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Anderson s theory of localization is critically reviewed and extended with particular em-
phasis on some controversial aspects. It is shown that when the randomness exceeds a cer-
tain critical value, all the eigenstates become localized in agreement with Anderson's original
result. When the randomness is less than this critical value, the tails of a band consist of
localized states. The character of the states changes sharply from localized to extended at
mobility edges, in agreement with the Mott-CFO (Cohen-Fritzsche-Ovshinsky) model. As
the randomness increases, the mobility edges move inwards into the band and they coincide
at Anderson s critical value of the randomness. A criterion is developed which, under cer-
tain conditions, imposes upper limits on the extent of the portions of the energy spectrum con-
sisting of extended states. These conditions are fulfilled exactly in the case of a Lorentzian
distribution of single-site energies and approximately within the framework of any single-site
approximation. Thus in the Lorentzian case upper bounds are obtained for the positions of
the mobility edges and the critical value of the randomness for which Anderson's transition
takes place. These results are in agreement with the Mott-CFO model.

I. INTRODUCTION

Considerable attention has been given recently to
the problem of the electronic structure of disordered
materials. Perhaps the most significant contribu-
tion to the field is Mott's notion' that there exist
energies of sharp transition from localized states
in the band tails to extended states in the interior
of the band. ' 3 This notion is based on results ob-
tained by Anderson in a remarkable paper entitled
"The Absence of Diffusion in Certain Random Lat-
tices" as well as some other results suggesting
the existence of localized states in the extreme
tails of the bands in disordered materials.

Anderson considers what is essentially a tight-
binding model, in which a single band is formed
from s-like atomic orbitals with energies &"„cor-
responding to the site 1. The bandwidth is B= 2VZ,
where V is an overlap energy integral and Z is the
coordination number. Anderson introduces random-

ness into the system by assuming that the quantities
E», are random variables possessing a common dis-
tribution function with a width I' around the mean
value. He finds that there is a critical value
I', -BlnZ of l" such that for I'~1", the states at the
middle of the band (and by inference all the states)
are localized. On the other hand, for I'& I', the
states in the middle of the band are extended.
Anderson has demonstrated that his results hold
only if the off-diagonal matrix elements V~ - are of
range sufficiently short to give rise to bands of
finite width. His main line of argument is as fol-
lows: The localizability of an eigenstate belonging
to an eigenenergy E = 0 is related to the convergence
of a renormalized perturbation expansion (RPE) for
the self-energy 65(0). Since one is dealing with
random quantities, the convergence is a matter of
probability. %'e show here by comparison with a,

geometrical series that the series for &g(0) (E= 0
corresponds to the middle of the band) converges
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with probability p-1 if I'~ I", and diverges with
probability p- j. if I' & I'„ thus proving the original
statement. One expects on physical grounds that
the last eigenstates which will become localized as
the randomness increases are those with eigenen-
ergies lying in the middle of the band, and conse-
quently their localizability implies the absence of
any extended states in the system. This disappear-
ance of extended states from the system as the
randomness exceeds a certain critical value is
termed Anderson's transition by Mott. There is
experimental evidence supporting Anderson's re-
sults, as has been pointed out by Mott. "'

In Anderson's paper there were no suggestions
for the energy distribution of those extended states
which exist when the randomness is less than crit-
ical. The work on the eigenstates in the tails of the
bands in disordered systems is complementary
to that of Anderson's, covering situations of small
randomness. These two disjoint aspects of the
problem were synthesized by Mott into a single
picture through the introduction of critical energies
E, separating regions in which all the states are
localized from those in which all states are ex-
tended. The energies E, depend, of course, on the
characteristics of the system and, in particular, on
the degree of randomness. In the framework of
this picture, Anderson's transition can be under-
stood as a disappearance of regions of extended
states caused by coincidence of two adjacent E,.
This same picture was later arrived at independent-
ly by Cohen, Fritzsche, and Ovshinsky (CFO) in
their model for amorphous semiconducting alloys.
In view of the experimental evidence and the rea-
sonableness of the basic assumptions there seems
little doubt about the basic correctness of the Mott-
CFO model. In this paper we shall show how one
can justify the Mott-CFO model by using an approach
based on that of Anderson's.

Anderson's original paper is well known for being
very complicated and difficult to read. Ziman'
achieved considerable simplification and clarity of
presentation at the expense of some rigor in the
argument. Thouless ' has achieved further clarifi-
cation, has improved the mathematical analysis
somewhat, and has given a critical discussion of
some aspects of the paper. Nevertheless, some
aspects of Anderson's paper are still unclear. We
therefore present in this paper a critical review of
Anderson's theory without restricting ourselves to
a specific energy, the middle of the band, as Ander-
son did, but examining the problem as a function of
energy. This slight generalization, when coupled
with a detailed analysis of the RPE for 6;(E), per-
mits a first-principles derivation of the Mott-C FO
picture for the particular model that we examine
through the introduction of a localization function '
L(E) such that the localized (extended) eigenstates

correspond to L (E) & 1 (& 1) and the mobility edges
E, to L(E,) = 1. Moreover, considerable progress
has been achieved in estimating L(E) under certain
conditions. ' ' which are exactly satisfied in the
case where the single-site energies follow aLorentz-
ian distribution and approximately so within the
framework of any single-site approximation. Un-
der these conditions a function F(E) exists such that
when F(E) & 1, L(E) & 1; the function F(E) is no more
difficult to calculate than is the average Green's
function.

There have been claims that Anderson's proof of
localization is so basically incorrect that localiza-
tion does not exist. ' ' These refutations of Ander-
son's results have been dealt with already by Ander-
son, Mott, and Thouless. ' We hope that our
analysis of Anderson's model together with the new

exact results will end debate on the existence of
localization.

In Sec. II the connection between the localizability
of a state and the analytical properties of the self-
energy is examined. The analytical properties are
related to the convergence (or divergence) of a re-
normalized perturbation series expansion for this
quantity. In Sec. III the problem of the convergence
of this series is examined. Since the terms of the
series are random variables, the convergence (or
divergence) of the series for a given energy is a
matter of probability. A function L(E) is introduced
and it is shown that when L(E) & 1 the series con-
verges with probability unity and when L(E) & 1 the
series diverges with probability unity. In Sec. IV
estimates of the function L(E) are presented and the
results so obtained are compared to the similar
ones of Anderson and Thouless. " In Sec. V it is
shown that under certain conditions a function F(E)
can be defined such that L(E) & 1 when F(E) & 1;
moreover, the calculation of the function F(E) is of
the same difficulty as calculating the average
Green's function. The particular case of the
Lorentzian distribution of the single-site energies
is considered and some exact results are derived.
In Sec. VI we conclude this paper by discussing
some interesting aspects of the present approach in
relation to the status of the theory of disordered
materials.

II. ROLE OF SELF-ENERGY, ITS ANALYTIC PROPERTIES,
AND ITS PERTURBATION EXPANSIONS

Anderson has considered the motion of a particle
in a three-dimensional array of potential wells such
that in each well n the particle can occupy a Wannier
state I n ) of energy z;. The Hamiltonian is assumed
to be

(1 ~a~m) = e-V;-+ Vf-,

where V;- is assumed to satisfy the periodicity
condition
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&(4;j)=II;&(~;) . (2.3)

If VI" in (2. 1) were identically zero, then the
eigenstates of H would be just the states in) which
are by definition localized. On the other hand, if
Vy- were not identically zero and the quantities &-
were all identical, then we would have a periodic
case for which according to Bloch's theorem all the
eigenstates are extended. In the present problem
it is not a prior clear what is the nature of the ei-
genstates. One way to decide about the localiza-
bility of the eigenstates is to consider what happens
to a particle which initially was localized in a cer-
tain region of space. If there are localized eigen-
states in the neighborhood of the region considered,
the particle will have finite probability of being
initially in each one of these eigenstates. Since
these probabilities are time independent, there will
be a finite probability of rediscovering the particle
at the initial region as t- ~. On the other hand, if
no localized states exist in the neighborhood of the
region considered, the particle will diffuse away,
and the probability of rediscovering it in the initial
region will approach zero as t- ~. Thus, following
Anderson, our criterion for the nature of the eigen-
states is the behavior of the probability of redis-
covering the particle in an initially (i = 0) localized
state as t- ~.

More specifically, the particle is assumed to be
initially at the site 5 with a wave function IF). For
t &0, the wave function will be

p(f) =Z;c„-(f)ln) . (2. 4)

The quantity of interest is pm =limIc5(f)I, as i- ~,
which gives the probability of finding the particle
in the state IO) at i= ~, if initially (i=0) it was in
10). The probability goo depends on the set of vari-
ables e,». According to what was said before, if for
a set of values (a-„) of these variables, pg =0, then
there are no eigenfunctions of H localized near the
site 0. On the other hand, if ppt)&0, such localized
eigenstates exist. Using the relation

(2. 2)

and V» = 0. The disorder is introduced into the
system by allowing the quantities &- to be random
variables; any two quantities E;, e; are taken as
statistically independent whenever the distance r„-",

is larger than a finite correlation length. This
eliminates long-range order from the system and
is the basic requirement for the derivation of the
Mott-CFO model. However, when explicit numer-
ical results are sought, we shall make the unneces-
sary but simplifying assumption that the distribution
function for the set (e-„] is given by

where

Gq(E) =(f
l

—

l
5) (2. 6)

is the 0, 0 matrix element of the Green's function
for the system, we can express p»p0 in terms of the
Green's function as follows:

Poo = lim — dE Go(E+ is)Go(E is—) .
s «p+ tT

«40

(2. 7)

We define p~„» as the probability of finding the
particle for t=~ in the state In) if initially (t=0) it
was in If) Then (2.7) can be generalized to

po; = lim —
l dE Gg-„(E+is)G o(E —is),S

(2. 8)

1
no(E) = —lim Im Gg(E -is),

S «P+
(2. 10)

where no(E) is the contribution to the density of
states from the site 0, we can prove the physically
obvious relation

S I

~& pg;=lim —
l ~& Goy(E+is)G-„o(E —is)dEo-

~ 00

1
dE lim —ImGo(E —is) = no(E) dE = 1 .

$«P «OO

(2. ii)
The last step follows from the original assumption
that there is just one state per site. Use has also
been made of the relation

G"-„(E+is)= [G-„"(E-is)] (2. 12)

which is a direct consequence of the hermiticity of
the Hami ltonian.

Equation (2.7) can be rewritten as

too= J. fo(E)dE, (2. 13)

where

fq(E) = hm —G;(E+ is)G;(E - is)
s-0+ r (2. i4)

is a nonnegative quantity. Go(E) can be expressed
in terms of the "self-energy" bo(E), defined by

1
Go(E)= E ~ (E)

~ (2. iS)

where 6", ; is the l, r matrix element of the Green's
function for our system. Using the identity

1
5~Go (Eo+is)G"„o(E —zs) = . [Gg(E —is) —Gg(E+is)]
n

(2. 9)
and the well-known relation

co(t) = i lim
n 0+

+ «00+)/

(2. 6)
Using (2. 10) and (2. 15), fg(E) can be written as
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1. Sf;(E)= —lim —.i), „2is —[S;(E+is)—&()(E is)]

X(1E —is —z() —65(E —is)

1
z g'. —e; —~;)z+'s))

1
=n;(E) lim. .. 1 —[~;(E+is) —&;(E -is)]/&is '

(2. 15)
From (2. 16) we see that in order to have fo(E) 40
for a certain E we should have (i) no(E) 40 (which
means that eigenstates corresponding to energy E
and overlapping with the state !0) should exist) and

1
(li) Zj)(E)= lim

[ (
.

) (, )]/ . 0

(2. 17)
We laiow, however, that extended states do not con-
tribute to p0p and consequently for these states
fo(E)=0, which, in turn, implies that Z",(E)=0.
Thus if Zo(E) &0, the corresponding eigenstates can-
not be extended and are necessarily localized.

From Eq. (2. 17) it follows that a, branch cut in
G0 along the real axis corresponds to extended
states. Conversely, it is not difficult to show
that the extended states correspond to a branch
cut. The localized states, on the other hand, cor-
respond to Z))(E)40 and, of course, no(E)WD. The
analytical behavior of Go(E) for a typical con-
figuration of a random system in the range of
localized states is quite peculiar, as has already
been discussed by Thouless. ~ There is a dense
distribution at poles, but only a finite number of
these have residues larger than any preset small
value in a finite range of energy. Considerable
simplification of the whole analysis results if one
makes the physically justifiable assumption of
considering a localized eigenfunction as completely
confined within a finite volume, neglecting its ex-
treme tails. In this case in the region of localized
states, if any, Go(E) has a finite number of iso-
lated simple poles.

Consequently all singularities of Go(E) and &|l(E)
lie on the real axis and are either simple poles
(corresponding to localized states) or branch cuts
(corresponding to extended states). The simple
poles of Go(E) and hy(E) never coincide, since the
poles of bo(E) correspond to zeros of G",(E). Thus,
when Zo(E) vanishes because of a pole in ho(E), it
implies nothing about states of energy E because
Gf)(E) and therefore no(E) vanish. Using the gen-
eral relation~

G"(E ~' )=G.-(E & )Qm y' nm

+G=(E e-" )G--(E " e-. )nr r rm r

1
+)~ Vg„» V„--

1
+ ~ 0 ~

m0
m

(2. 19)

and can be represented by all paths starting from
the site 0 and only returning to it at the end. To
each step from one site l to another site m there
corresponds a factor V",", and to each site n (n& 0 )
there corresponds a factor 1/(E —e;).

If the matrix elements V;- fall off at large dis-
tances I rI r-

l slowly enough, even two-step pro-
cesses (corresponding to lowest order in the PS)
will delocalize the electron. Anderson demon-
strated that the matrix elements must be of suffi-
ciently short range —falling off faster than

I
—for there to be no transport in the lower

orders of the PS. This is exactly the condition for
having bands of finite width. We are interested only
in those cases where the energy bands are of finite
width so that the matrix elements V",- are automat-
ica.lly of sufficiently short range and thus localiza-
tion persists to any finite order in the PS. To
simplify the presentation we shall assume that

V",- = V when l, m are nearest neighbors

= 0 otherwise . (2. 20)

Equation (2. 19) has a meaning only as long as the
PS converges. If the quantities e„- are all finite, the
PS for &o(E) converges for large E, and b5(E) is
analytic in this region. As E approaches the origin
the PS for &o(E) can diverge in two physically dis-
tinct ways: (a) because of the contribution of terms
corresponding to paths of infinite extent, and (b)
because of the contributions of portions of paths

~ I

1-(~~-e-)G(E ".~" )
' (2. 18)

and taking the limit E -~, one can easily show
from (2. 15) that the poles of &o(E) correspond to'0
poles of the diagonal elements G-, where n is such
that Gg is different from zero and a superscript
1 indicates that the corresponding quantity has
been calculated for e",-~. It is obvious from
(2. 15) that the branch cuts of Go(E) and b5(E) al-
ways coincide. Thus n5(E) is finite when Zo(E)
vanishes along a branch cut, corresponding to
extended states. Having eliminated poles and
branch cuts in hg(E) from consideration, we see
that an eigenstate overlapping with the state l0)
and with eigenenergy & is localized if and only if
the self-energy bg(E) is analytic at E.

In order to study the analytic properties of the
self-energy &o(E), we first need to express it in
terms of known quantities. One way to achieve
this is the perturbation-series (PS) solution for
&o(E), which has the form

1~-(E) =& v-- —v--
0 Ong ~

n0
n n
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going back and forth among a finite number of
neighboring sites 1, n, . . . , m and possessing the
property that

1 . 1
~„~in @ ~

~mi & ~ (2. 21)

It is only the divergence of the first kind which im-
plies the delocalization of the eigenstates by intro-
ducing branch cuts along the real energy axis and
by mixing sites of infinite separation. The diver-
gence of the second kind exists even in systems of
finite extent and corresponds to changes in the posi-
tion of the isolated singular points (simple poles) of
Go(E), indicating that the localized eigenfunctions
and their eigenenergies are not identical to those of
the unperturbed situation. Thus the divergence of
the second kind could be eliminated if in every stage
of the perturbation expansion we changed the basis
functions in such a way that they coincide with the
eigenfunctions resulting from the perturbation ap-
proximation of the previous stage.

The PS for 4g(E) in general diverges in a finite
area of the complex E-plane symmetrical about the
real axis with its extent along the real axis deter-
mined by the lower and upper bounds of the energy
spectrum of the Hamiltonian (2.1) with co=~. If
the extremes of the spectrum correspond to local-
ized [extended' states, the divergences there come
through contributions of type (b) [(a)].

At this point it should be clear that Eq. (2. 19) is
not appropriate for our purpose of distinguishing
between localized and extended states, since it has
no meaning (diverges) in either case. On the other
hand, an expression for dq(E) that will hold in one
case only (localized or extended states) would be
adequate for the purposes of the present investiga-
tion. This is exactly what is achieved by the re-
normalization method, which eliminates the diver-
gences of the second kind in such a way that the re-
sulting renormalized perturbation expression for
&6(E) holds everywhere on the complex E plane ex-
cept along the branch cuts on the real axis.

To clarify the meaning of the renormalization
approach we consider first what happens in a finite
system. By allowing the dimensions of the system
to grow larger and larger we shall eventually re-
trieve the results for an infinite system. We ac-
complish this program formally by introducing a
set of Hamiltonians H~ differing from (2.1) in that

for all m such that y. -& R (2. 22)

where R is a positive length. Obviously H= lima~
as R- . We denote by G~, ~~, etc. , the Green's
function, self-energy, etc. , corresponding to the
Hamiltonian H~. For any finite R the quantity
&o s(E) can be written in a renormalized form
using Watson's method, 24 25

1
no, ~(E) = p I'&;E -

~o (E)
l'.-o

Ii &0 E-~n-~a, z &

1
+ ~ I'oa E ~ ~5,.- (E)

I's .-

(2. 23)

where, as before the superscripts 0, n, . .. denote
that the corresponding quantity has been calculated
for eo, eo, . . .= ~. The right-hand side of (2. 23) can
be represented by all paths starting from site 0 and
returning to it. The restrictions on the summations
mean that only paths which do not visit the same
site twice must be considered. Thus for any finite
system (finite R) the number of terms in (2. 23) is
finite, and consequently the renormalized perturba-
tion series (RPS) for bo s (R & ~) terminates Note.
that the expression (2.23) is not an explicit solution
for ~g ~, since it contains the unknown quantities

These quantities, however, can be ex-
pressed through relations similar to (2. 23). Sub-
stituting back into (2. 23) and repeating the proce-
dure, we obtain a continued-fraction-like expres-
sion for &g s(E) of the following form:

~(t ~=~~ ~(taI 1 1
o ~ ~ P Lr

ill+

(2. 24)

Since at each new step of the iteration procedure at
least one additional site is absent, it follows that
the continued-fraction-like expression (2. 24) ter-
minates after a finite number of steps large enough
to exhaust all the sites within the sphere (0, R).
Thus formula (2. 24) constitutes an explicit solu-
tion for 4~ „holding everywhere in energy.

Consider now what happens if R = ~. Thenboth
the RPS and the iteration procedure do not termi-

nate. Hence possibilities of convergence or di-
vergence of the renormalized perturbation expres-
sion (RPE) (2. 24) arise. The convergence of the
RPE for Eo(E) is defined for each E as the exis-
tence of the limit

lim 4f, s (E) = Ao(E) as R —~,
g~oo

which in turn implies the convergence of both the
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RPS and the iteration procedure. Thus the RPE
(2. 24) diverges as A —~ if either the RPS (2. 23)
or the iteration procedure implied in (2. 23), or
both, diverge.

It is not difficult to show that Eq. (2. 25) is satis-
fied for every E except those lying al.ong the branch
cuts, as follows. Using the analytic properties of
60(E) aud &5 „(E), we can write

(E) Q fnR + Q fi
E —E,z &

E —E, (2. 26a)

(2. 26b)

where

f~ -f; as E-
E] „-E; as A-~,

(2. 27a)

(2. 27b)

r E+hE

f.,s
E&EII g&E+hE 8

f(E ) dE (2. 27c)

In view of Eqs. (2. 27) the convergence of 60 R to
40 as 8 ~ depends on replacing the first sum in
(2. 26a) by the corresponding integral in (2. 26b).
If the difference E —E„ I, remains finite as 8- ~,
this replacement is always permissible according
to the definition of the integral. The difference
E —E„„remains finite as 8-~ if and only if E
does not lie on the portions of the real axis where
f(E) 40, i. e. , E does not lie on the branch cuts.
If E lies on the branch cuts, Eq. (2. 25) cannot be
correct since ao(E) cannot be defined in this case.
Thus the RPE for zo(E) [Eq. (2. 24)J converges at a
given energy E if and only if E does not lie on a
branch cut. As has been already discussed, the
RPE for &0(E) can diverge because either the series
or the iteration procedure, or both, diverge. De-
tailed study of the one-dimensional case~ strongly
suggests that for the present three-dimensional case
the convergence of the expression (2. 24) is governed
by the convergence of the series alone. In one dimen-
sion, any finite degree of randomness is enough to make
the iteration procedure convergent ' for every E.

It should be noted that the convergence of the
RPS (2. 23) should be examined as a self-consis-
tency problem. ' We assume in the beginning that
E does not lie on the branch cuts since, otherwise,
the terms of the BPS would not be defined. Then
we know that the only singularities of the quantities
b)' ' ""(E)are simple poles and the eigenstates,
if any, are localized. Using this information, we
can study the convergence of the series (2. 23). If
the series converges, then we have verified the
initial assumption that E does not lie on the branch
cuts. This last statement, however, assumes that
the convergence of the series (2. 23) is equivalent
to the convergence of the RPK (2. 24) as R —~,

=—G-- = G-"(E) —Gyp(E)Gp" (E)/G;(E) . (2. 28)

From (2. 28) it follows that the poles of G~(E) coin-
cide with the zeros of G;(E) if the indices n, m are
such that G;; and G;" are not negligible„ i. e. , if
the distances x~1 and ~-- are finite; the poles in
G~-(E) are canceled by those in the second term
of (2. 28). I.et I'I"'be one of the diagrams of Nth
order of the RPS for &„"(E). Then from (2. 23) we
have

) —P G~ P @~~81. . . QO, tti, .. ., nN 1 Pni n2
'''

g (2. 29)

According to the property just established, the poles
of G;"i coincide with the zeros of GI, the poles of
the next factor G-' '"3 with the zeros of G~'~i and
so on. This means that poles of each G in (2. 29)
are canceled by the zeros of the previous G. Thus
the only poles of 1';"' are the poles of the first
factor and the only zeros are the zeros of the last
one. If fE~) are the positions of poles of G& and

(E) the positions of the zeros of Go~'~~'"'~"-' then

pt

GP Gnl

Iiq(E —Ep)
(2. 30)

Go "s " nor-s =IT (E E')G~&nt&" ~ 4 g
~ (2 31)n~

Using (2. 30) and (2. 31), Eq. (2. 29) can be writ ten

since it is the latter that is equivalent to the as-
sumed analytic structure of the quantities &0~'" '"(E)„
On the other hand, if the RPS (2. 23) is found to
diverge, it follows that the initial assumption that
E does not lie on a branch cut is wrong and con-
sequently the conclusion to be drawn is that the
eigenenergies corresponding to E are extended and
that even the individual terms of the series (2. 23)
are not defined for this E. This discussion can be
summarized as follows: Assume that the series
(2. 23) is defined for every real. E. Then the real
E axis can be separated into portions in which the
series either converges or diverges. Inthe regions
of convergence the series is defined and the eigen-
states, if any, are localized. The regions of
divergence correspond to portions of the energy
spectrum where all the eigenstates are extended
and there the initial assumption that the series
can be defined term by term is wrong.

We examine now a property of the terms of the
RPS (2. 23) which is essential for the study of its
convergence. From (2. 18) by taking the limit c„-~ we have
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&& G- G-"~ ~ ~ ~ G'-' ~'"""N-i' (2 32)n 1 n2 ng 7

~0

where the product G~ 6&'~1 ~ ~ 6&"'"'"&-1'is a smooth
positive definite function of E. The latter follows
from the fact that the product of G's in (2. 32) has
no zeroes and no poles and consequently it is either
everywhere negative or everywhere positive. Ex-
amining the limiting case E-~ too, where we know
that T',s' behaves like I Cl /E", we can see that
the product of G's is positive definite. It should be
noted that the positions of the poles E~ are common
for every diagra, m of any order, since, being the
poles of the quantity Go(E), they are the eigen-
energies of the Hamiltonian H corresponding tothe
eigenstates localized in the vicinity of the site 0.
Consequently the factor I/ll~(E- E~) is a common
factor of every term in the RPS (2. 23) and thus

~t
EqGo' Go, I, ...Go, ...,as q

~

cl 51 n3 K~ (2. 33)

where the terms to be summed are now analytic
everywhere. Note that Eq. (2. 33) implies that the
poles of bo(E) coincide with the poles of G)q, or
with the zeros of Go(E) as it should be. It is worth-
while to remember that this description is valid
as long as it is self-consistent, i. e. , as long as
the series (2. 33) converges. Divergence of the
series (2. 33) implies lack of self-consistency and

consequently the existence of extended states.
If we define the Im&(E) as lim Im&(E —is) as

s -0', then we can see from (2. 33) that when the
RPS converges, Im&0(E) is zero except at a finite
number of points, coinciding with the zeros of Go(E),
where 6-function singularities appear. This point
has been overlooked in the literature3 and incorrect
statements have been made suggesting that the
localizability of states is equivalent to the reality
of &0 everywhere. In contrast, when the states are
extended [i.e. , when the series (2. 33) diverges],
Im&o is a, continuous nonzero function. This basic
difference in the behavior of Im~o for localized and

extended states is wiped out if one tries to average
the function &0 over all possible values of (&-j,
since then, even in the case of convergence, the
& functions in Imbg will be broadened to continuous
nonzero functions. In other words, quantities like
(G6) or (bg), where the symbol angular brackets
denotes averaging over the values of {e-j, are
not appropriate for finding the nature of the eigen-
states, since the averaging procedure eliminates
from the behavior of t"~ and ~~ as a function E ex-
actly those characteristics which would enable us
to distinguish between the localized and the ex-
tended states. On the other hand, by averaging
the quantity fo(E} [Eq. (2. 14)] we retain those prop-

As has been explained in the previous section,
the problem of localization can be solved by exam-
ining the convergence properties of the series

~( y)¹1
where

(3 1)

(~)
~ ~ ~

e1 eP e~
(3. 2)

is the sum of the contributions from all N-step
paths starting from and ending at the site 0 without
visiting the same site twice. Since the quantities
e;-=E —&„"-4„-' ' '""" are random functions, the
convergence of the RPS (3. 1) is a matter of prob-
ability. We define the notion of convergence (di-
vergence) in probability' of a series of random
terms as meaning that the series converges (di-
verges) for all sets of values of the random vari-
ables (except possibly for sets of zero total mea-
sure). More precisely, we say that the series

erties which distinguish the extended states from
the localized. Thus, if (f~(E)} is zero for a certain
energy, the eigenstates corresponding to this en-
ergy are extended for all sets of values of the pa-
rameters QJ (except possibly for sets of zero
total measure}. If (fo(E)) 00, then for a nonnegli-
gible proportion of the configurations (= sets of
values of the parameters ft-)), the eigenstates
belonging to the energy E are localized. It should
be pointed out that for a given configuration the
eigenstates corresponding to a specific energy are
all localized or all extended. The reason is that
even an infinitesimally small perturbation can mix
an extended and a localized state, if they belong
to the same energy, and transform both of them
into extended states. Thus their coexistence is a
matter of accidental degeneracy and consequently
the probability of its occurrence is negligible. It
is not obvious a Priori, however, if for all the
configurations (except possibly for a set of mea-
sure zero) the eigenstates belonging to a given en-
ergy are either localized or extended. One can
imagine intermediate situations such that for a non-
negligible proportion of the configurations the
states for a given energy are localized while for
the remaining nonnegligible proportion of the con-
figurations the states for the same energy are ex-
tended. By finding (fg(E)}&0, one cannot know if
the eigenstates are localized for all the configura-
tions or simply for a nonnegligible part of them.
This question will be naturally resolved in Sec. III,
in which, following Anderson, we attempt a study of
the convergence of the RPS (2. 23) in a probabilistic
way: i. e. , we try to find for each energy E the
probability that the RPS converges.

III. STATISTICAL CONVERGENCE CONSIDERATIONS
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(3. 1) converges (diverges) in probability if the ab-
solute value of the Nth-order team I ~- '

I is bound-
0

ed from above (below) by the Nth-order term of
convergent (divergent) geometric series with prob-
ability approaching unity as N- ~, i. e. ,

probability [I &- '
f

E"]-1 as N-

probability [L" "'(E) & fr&-"'(E)
I

I."'"'(E)]-1
as N-~, (3.4)

where —,'&q &1. Thus if L(E) &1 (&1), the RPS con-
verges (diverges) in probability according to the
definition given here and consequently the eigen-
states are localized (extended) for almost all the
sets of values of the random variables le„).

Consider the particular contribution to 4&"'

y( N) yS
eio e eel

(3. 6)

and define X&
' as

where E &1(&l) in the case of convergence (di-
vergence).

It will be shown in this section that one can de-
fine a nonnegative function L(E) of the real variable
E such that the Nth-order term l &6 (E) I is sharp-
ly distributed around the quantity L "(E), i. e. ,

is obviously proportional to N„and consequently
one can write

(XJ "&=Nln(V/e&),

where e,. is defined by

(3. 8)

Nine, = r (ln fe& I) .
i=i

The variance of the random variable X&"' is

"&.& = ~ ((» I" I

- (ln I"l&)(ln le I

- (» le & I&) & .
0, l=l

(3. 10)

Any two random variables e „e,are statistically
independent if the distance r» exceeds a certain
finite value. This is due to a similar assumption
about the random variables (e„)and to the fact that
for localized states —as we have assumed we have-
the quantities e, depend on a finite number of vari-
ables (e } corresponding to sites within the regions
where the localized states are different from zero.
Thus for any given k in (3. 10) and for most of the
l's —except for a number remaining finite as N —~—
the average of the product is the product of the
averages and consequently is zero. It follows that

Ox" is proportional to N and that

XJ"' =—ln
I
T,"'

I
= (N) ln V- 5 ln

I e& I
. (3. 6) o~~= P, N"', (3. 11)

The average value of Xz"',

(x', "'&=N»U &~ (» fe, I-&, (3. 7)

where P& tends to a finite value as N ~. Because
coax

«& - ~ more rapidly than 0~«& as N- ~
for q& 2, the random variable X&"' satisfies the1 (N)

relation

probability[(X& ') N' ' ax&»&-X +&'& (X &"'&+N' '~ &rx&J&i]-1 as N- ~
f

(3. 12)

Taking into account Eqs. (3. 8) and (3. 11), we can
write (3. 12) as

probability [N a& —N'
P&

& X&"' & N a&+ N'
P& J =1,

(3. 12')
where a& —= 1n(U/e&). Because q can be taken as
&1, i. e., —;&q&1, it follows that X&

' is sharply
peaked around its average. From Eqs. (3. 6) and

(3. 12) it follows that

probability [e"'s "
s &

I
T&"'I & e"'s'" s]- 1

as N- ~, —,&q&1. (3. 13)

It is worthwhile to note that if all the random
variables e; were statistically independent, then
Lindeberg's condition" ' for the applicability of
the central limit theorem would be satisfied and the

distribution of the quantity X&+' would be a normal
one. In this case the probability defined in Eqs.
(3. 12), (3. 12'), and (3. 13) approaches unity as N- ~ in the following way: 1 —e " . The fact,
however, that the probability defined in (3. 12) tends
to unity as N- ~ is independent of the particular
form of the distribution function as long as it pos-
sesses a standard deviation for finite N.

We examine now the distribution of the quantity
I b "'l. We want first to make plausible that

(3. 14)

where y(N) is such that [y(N)]'~~-1 as N- ~.
Equation (3. 14) would be obviously correct if all
the T&' had the same sign. On the other hand,

(3. 14) would be violated if all the T,'"' had random
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signs. As we have seen in Sec. II, the sign of the
quantities T',"'(.j= 1, 2, . . . ) for a given E is deter-
mined by the positions of the poles E~ and the zeros
E, of Eq. (2. 32). We have already shown that the
positions of the poles are common to all diagrams.
Thus only the positions of the zeros E, determine
the relative sign of the quantities T&"'. Any quan-
ti E, being an eigenvalue of the Hamiltonian
H

"' (sites 0, . .. , N define the diagram under con-
sideration), depends only on the sites lying within
the region where the corresponding localized eigen-
function is nonnegligible. We define the localiza-
tion length as a measure of the linear dimensions
of this region. It follows that the positions of the
zeros E, differ from one diagram to another owing
to the noncommon sites within the localization re-
gion. One can consider two limiting classes of di-
agrams. The first class consists of those dia-
grams passing rapidly through the localization re-
gion. The other class of diagrams consists of those
with a portion of them tightly packed within the
localization region. Most of the diagrams belong
to the first class. On the other hand, the diagrams
belonging to the second class make the largest con-
tributions. Localized states are generally associ-
ated with regions of the order of the localization
length in extent in which the single-site energies
happen to be interrelated, e. g. , are all nearly the
same, or all do not exceed some maximum value,
etc. As a consequence, for states overlapping 0
at energy E, the values of the e; for sites i within
the localization length of 0 are much smaller on
average than those for sites outside; whence it

follows that the more tightly packed the diagram
is inside the localization region, the larger it is.

For large localization lengths —as in the case
where we approach a mobility edge —the diagrams
of the first class differ among themselves only be-
cause they visit different excluded sites within the
localization length, the number of which is negligi-
ble in comparison with the total number of sites in
the localization region. Thus the relative shifts
of the positions of the zeros for all these diagrams
is very small and consequently they possess strong-
ly correlated signs. ' The diagrams of the second
class also possess a common sign, because they
have all the important sites in common. We con-
clude that the relative signs of the quantities Z'&"'

(j= 1, . . . , K") cannot be random and that the class
of the largest individual diagrams as well as the
class of the most numerous each has a common
sign. These arguments provide, in our opinion,
adequate support for the supposition (3. 14). Al-
though the existence of localized states does not
depend on whether Eq. (3. 14) is true or wrong, the
specific form of the function L(E) that we derive
depends on its correctness.

We have shown [Eq. (3. 13)], that the individual
j Z'~"'I are sharply distributed. We have just
argued that [Eq. (3. 14)] the magnitude of b-",
Ig&T,'"'I, is given, apart from a. factor y(N) not of
exponential order in N, by the sum of the individual

I
Z'&+'I . We now intend to make plausible the sup-

position that the sum of the individual I Z'&"'I, and
therefore l &-

I itself, is sharply distributed, i. e.,
that

probability [v~(N)Z&"" ' &
~

&5
~

&r"(N)+e '&' &]
j g ~oo

where [v*(N)]' -1 as N-~. If the quantities
T&"' (j = 1, 2, 3) were all equal, (3. 15) would be a
trivial consequence of (3. 13) and (3. 14) with y*(N)
= y(N). Equation (3. 15) would also be correct if
the T&"' were so strongly correlated that most of
them have large or small values simultaneously.
We can, however, argue that the quantities T&

' are
sufficiently well correlated for (3. 15) to hold
from the following three observations.

(1) The maximum number of sites available to
an Nth-order diagram, and therefore the number
of independent random variables, is of order N,
whereas the number of distinct diagrams is of or-
der K", as pointed out by Thouless" [look right
after (3. 19) for the definition of K].

(2) The e, a.re correlated over the localization
length. Thus two diagrams which are never fur-
ther apart than the localization have about the same
value.

(3) Important classes of diagrams have the same
signs. This strong correlation of signs implies
correlation of magnitudes as well.

We have not been able, however, to convert
these physical arguments to a mathematically
rigorous one. Nevertheless, it should be realized
that the existence of localized states does not de-
pend on the validity of (3. 14) or (3. 15). Anderson
has used just the opposite assumptions considering
the signs of T&

' random and treating the quantities
T& as statistically independent random variables,
and has obtained results qualitatively similar to
the ones to be presented here. However, as Thou-
less has shown, Anderson's assumption of statis-
tical independence is incorrect. One therefore
expects quantitatively more accurate results for
localization from our proposal of strong correlation.
In any event, since statistical independence and

strong correlation are limiting situations, we ex-
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pect that Anderson's results and our results brack-
et the correct localization criterion.

Equation (3. 15) means that l &o"'
l behaves like

g«e"'«as N-~. From Eqs. (3. 7) and (3. 8) and

the definition of ««« = In(V/e, ) we see that

(N)iva«5 c &x« (3. 16)

If we define lnG&''«'""«-«as —(ln le„- l),

lnG ' ''"' &-' = ln
5~

1
Z~ 111 ~ ~ &~ y

II~ n~

(3. 17)
the quantity Vg«e '«can be written as

where the g' on the right-hand-side of (3. 18) indi-
cates summation over all indices n, , . . . , n~ with
the restrictions n, &0, n~&0, n, , . . . , n~&0,
n&, . . . , n~ & corresponding to all self-avoiding
paths of order N starting from and ending at the
site 0. The number of these paths is given by
S(N) and

S(N) - K as N (3. 19)

where K is the connective constant ' ' ' of the

lattice, which is generally of the order —,Z. A

table of values of E for different lattices can be
found in Domb's paper. It is clear that the
quantity P«e"'«depends exponentially on N so that
one can define L(E) by

L (E) = K Vg; Gg V„- „- G„-".. . V~ o, (3. 20)

where L(E) is independent of N as N-~ .
From Eqs. (3. 15), (3. 18), and (3. 20) it follows

that the function L(E) defined by (3.17) and (3. 20)
satisfies the basic relation (3.4), and can be used
for discovering the nature of the eigenstates. If
L(E) & 1, the eigenstates are extended for almost
all configurations; if L(E) & 1, the eigenstates, if
any, are localized; the equation L(E,) = 1 deter-
mines the positions of the mobility edges E,.

Having defined the localization function L(E), it
is possible to reach certain conclusions regarding
its behavior. Suppose that I' is a measure of the
degree of randomness in the system; then l"=0 cor-
responds to the case of a erfect crystal and con-
sequently the quantities G««.

~«'"' «-«(E) are equal to
I ««~««',.'«' "'"'-'(E) I, where the script 9 denotes the
Green's function for the periodic case, I'=0. Since
in the periodic case all the T,'"' are positive or
negative (there are no poles or zeros outside the
branch cuts), we can conclude that for I"= 0, L"(E)
is just the absolute value of the Nth-order term of

the HPS for ho(E), as it should be. Since all the
eigenstates are extended, the RPS for So(E) should
diverge inside the band and converge outside. Thus
for the periodic case, F=O, L(E)r o&1 for E inside
the band with the equality obtained at the band edges,
as was expected. On the other hand, when I'- ~
the quantities G&~."'~~- ~ tend to zero everywhere so
that L(E)-0 for every E as I'- ~. Assuming that
L(E) is a continuous function of I' for every E, we
can conclude that for every E there is a critical
value of I; I;(E) such that for I'& I;(E), L(E) & 1.
If we define

r, = max(r, (E)),
it follows that for I'& F, , L(E) is smaller than unity
for every E, which means, that for I"& I; all the
eigenstates of the system become localized. This
disappearance of extended states has been termed
Anderson's transition. For 0& I'& I'„ the energy
spectrum is separated by the mobility edges E„
satisfying the equation L(E,) =1, into regions con-
sisting alternately of localized [L(E)& 1] and ex-
tended [L(E)& 1] states in agreement with the Mott-
CFO model. One can generalize the notion of An-
derson's transition to denote the disappearance of
a. region of extended states through the merging of
two adjacent mobility edges. In this case the total
disappearance of extended states from the system
takes the form of successive Anderson's transitions,
each one eliminating one region of extended states.

In this section we have shown that each term of
Nth order of the RPS for ho is sharply distributed
[Eq. (3. 11) or (3. 13)]. This was a direct conse-
quence of the assumed statistical independence of
any two quantities z-, &y when the distance x-g is
larger than a given finite length —the mathematical
condition expressing the absence of long-range
order from the system. From Eq. (3.13) by using
certain physical arguments, one demonstrates that
the Nth-order term of 4g, b~"', is also sharply
distributed in the sense of Eq. (3. 15). Hence the
RPS either converges or diverges in probability,
which, in view of the analysis in Sec. II, means
that there are regions of extended states, and re-
gions of localized states with energies of sharp
transition, the mobility edges, which are common
for almost all the configurations (except some of
total measure zero).

We conclude this section by pointing out that the
results presented here for one band can be trivially
generalized in the case of many (or even an infinite
number of) bands as long as there is no band mixing
in the original Hamiltonian, since in this case each
band can be treated separately. If there are inter-
band matrix elements or if there is nondiagonal
disorder, the problem becomes exceedingly com-
plicated. We feel, however, that these complica-
tions would change the present results only quan-
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titatively, leaving the basic qualitative features
untouched.

IV. EXPLKIT ESTIMATES AND RELATION TO EARLIER
WORK

InP2' ".'"'= (-»~ 1/(E —e;, ) ~) = —(ln~ Z —2;, ~ ),
(4. la)

and

Q{)2 ~ ~ ~ 2 Qf ~ $ ~ ( 11l Qf I )
lf~

Substituting in (3.20) and performing the summa-
tion, we obtain

(4. 1b)

In this section we attempt first to make some
rough estimates of the critical quantities E, and l,
using the localization function L(E) obtained in Sec.
III. Then we review the earlier work on the same
subject with particular emphasis on the similarities
to and differences from our own. Our estimates are
compared with those given by Anderson.

The simplest approximation one can do in trying
to calculate L(E) is to neglect the self-energies
g~', ""2'-' in Eq. (3. 13). Then

distribution function for &„-. All these dependences
have been neglected in arriving at the oversimpli-
fied estimate (4. 5).

It is worthwhile to note that Ziman~ used Eq.
(4. 5) arbitrarily as an estimate of the convergence
of the PS, which he associated with the localiza-
tion properties of the eigenfunctions. Ziman,
using Eq. (4. 5), has studied the particular cases
of a rectangular distribution function for q, of total
width W and of the random binary-alloy case, where

&, can take two values q~ or q~ with probabilities

p~ and p~ = 1 —p„. In the rectangular distribution
case the result, as calculated by Ziman, is

2S W ZI (n& = zeen(l —— 1 ~—le —+—
2 S" 2V V

+1 ——ln ——— . 462E 8' E
2V V

The critical value W, of the total width 8' for
which all the states become localized can be de-
duced from (4. 6) a,s

LN(E) IfN VNe 1 E-N &1n& E- e21I &' (4. 2a)
5' —2. VB, (4. V)

or

L(E) ffV - ( 1nl E n2- (4. 2b)

L(E) = nKV8 (4. 2')

where n is a constant such that L(E) & 1 with L(E,)
= 1 for the periodic case and for I E —col & E»
where Z, = ZV is half the bandwidth. Equation (4. 3)
will then become

where E is the connective constant defined earlier.
Owing to the approximation (4. 1a), I,(E) no longer
reproduces the correct results in the periodic case
where &;,. = &0=const for every n, . In this case

L(E) =ffv/~Z-2, ~, (4. 3)

which violates the basic property that I.(E) & 1 for
the periodic case and for E inside the band, with

the equality achieved at the band edges. To remedy
this deficiency we write

r
I'(~2) = —

2
m g+F

In this case
ZV

L(E) —
(Z2 ~ Ie)1/2

(4. 3)

(4. 9)

The mobility edges are then given by L(E, ) = 1,
l. e. ,

where 9=2ZV is the bandwidth for the periodic
case W=O.

The binary-alloy case will not be discussed
here. '~'22 We simply note that approximation (4. 5)
as used by Ziman reproduces in this case some of
correct qualitative features and fails to reproduce
others. '

We have next applied Eq. (4. 5) to the case where
the quantities && are distributed according to a
Lorentzian of half-width I', i.e. ,

L(E) =«V/IZ —&2I ~ (4. 3')
(g2V2 Ie2)l/2 (4. 10)

It is obvious that the equation L(Z) & 1 for I E —221

& ZV is satisfied only if

(4 4a)

or

(4. 4b)

Substituting (4. 4b) in (4. 2'), we obtain finally

L(E) 2VE-(1n&E- e2 (4. 5)

It should be pointed out that the correction factor
n is in general a function of E and depends on the

and Anderson's transition occurs when F = F;,
where

I c = ZV= 2B (4. 11)

We shall discuss the Lorentzian case in more
detail in Sec. V in connection with some exact results.

If one uses the correspondence I'—4 8' between
the half-width 1of the Lorentzian distribution and

the total width TV of the rectangular distribution
stemming from the relation

(4. 12)
m x+F"-){/4
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P&(x)= P~(x) for large X, (4. iS)

where P& and P„are the probability distributions
of the sum and the maximum term, respectively.
As has been pointed out by Thouless, "Anderson
implicitly assumes, in order to calculate the prob-
ability distribution for T' ~, that the random vari-
ables 7&"~ (j= 1, . . . , Jf") are statistically indepen-
dent. This assumption permits him to write

P, (X)=A P(X), (4. i4)

where P is the probability distribution of each term
T&~'. The criterion for convergence in probability
stated without proof by Anderson is

one sees that we need degrees of randomness about
25% higher for the rectangular case than the Loren-
tzian case in order to obtain Anderson's transition.
This can be attributed to the long tails of the I,oren-
tzian distribution.

We shall discuss at some length Anderson's work
in the light of the analysis which has been pre-
sented here. Anderson has used the simplifying ap-
proximations that the quantities e; are statistically
independent with identical distribution functions
possessing a cutoff around the origin. He assumed,
furthermore, that the distribution of e; is the same
as the distribution of q, except for the cutoff. This
approximation is equivalent to our neglect of
A„',.''""'-' in Eq. (S. 1V). Anderson calculated di-
rectly the probability distribution P(T&"') of the
quantity T&"'. At this point use was made of a
theorem that the tail of the probability distribution
of a sum of random terms Tz each of which is dis-
tributed symmetrically around the origin with a
long tail is the same as the tail of the distribution
of the single largest term, T =max(T„T2, . . .j.
In other words, this theorem states that

lV =58 . (4. iv)

The criterion according to our analysis corre-
sponding to the approximations used to derive
(4. 16) is

(In(I/I E —~s I ) )+ InA. & O, (4. iS)

which gives for the critical randomness TV, in the
case of a rectangular distribution and a simple cu-
bic lattice,

8', = 28 . (4. 19)

It can be seen by comparing our estimate (4. 19)
with the one given by Eq. (4. 1V) that Anderson's
results overestimate the critical randomness in
comparison with our results by about a factor of
2. It will be shown in Sec. V that our theory pro-
vided under certain conditions an upper limit for
the critical randomness (and for the regions of ex-
tended states). In the case of a random binary
alloy these upper limits are consistent with exact
results from percolation theory. '6' '7 This lends
further support to our assertion that the quantities
T,' ' are strongly correlated. Be that as it may,
one expects the true value of 5", to lie between 28
and 58 because statistical independence and strong
correlation are limiting situations.

V. UPPER BOUNDS ON REGIONS OF EXTENDED STATES

A. General Theory

We show in this subsection that under certain
conditions a function F(Z) can be found such that

for 8'& W, .
For the rectangular distribution with total width

W, and for a simple cubic lattice (K= 4. 5), the best
estimate of the critical randomness according to
Eq. (4. 16) is'

W& 5', , (4. 15) F(E) & 1-f (E) 1 . (5. 1)
where 8', satisfies the equation

Pr. (I)w-w, -A"'P(I)w=w =1. (4. 16)

Anderson states that 60"' is less than e "with prob-
ability -1 —e "when (4. 15) is satisfied. This
statement cannot be correct in general, since the
the probability of b5'~' being smaller than a certain
quantity is related to an integral of the distribution
K"P(np') and not to the value of it at b, -'"' = 1. Thus
Anderson's criterion (4. 16) provides a reasonable
order of magnitude estimate for the quantity W, ,
but cannot be considered as justified within the
framework of the theory of convergence in probabil-
ity.

Thouless" in his critical and clarifying review
of Anderson's work has justified Eq. (4. 16) by
deriving it from the correct criterion stating that
the probability that A.'"'& (1 —e) approaches zero

F(E )&1, (5. 2)

except for the trivial case of zero randomness
where F(Z, ) =1. The importance of Eq. (5. 1) lies
in the fact that the quantity F(E) is no more diffi-
cult to calculate than the average Green's function.
Consequently there is one case where F(E) can be
calculated exactly (Lorentzian distribution of the
quantities (&„))and in every other case F(E) can be
calculated approximately using methods developed
for the calculation of the average density of states,
most notably the coherent potential approximation
(CPA).""

Assume that

From (5. 1) and the discussion in Sec. III it would
follow that all the eigenstates corresponding to
eigenenergies E satisfying F(E) & 1 are localized.
In addition, the mobility edges R, satisfy the equa-
tion
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(5.3)

holds if

Iz-z(z)l &zv. (5. 5)

The function gz~', """&-~is a matrix element of a
Green's function corresponding to a periodic
Hamiltonian containing infinitely strong impurities
at the sites 0, . . . , n, , The quantity c;z., being
a matrix element of the Green's function for a per-
fectly periodic Hamiltonian, possesses a branch
cut from —E, to E„where E, = ZV, and no other
singularity. Using Eq. (2. 28), one can see that the

gz, possesses no other singularity than the branch

cut along the interval [-E„z,i. Repeated use of
Eq. (2. 28) shows that the same is true for
gz", ""~-~. The same result can be reached by re-
peated application of the Koster-Slaters method of
treating one impurity. Because of this analytic
structure the function g&". "'~~-~ can be written as

, z, ,( )

" ' n(z')dE'
~l

where the indices have been suppressed from n(z),
which equals (I/vr) lim Imps, ""z'-'(E —is) as s -0'.
It is not difficult to show that the function n(E) is
symmetrical around the origin E= 0. Consider now

a value z of the argument such that

(5. 8)

lzl &z, =-zv.

Then

(5. 7)

1 1

0

It is a matter of simple geometry to show that

1 1 1 1
l~-E't l~+E'I I~I-E' l~l+E' (5.9)

if I z I & E'. Because of (5.7), Eq. (5. 9) holds for
every E'& E, . Hence, substituting inequa. lity (5. 9)
in inequality (5. 8), we obtain

where the script g "'""&-~denotes the n, , n& matrix
element of the Green's function corresponding to a
Hamiltonian of the form (2. 1) with z5 =

=~ and e;=0 for every jo0, . . . , n;, . E(z) can
be in general a complex function of E. We shall
show that, when the quantities G defined in (3.17)
satisfy Eq. (5. 3), then a, function F(E) can be
found such that (5. 1) is true.

We shall first show that

"0

Z(E) &1 .
Define now the function F(E) as

F(z)=z, /Iz-z(z)I .

(5. 13)

(5. 14)

If F(E) & 1, then (5. 5') is satisfied and consequently
&(E) & 1 ~ But if F(z) 1, then (5. 5) is satisfied and
thus L(E) & Z(E). We can conclude that, when
F'(E) & 1, then L(E) & 1. F(E)= 1 implies L(E) = 1
only in the case where Z(E) is real and the equa, lity
sign holds in (5. 3). One can demonstrate, how-

ever, that Z(E,) is real only in the trivial case of
no randomness where Z(E) = 0.

The energies E,", where F(z,")=1, divide the
energy spectrum into regions where F(E) & 1 and

F(z) & 1. The latter consist of localized states.
The mobility edges E, lie in the regions where F(z)

1, separating them into subregions of extended
and localized states. As the degree of randomness
I' approaches zero the mobility edges E, approach
E,". Thus for small randomness, F(z) can be con-
sidered as a fair approximation to L(E); this ap-
proximation overestimates the size of the regions
of extended states. One can estimate the discrepan-
cy between E, and E,* by finding the difference
F(E,*)—L(z*,) = 1 —L(E,*). This difference for small
randomness is proportional to the difference
g(l z I ) —lg(z) I, with z =E~ —Z(E„), if the equality
sign holds in (5. 3). q is a, matrix element of the
periodic Green's function. Because of the square-

if (5. 7) is satisfied. Substituting z =E —Z(E) in
(5. 10), we obtain (5.4). It is easy to see that the
equality is obtained in (5. 4) only if Z(E) is real.

From (5. 3) and (5. 4) it follows that

G'" '*-&(E)&g'" "~-(lz z(z)l) (5.11)

if (5. 5) is satisfied. Hence the function 2(E), de-
fined as

&"(E)=y V~, Bz, (I E- E(E) I ) v,„;, (5. 12)

is larger thar. L(E) as long as (5. 5) is satisfied.
However, 2"(E) as defined in (5. 12) is nothing else
than the iVth-order term of the RPS for K)0( IE
—Z(E) I ), where X)5 is the self-energy correspond-
ing to the periodic case &&=0 for every n. We have
already seen that for a periodic system the RPS di-
verges if the argument is real and its magnitude
is smaller than E, = ZV and converges in every
other case. Hence, if

Iz-z(z)l &z, , (5. 5')

then
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root singularity in the density of states at the band

edge one knows that

( E )1/2
)+~ E1/

b
(5. 15)

where f is a constant as z- F, Assuming for con-
venience only that tBeZI «|ImZI as I"-0, it fol-
lows that

g(l E. —F (E.) I) —g(E2- F (E2)) I
"limZ(E, )/E, ]"'

actly and has shown that Im(~-(E) ) 0 0, from which
he concluded that localized states do not exist.
However, according to our discussion in Sec. II,
one cannot reach any conclusion as to whether the
eigenstates are localized or extended from the fact
that Im(4-(E) ) & 0, since this quantity is different
from zero for both localized and extended states.

Lloyd, ' using an elegant trick, was able to prove
that

and consequently

i z. -z; i r z (z, ))"'
(5. 16)

(G";(E))= g""„(E+iS(E)1 ),
where

S(E)=1 if ImE& 0

(5. 2o)

In the framework of any single-site approxima-
tion for the evaluation of 6 .""~-~ the basic condi-
tion (5. 3) is satisfied (with the equality sign hold-

ing) and the quantity Z(E) can be calculated with no

more difficulty than the average Green's function.
Hence E(E) can be calculated. This method was
used in the case of a random binary alloy' ' within
the CPA. In this case Z(E) is the same as the quan-
tity Z(E) appearing in the definition of ( G;(E) ),
namely,

1

E-E(k) -r(E) (5. 17)

We examine in this subsection the Lorentzian
case for which F(E) can be calculated exactly.
Lloyd' and Brouers have considered the same
case and their conclusion that localized states do
not exist constitutes an additional reason for ex-
amining it further. The Hamiltonian is of the form
(2. 1) and the distribution of each diagonal matrix
element is a Lorentzian of the form

The results in the binary-alloy case were in strik-
ing agreement with the Mott-CFO model and with
the available exact results. We shall examine next
the case of Lorentzian distribution for the single-
site energies where exact results can be obtained.

B. Exactly Solvable Model

= —1 if ImE&0, (5. 21)

and g is the Green's function for the periodic case
(e-] =$0).

This elegant result can be generalized to

= 2 lim[(lnG2'""'«-1(E+ is) )n~

+ (1nG2"'"'«-«(E —is) )] as s-0' .
n~

(5. aS)

As is shown in the Appendix, the lnG satisfies Eq.
(5. 22) and consequently

lnG-'"'"«-1(E) = —,
' li m[1 ng"2"" -«(«E +i r)

+I g- ""~-1(E—ir)]

=lnI g52, ""'«-«(E+«S(E)r)
~

as s-O',
(5. 24)

(f (G'-„" " (E))) =f (g '-,
"""(E+ is(E)r)), (5. 22)

for every function f (2) whose every singularity lies
on the real axis and/or at infinity. This is shown
in the Appendix.

In thepresent case we want to calculate G """-'(E).
According to (3.17) we have

InG2 "'«-«(E) = (in
~

G'-"""«-1
~ )

n~ n~

r
&(e-.) =-

a'-+ r' (5. 18) ~t
G2" " «-1(E) = ~g'-, ""'«-1(E+iS(E)r)~ . (5. 25)

Lloyd was able to calculate exactly the average
(G- -„), from which he proved that

(c;(t))-0 as t-~, (5. IO)

where the quantities c-„(t) are given by Eq. (2. 4).
From (5. 19) he concluded that there are no local-
ized states Howeve. r, the vanishing of (c2(t) ) does
not imply that lim(l c-(t) I ) = P- as t - ~ vanishes,
since (c-(t)) can vanish because of a random phase
and not because of a vanishing amplitude. As Mott
pointed out for a single random level, c-(t) = e' ««'

but (c-(t) ) = c ', if the distribution of E2 is of the
form (5. 18). Brouers~ has calculated (t«,-(E)) ex-

Z (E) = - iS(E)I (5. 26)

Hence the whole theory developed in Sec. V A is
applicable. The function E(E) is given by

E(E)= E,/(E'+ r')"'. (5. 27)

The regions E(E) & 1, i. e.,

& Eg —(E2 r2)1/2 (5. 28)

consist of localized states. The mobility edges

Equation (5. 25) is of the form (5. 3) with the equal-
ity sign holding and
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aE, satisfy the relation E(x E,) & 1, i. e.,
E &E*=(E'-r')"' (5. 29)

&n(E)&

zrzzrl
According to the general discussion given in Sec.
VA,

-E"O E' = gE,'-I",'

I".,*-E, I'"
as I'-0 . (5. so)

Anderson's transition occurs when the two mobility
edges +E, merge together, i. e.„when E,= —E, or -E -E 0

C C

E,(1",) = o.

From (5. 29) and (5. 31) we have that

E+(I,) = o,
or, using (5. 28)

I', & Et, =~ 8.

(5. 31)

(5. s2)

(5. ss)
I

0 Eb

1 =0
t

Thus all eigenstates are localized for I' ~ —,'8,
although the disappearance of extended states hap-
pens at lower values of I".

Within the framework of the general theory de-
veloped in Secs. III and V, formulas (5. 29) and
(5. 33) constitute exact inequalities that the mobility
edges and the critical value of the randomness obey.

For I'= 0, E,= E,*=E» which means that for a
periodic system the mobility edges coincide with
the band edges as they should since there are no
localized states in a perfectly periodic system. As
I' increases, the quantities x E,* and, from (5. 29),
the mobility edges +E, move inwards into the band,
broadening the intervals of localized states at the
expense of the extended states. For a critical val-
ue of I', 1 = I"„ the two mobility edges +E, coin-
cide. For a still higher value of 7, I'= —28 & l"„ the
quantities +E,* merge together too.

This sequence of events is presented pictorially
in Fig. 1 through a sketch of the average density of
states per atom (n(E) ) for three different values
of the parameter I'.

VI. SUMMARY AND CONCLUSIONS

Because the derivations in the present paper were
lengthy and complicated and many diverse aspects
of them were discussed in a detailed way, we try
here for the sake of clarity to present the skeleton
of the logical structure of our work.

We started from a Hamiltonian of the form (2. 1)
satisfying conditions (2. 2) and (2. 3). Localized
eigenstates overlapping with a given site 0 make a
nonzero contribution to the quantity poo, where poo
is the probability of rediscovering a particle at
I 0) as t- ~ if initially t=o was at l 0). It was
shown that whether states of a given energy E con-
tribute to poo depends on the analytic structure of the
0, 0 matrix element Go of the Green's function G
= (E -H) ' and of the self-energy b,5= E —ao —G='.

Go(E) and hg(E) have a branch cut for the regions

FIG. 1. Sketches of the average density of states per
atom (I(E)) for three different values of the half-width
I' of the Lorentzian distribution of single-site energies.
The mobility edges + E~ separate regions of localized
states (shaded) from those of extended states, and always
lie within the interval [-E~, E,*j. 1"~ is Anderson's
critical value of the randomness (after Hef. 16).

of the spectrum corresponding to nonlocalized (i.e.,
extended) eigenstates. On the other hand, for the
regions corresponding to localized eigenstates Go(E)
and 40(E) have a dense distribution of poles, but
only a finite number of these have residues larger
than any preset small value. This difference in the
analytic structure of Go or ~y was used to reveal
the nature of the eigenstates. The analytic behavior
of 4g, and consequently the nature of the eigen-
states, was then connected with the convergence
properties of the renormalized perturbation series
(HPS) for do(E) as follows: Assume that the eigen-
energy E belongs to a portion of the spectrum cor-
responding to localized eigenstates. One can then
define the HPS for n;(E). If this series converges,
the original assumption is true and the states there
are really localized. If this series diverges, the
initial assumption is wrong and consequently the
states for that energy are extended. The Nth-order
term of the HPS for b,o, &-' ', was shown to be giv-
en by

for large N, where K is the percolation constant
and T& is the contribution from an Nth-order dia-
gram. If

( ~

6-'"'
~

)' "-1.& 1 as N (5. 2)

then the RPS for Ag converges. If I, &1, the series
diverges. However, since the diagonal matrix ele-
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ments of our Hamiltonian were assumed to be ran-
dom variables, it is in general a matter of probabil-
ity whether (6. 2) is satisfied or not. In other
words, one should find the probability distribution
of I

6-' '
t in order to see if and under what condi-

0
tions (6. 2) holds. To this end the probability dis-
tribution for each I T& I was shown to be sharply
peaked around a value of the form e '&. Physical
and mathematical arguments were developed to
support the proposal that most of the quantities T,
have a common sign and that they are so strongly
correlated that gj ~ T, i and hence ld'-"'

~
are

sharply distributed around the vat. ue

E&
e Na~ —LN(E)

j=i

Hence, if L(E) & 1, the RPS converges with probabil-
ity unity, and if L(E) & 1, the RPS diverges with prob-
ability unity. It follows then that L(E) is a local-
ization function: The regions of the spectrum where
L(E) & 1 correspond to localized eigenstates, those
where L(E) & 1 correspond to extended states, and the
critical energies E, , where L(E,) = 1, are the mo-
bility edges.

It should be emphasized that the existence of
L(E) does not depend on the validity of the assump-
tion of strong correlations of the T& . Anderson ob-
tained qualitatively similar results assuming the
other extreme of complete statistical independence
of T&'s. The form of I, (E) does, of course, depend
on which assumption is used. In any case, since
statistical independence and strong correlation are
limiting situations, we expect that our results and
the ones deduced from Anderson's assumptions
bracket the correct localization criterion. The
binary-alloy case' and some preliminary numer-
ical results reported by Thouless" provide some
independent evidence that the correct answer lies
closer to our result than those resulting from An-
derson's assumption of statistical independence.
The existence of L(E) proves the correctness of
the Mott-CFO model, which states there exist crit-
ical energies E, termed mobility edges, separating
regions of the energy spectrum consisting entirely
of localized states from those consisting entirely of
extended states. As the randomness increases,
L(E) decreases and the regions of localized states
expand while the regions of extended states shrink.
Anderson's transition occurs locally within a band
when a region of extended states disappears and
globally when all regions of extended states have
disappeared. Rough estimates of L(E) were given
and compared with related results in the literature.

The quantity L(E) is difficult to calculate ac-
curately, however. We consequently considered
cases where

exp&inld.,'" ~ ~ ~ i-~(E)l)= l~l ~ ~ ~ ~ ~~-(E Z(E))l (6. 3)

~I

holds for all diagonal matrix elements 6'-„',"""~ ~(E)
of the Green's function with sites 0, . . . , n, , ex-
cluded, where g-„,'""'&-& is the corresponding ma-
trix element for the periodic case and Z(E) is a
self-energy. We then were able to define a function

F(E)=E„/lE -Z(E)l,
where E, is the half-width of a symmetrical band,
which had the properties

F(E) - 1-L(E) & 1 .
Approximate positions of the mobility edges E,*
were obtained from

F(E,*)=1,
and the regions of extended states were shown to
lie within the regions where F(E) & 1 between ad-
jacent E,*. Equation (6. 3) does hold (with the equal-
ity sign) precisely for a Lorentzian distribution of
single-site energies for which Z(E) = —iS(E)I' and

approximately for single-site approximations such
as the CPA, where Z(E) is the CPA self energ-y
It is expected that localization is described more
accurately through F(E) than through the approxi-
mate estimates thus far made of L(E) directly.

The analysis just summarized was attempted as
a contribution establishing the universal properties
of disordered materials. In particular, we think
that we have brought the subject to a stage such
that the correctness of the Mott-CFO model should
be considered as established, at least for Ander-
son's tight-binding Hamiltonian.

We conclude by pointing out the wide possibilities
which open up for studying the positions of the mo-
bility edges in different models using the function
F(E;). In the case of a random binary alloy using
F(E) as calculated from the coherent potential ap-
proximation, results were already obtained" in
striking agreement with the Mott-CFO model, with
independent calculations, and with some exact re-
sults.
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APPENDIX

We want to calculate

&f( '"'"'( )))= {;)~—
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x f (GP '"'(E; {e;))) . (Al)

We assume that all singularities of the function
f (z) lie on the real axis or/and at infinity. We con-
sider first the case

ImE& 0, (A2)

and try first to perform the integral over one of the
variables {e,), e. g. , e~. We define

+ oO

~a OD

infinite, it follows that f (G" ""(E;e-,{e;)'))has
no singularities in the lower a; half-plane. Hence
the only pole inside the contour of integration is
c- = —sX', Thus

(f (G' '"'(E; e;, {e;)')));
= f (G', """(E;—fr, {&,)')) . (AV)

Repeating the same analysis for the integration over
every variable e;, we obtain finally

&f (G' """(E'{))))=f (G", """(E{-'r)))
(Aa)

xf (G, " "(E;e., {&.,)')) . (AS) or

(f(G'-' "(E)))-=- && de-

x f (G-"~'" (E; e-, {g,.}')). (A4)

Since for every Hamiltonian

Im(G-) = -P
& ~

G-
~

Im(E —e;), (A5)

We close the contour of integration by an infinite
semicircle in the lower &; half-plane. The contri-
bution of this semicircle is zero, Thus

(AIO)

(f (G'; " - (E; {e,)))&=f (G;"""-(E+~r;{0))).
(A9)

The right-hand side of (A9) is nothing else than

f (g '- ' "(E+fr )),
W

according to the definition of g
' "'(z). The same

analysis can be repeated when ImE& 0. Then we
should close the contours of integration in the up-
per e; half-planes and consequently the quantity
ir in (A9) should be replaced by —ir Intr. oducing
the function

it follows that for Im&; &0 and ImE&0

ImG-", '" '(E; e», {z;)) & 0 . (A6)

S(E)=1 if ImE &0

= —1 if ImE&0, (Al 1)

w

Lloyd" has shown that when ImE&0, G'»„' ""cannot
have a pole for Im&, & 0. Since the only singulari-
ties of f (z) can occur when the argument is real or

we can write the results for both cases as

(f (G' """(E;{&;)))) =f ( g' """(E+i~(E)r)) .
(A12)

This work was completed when one of the authors
(E.N. E. ) was at the University of Virginia.
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Vacancy-formation entropies were computed for a number of face-centered-cubic solids
from vibrational frequency distributions which were computed from pair potentials. The forma-
tion entropy is a monotonic function of the vacancy relaxation, computed from the same pair
potential. It is shown that the relaxation of the nearest neighbors to the vacancy in fcc solids
can be described by h~ = —5. 8 & 10 R/&V}, where 0& is in percent, K is the compressibility,
& the linear thermal-expansion coefficient, and V is the molar volume. The computed vacancy-
formation entropies are described by M=1.83+3.4 && 10 (K/eV) in units of k/vacancy.
Similar relations are obtained for bcc metals. The experimental relations found for model
solids are used to predict vacancy relaxations and formation entropies from experimental val-
ues of K, e, and V. Vacancy relaxations are predicted to be less than 0.2/o of the normalneigh-
bor distance in most fcc metals and 2-5% in bcc metals. Vacancy-formation entropies are
predicted to be 1.Sk-2. 0k in most fcc metals and 2. 2k-2. 6k in bcc metals. The predictions
for the entropy are in satisfactory agreement with experimental data, where reliable data
exist.

I. INTRODUCTION

There are questions as to the self-diffusion
mechanism in rare-gas solids' and noble metals.

It is known that vacancies play an important role.
This has motivated a number of workers to attempt
tp calculate the formation entrppy, mptjpn en-
tropy, ~' formation energy, '7' '"' '6 and motion


