are immediately apparent from
Tables VII and VIII: (a) Compression of the solid
increases the vacancy-formation entropy; (b) va-
cancy entropies can vary widely within one lattice
structure; (c) vacancy entropies are somewhat
higher in bcc solids than in fcc solids.

The third of these observations has an obvious
explanation: In bcc solids there are only eight
nearest neighbors as compared with 12 in fcc sol-
ids; therefore, the lattice is looser around a bcc-
solid vacancy than around an fcc-solid vacancy.

This section is devoted to an explanation of ob-
servations (a) and(b) We will show that there are
systematic variations in the entropy and will attempt
to relate these variations to the properties of the
materials. Ne will ultimately obtain empirical

TABLE Vl. M„, the high-temperature entropy of forma-
tion of a vacancy in the n site approximation. N is the
number of closed shells of near neighbors added to the
central atom/vacancy. The data are for nearest-neighbor
interactions and an fcc lattice.

relations which can be used to predict the vacancy-
formation entropy in fcc and bcc solids. Most of
the discussion here will be devoted to fcc solids,
as we have examined a number of such, Table VII.

In Fig. 1, we have plotted the calculated vacancy
formation entropy in fcc solids, Table VII, against
the calculated relaxation of the first-nearest neigh-
bor to the vacancy for the various models employed
here, Sec. III, Tables II, IV, and V. It is apparent
from the plot that the vacancy entropy varies mono-
tonically with the vacancy relaxation. The actual
variation in the figure is linear and the deviations
of the entropies from the straight line are less
than 2%%uo. We do not attach any special significance
to the linear relation. It is interesting to note that
the relaxation uniquely determines the entropy. It
is, however, important to stress that we have ex-
amined only four types of potentials; other poten-
tials might give vacancy entropies which do not lie
close to the curve shown.

At this point we will explain why the vacancy en-
tropy increases with increasing inward relaxation.
Consider an atom in a one-dimensional line of
atoms with an anharmonic potential, Fig. 2. If the
interaction is not confined to just the nearest neigh-
bors, the zero-pressure nearest-neighbor separa-
tion ro will not be the minimum-energy separation
for the potential, o. Rather the long-range attrac-
tion will cause the atoms to be slightly closer to
each other than o. U we expand the potential energy
of the atom about the minimum-energy separation,
we find

TABLE VII. Computed high-temperature vacancy-for-
mation entropies for a number of fcc models. The models
are described in Sec. III.

where

(IO)

Material

General

Pb¹i
Cu
Ca
Ar

Model

Nearest-neighbor inter-
actions, No. 1

Morse potential, No. 2
Morse potential, No. 2
Morse potential, No. 2
Morse potential, No. 2
L-J 6-12 potential, No. 3

z/zp = l.00,
two shells relaxing

L-J 6-12 potential. , No. 3
one shell relaxing
g/vp =0.92
x/xp =1.00
x/xp =1~ 03
z/xp = l.05

L-J 6-7 potential, No. 4
r/rp =0.88
x/xp = 1.00
x/zp =1.06

AS„(k/vacancy)

1.83

2.76
3.10
3.17
3.47

2. 24

2. 61
2. 30
1.94
l.47

2. 98
2.69
2.30

TABLE VIII. Computed high-temperature vacancy-
formation entropies for a number of bcc models. The
models are described in Sec. III.

Material

General

Model

Nearest-neighbor
interactions, No. 1

Morse, No. 2
Morse, No. 2

Morse, No. 2

~v
(k/vac ancy)

2.03

3.14
3.64
4.59

and I is the distance between two atoms. At
equilibrium, ro is less than a and 6 is negative.
The nearest-neighbor vibrational force constant is

I Bp'
p=B —3CA=B —SC(ro —o) .84

Now' suppose we create a vacancy at 0 as shown in
Fig. 2. The atom adjacent to the vacancy relaxes
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3.5

3.0

empirical relation between the vacancy relaxation
and experimentally accessible parameters which
describe the harmonic and anharmonic aspects of
the solid, the compressibility, and the thermal-
expansion coefficient.

Suppose we write the change in energy of a solid
when its nearest-neighbor distance r is changed as

n. U(r) = c(r —r, )' —g(r —r, )' . (14)

0'
V)

a

(This is the simplest anharmonic expansion. ) Then
the isothermal bulk compressibility is given by

2.0

l.5

K= (9/2v 2) (r/c)

for fcc solids, and the high-temperature linear
thermal-expansion coefficient is given by3~

o = (1/r) (3g/4c')k,

(15)

FIG. 1. Computed vacancy-formation entropies for a
number of fcc solids using nearest-neighbor (N-N),
Lennard-Jones 6-12 (LJ 6-12), Lennard-Jones 6-7 (LJ
6-7), and Morse potentials plotted against the computed
percentage relaxation of the first-nearest neighbors to
the vacancy, 6&.

towards the vacancy by 5. Hence it relaxes array
from its nearest neighbor by 5 to a separation ro
+5. But from (11) the nearest-neighbor force con-
stant is decreased to

2pk=-, =a-3C(r, +5 -c)
2 86

and the change in the nearest-neighbor force con-
stant is

Therefore, the larger the inward relaxation, the
greater is the decrease in the nearest-neighbor
force constant. But the entropy is determined by
the force constants. The smaller the force con-
stant, the larger is the entropy. Hence, a large
inward relaxation of the atoms adjacent to the va-
cancy causes a large increase in the entropy.

We have shown simply that the relation between
relaxation and entropy in Fig. 1 is reasonable.
Similar reasoning explains why compression of a
solid causes an increased relaxation of the vacancy
(see Table VII, argon data): The more the solid is
compressed, the more repulsive the nearest-neigh-
bor interaction becomes.

We have shown, so far, that it is physically rea-
sonable that the vacancy-formation entropy increas-
es as the inward relaxation of the nearest neighbors
increases. This occurs because of the anharmonic-
ity of the potential. We will now attempt to find an

where k is Boltzmann's constant. Note that c/g
has units of cm. Hence c/gr is a dimensionless
quantity which describes the relative harmonic and
anharmonic contributions to the solid.

Combining (15) and (16) we find that

c/rg= (k/3~2) (K/nr') .
Hence, K/o. V, where Vis the molar volume, is a
measure of the anharmonicity.

We have calculated c, g, n, K, and K/uV for our
four fcc metals described by Morse potential and
for argon at its normal atomic distance described
by the Lennard-Jones 6-'7 and 6-12 potentials. The
parameters were not computed for dilated and com-
pressed argon, as the expansion in (14) is not appli-
cable to them —their energy also contains a linear
term in the nearest-neighbor distance. The com-
puted quantities are in Table IX.

In Fig. 3, we have plotted K/nV against the relax-
ation of the first-nearest neighbors to the vacancy
in the fcc solids. We have not included the nearest-
neighbor potential, model 1, as it is not along-range
interaction and o. =0 for it. K/nV was taken from
Table IX and the relaxations are from Tables II,

r +8---)

FIG. 2. Schematic representation of a vacancy at 0 in
a one-dimensional line of atoms. yo iy the normal inter-
atomic spacing. p is the relaxation. The energy is also
represented schematically as a function of distance. 0 is
the pair minimum-energy separation.
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E/n V
(x ].03)

g E
(erg cm ) (cm dyn )Material (erg cm 2)

Ar

0.78x 103 0.97x 10
potential

6-12 4. 1 7.1
potential

Pb 50 61
Ni 166 250
cu 128 180
Ca 26 220

154x 10' 44x 10 ' 14.6

10.5

16.60.72
0.37
0.45
0.86

0.47 19.2
0. 63 19.6
4. 8

TABLE IX. Computed value of c andg [see Eq. (14)], E,
the isothermal compressibility, G.', the high-temperature
thermal-expansion coefficient, and K/a V, where V is the
molar volume for six fcc solids. z

3,0

0)

2.5

2.0
I.O 2.0

(K/0V) 2 x lo'6

3.0 5.0

IV, and V. The relaxations for these six fcc solids
can be described to within a 7% by

5. Bx].O" (K/nv)',

with 5, in percent and K, Q., and V in cgs units.
Finally, in Fig. 4, we plot the vacancy-formation
entropy As„ for these six fcc solids against (K/nV)'.
Here the data can be fit within ~ 2Fo by

nS„= l. 83+ 3. Vx lO" (K/n V)',

with S in k/vacancy and K/n V in cgs units.
It is very important to realize that Eqs. 18 and

19 are essentially experimental results. We have
done a numerical experiment —computed the vacan-
cy-formation entropy aS„and the vacancy relaxation
g, for six model fcc solids. We have shown that our
results can be described by simple empirical rela-
tions. We have argued physically that the relaxa-

FIG. 4. Plot of computed vacancy-formation entropy, DS„,
against (K/a V) in cgs units for six fcc solids.

5, = —3. 54xlO K/nV (2o)

to within + 3% with 5, in percent and K/n V in cgs
units and by

ZS„= 2. O3+2. 93 X lO" (K/n V)'

to within+ 1% with aS„ in units of 0/vacancy.

tions and the entropy depends on the relaxations and
the anharmonicity. However, we will make no ef-
fort to attempt to justify the coefficients which enter
into Eqs. 18 and 19.

In addition to fcc solids, we examined three an-
harmonic bcc solids, all of which are described by
Morse potentials. In Figs. 5 and 6 we plot the re-
laxations of the first-nearest neighbors and the va-
cancy-formation entropy against K/n V. Our rather
limited data for bcc solids can be fit by

MORSE
6-I 2
6-7

IG

0.5
0.5 1.0

K /g V x I 08
2.0

2.0

K/aV x IO'

2.5 3.0

FIG. 3. Plot of -p&, the inward relaxation of the
nearest neighbors to the vacancy in percent, against X/O.'V
in cgs units on a log-log scale for fcc solids.

FIG. 5. Plot of —g&, the inward relaxation of the
nearest neighbors to the vacancy in percent, against K/O. V
in cgs units on a log-log scale for bcc solids.
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4.5

4.0
O

O

c3
ffJ 3 5

3.0
3.0 5.0 7.0 9,0

entropies from the values of K/nV in Table X.
These are also in the table. As K/nV is small for
all of these materials, the predicted inward vacan-
cy relaxations are reasonably small, & 0. 3% for all
fcc elements except Ca (0.71%) and Sr (0. 90%) and
(2-5)% for bcc. The entropies are all in the range
1.8k-2. 0k for fcc elements except Ca (2. 25k) and
Sr (2. 87k) and 2. 2k-2. 6k for bcc solids. It is in-
teresting to note that AS„does not vary widely for
a given structure. This occurs because K/nV is
not strongly material dependent. Sirdeshmukh"
has suggested that K/o. V is about 5&& 10 ' for all
fcc metals and 10 for bcc metals. These values
imply vacancy-formation entropies of 1.9k/atom
in fcc metals and 2. 3k/atom in bcc metals.

Several experimenters have measured vacancy
concentrations in metals and krypton. From their
measurements, they have attempted to deduce the
vacancy-formation entropy. Some of the available

(K/0 V) x l0'

FIG. 6. Plot of the computed vacancy-formation entropy
+/0. p)2 in cgs units for three bcc solids.

TABLE X. Experimental values of K/&V and predicted
values of the nearest-neighbor relaxations to the vacancy

6&, and the vacancy-formation entropy for a number of
bcc and fcc elements. Negative values of 6& correspond
to inward relaxations.

VI. PREDICTION OF VACANCY-FORMATION ENTROPIES

In Sec. V we have discussed the results of some
numerical experiments. We have found that there
exist empirical relations between the vacancy-for-
mation entropy aS„and K/a V, where K is the iso-
thermal compressibility, n is the linear thermal-
expansion coefficient, and V is the molar volume.
In this section, we use these relations, Eqs. (18)-
(21), to predict vacancy-relaxations and -formation
entropies of real materials.

In Table X, we give K/nV for a, number of fcc and

bcc elements. Kis in cm dyn ', n in K ', and V
in cm . The values of n for Li, ' Na, "K, ' Ar, "
Kr, Xe, 4' Cu, '

Ag,
"Au, "Al, '6 and Pb were

determined near the melting temperature, as were
the values of K for Na, K, ' Ar, "Kr, "and Xe."
K at the melting temperature was estimated by
extrapolation from lower temperatures for Cu,
Ag,

' Au, ' Al, "and Pb. ' The remaining data was
taken from Gschneider's tables at room tempera-
ture. '3 In general, the calculated values of K/nV
in Table IX are somewhat larger than the experi-
mental values in Table X. This occurs because
the pair potentials do not adequately describe the
anharmonicity of the solid. This is not surprising
as it has been shown that the Morse potential gives
poor values of the Gruneisen parameter~2'37 and the
third-order elastic coefficients, both of which de-
pend on the anharmonicity.

Ne have used Eqs. 18-21 to calculate the first-
neighbor relaxations and the vacancy-formation

bcc elements

Ll
Na
K
Rb
Cs

Ba

V
Cr
Fe
Nb

Mo
Ta
W

fcc elements

Ar
Kr
Xe

Ca
Sr

Ni
Cu
Rh
Pd
Ag
Ir
Pt
Au

Al

K/0, V
(x 10')

10.9
9.2

12.8
6.3
7.2

13.1
8.7
8.5
6.8
7.6
7.6
6.9
6.8

6.0
5.1
6.3

11.1
12.5

6.1
4. 1
5.2
5.3
3.6
4.8
4.3
3.0

4.9

4.0

Og(Vo)

3 ~ 2
—4.5

2 ~ 2
—2.5

—4.6

3 ~ 1
—3.0
—2.4

207
207

—2.4
—2.4

—0.21
—0.15
—0.23

—0.71
—0.90

—0.22
—0.10
—0.15
—0.15
—0.07
—0.13
—0.11
—0.05

—0.14

—0.09

~v
(k/vac ancy)

2.39
2.27
2.53
2.24
2.28

2.55

2.26
2.25
2. 17
2.20
2.20
2.17
2.17

1.95
1.92
1.97

2.25
2.37

1.96
1.89
1.92
1.92
1.88
1.91
1.90
1.86

1.92

1.89
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TABLE XI. Experimental values of the vacancy-
formation entropy. The methods used are thermal ex-
pansion (TE), heat capacity (HC), quenching (Q), compu-
ter analysis of thermal expansion and diffusion data (C).

Material

Al

Ni

Li

Na

(0/vacancy)

2. 0 —2.4
0.8

1.5+ 0.5
0.5

1.0
0.5
3.15

0.5
3.7

1.5
2. 6
0.7+ 2.0

1.5 —3.0
1.9 —3.6
2. 3 —3.9

0.9+ 0.8

2. 55

5.8+ l. I
2 —4
3.1 —6.5

—3.2+ 1.6

Method

TE
C

C

TE
C
HC

C
HC

TE+Q

TE
TE
HC

TE

HC

TE
C
HC

TE

Ref.

46
55

44
56

45
57
58

60
61

31
32
62

58

39

58
63

data is summarized in Table XI. We also include
Mehrer and Seeger's estimates of the vacancy en-
tropies based on their analyses of diffusion and
thermal-expansion data. We have not attempted to
list all available experimental data. Kraftmakher'
gives a number of additional heat-capacity results.
Hoch~4 has pointed out that the interpretation of
heat-capacity experiments is ambiguous and that
Kraftmakher's formation entropies may be too high.

The data in Table XI show tha, t vacancy-forma-
tion entropies are not well known at this time. This
reflects several problems. The thermal-expansion
technique is the most reliable technique. However,
the experiments on most materials have been car-
ried out by only one group, with the exceptions of

the studies of Kr and Na. In Na, we have a wide
range to choose from for AS„. In Kr, the best ex-
periments, Table XI, agree that AS„ is in the range
1.5k-4. Ok; however, other experiments do not
agree with these data for the total vacancy concen-
tration. ' The experiments themselves are quite
difficult ' and their interpretation is uncertain. '
It appears that the best experimental work on fcc
solids is at least compatible with our predicted re-
sults, AS„,-1.8k-2. Ok, for fcc elements other than
Ca (2. 25k) and Sr (2. 37k). The situation in bcc
metals is too uncertain to draw any conclusions.

VII. CONCLUSIONS

In this paper, we have examined vacancy-relaxa-
tions and -formation entropies in a number of
model solids. We have shown by numerical experi-
ments that the relaxations and formation entropy
can be determined empirically from experimental
knowledge of the compressibility, thermal-expan-
sion coefficient, and molar volumes. Experimental
values of these coefficients suggest that relaxations
are & 0. 3% in fcc solids except Ca (0. 71) and Sr
(0.90) and (2-5)% in bcc solids; the predicted va-
cancy entropies are about 1.Sk-2. Ok for fcc solids
other than Ca (2. 25k) and Sr (2. 37k) and 2. 2k—
2. 6k for bcc solids. These empirically estimated
values are compatible with existing experimental
data. Unfortunately, the data are not good enough
to draw any definite conclusions. The results of
these numerical experiments are more accurate
than those of most laboratory experiments, which
give widely scattered results. Until further labora-
tory experimental work is done, our predicted en-
troyies must be regarded as the best "experimental"
data and may be useful in estimating vacancy en-
tropies for systems for which no better data, are
available.
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