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A model calculation of the temperature dependence of the electronic density of states and
the electrical conductivity of disordered binary alloys, based on the coherent-potential approxi-
mation (CPA) is made by introducing thermal disorder in the single-band model (Velic@ and
others). Thermal disorder is found to broaden and smear the static-alloy density of states.
The electrical resistivity in weak-scattering alloys always increases with temperature. How-

ever, in the strong-scattering case, the temperature coefficient of resistivity can be positive,
zero, or negative, depending on the location of the Fermi energy.

I. INTRODUCTION

The macroscopic electronic properties of alloys, '
such as the dc electrical resistivity, have been
fruitful subjects for experiments, because useful
devices, e. g. , strain gauges, have been con-
structed which depend on these properties, they
can be measured accurately, and the results of
these experiments provide an insight into the
microscopic behavior of the materials. The the-
oretical interpretation of these properties has
lagged far behind the wealth of experimental infor-
mation. For example, it is well known that con-
stantan has a very constant resistivity over a wide
range of temperature, ~ a fact not explained by the
standard theory. A more striking example is
FeqpCrppAlyp alloy, which has a substantial de-
crease in electrical resistivity as temperature
increases from 77 to 1200 'K. Because of a for-
midable combination of complexities (a discussion
of this point is given in Sec. VF), a genuine under-
standing of these facts remains a challenging the-
oretical problem. It is too early a stage in the
development of alloy theory to give a first-principles
quantitative description of the transport properties
of concentrated strong-scattering disordered sys-
tems, like constantan, since the easier and more
basic electronic quantity, the static-alloy density
of states, is just beginning to be understood. 4 ~

At present, even a qualitative or model description
of the transport properties in such alloys is greatly
needed. The object of this work is to understand
the temperature variation of the alloy density of
states and conductivity which results from the in-
terplay between the alloy disorder and thermal
dhsorder.

The paper is outlined as follows. We start by
introducing the formal theory in. Sec. II where the
density of states and the conductivity are related
to the averaged Green functions. Then a general
discussion of the temperature-dependent aspects

of the formulas is given along with a review of re-
lated works (Sec. III). After giving a summary of
the formalism of the coherent-potential approxima-
tion"" (CPA) (Sec. IV), we present a model cal-
culation based on CPA (Sec. V).

In the model calculation, we use a model Ham-
iltonian similar to that of Velicky et al. ,

' but with
thermal disorder added. A new interpretation of
the basis and matrix elements which enter into the
formalism is given, and this is then incorporated
in the matrix manipulation of the averaged Green
function. The thermal-disorder Hamiltonian
takes the usual form containing one-phonon creation
and annihilation operators. Working within this
model, we reduce the CPA self-consistent operator
equation to a scalar integral equation for the self-
energy. In order to obtain the numerical results,
we use simple forms for the input functions: a
semiellipse for the pure crystal density of states,
a velocity-functional form proportional to the den-
sity of states, and a Gaussian distribution govern-
ing the thermal fluctuation of the random atomic
energy levels. Following a detailed discussion of
the numerical method of solving the integral equa-
tion, we present the results of numerical computa-
tions for some representative parameters. A

systematic study of self-energies, the total density
of states, the component density of states, and the
conductivity is exhibited in the form of three-di-
mensional plots. Thermal disorder is found to
smear and broaden the static-alloy density of
states. Disorder always increases the electrical
resistivity in the weak-scattering limit. However,
in the strong-scattering case, the conductivity
may decrease, increase, or remain constant with
temperature depending on the location of the Fermi
energy.

The numerical results are followed by a discus-
sion of the implications of the model calculation.
The nonperturbation nature of the problem is briefly
mentioned; then an interpretation of the self-energy
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in the averaged Green function is given. We show
that the relaxation time, corresponding to the imag-
inary part of the self-energy aopearing in the
formulas for the density of states and the conduc-
tivity, is not the usual decay time of the Bloch
states, but rather is the decay time for a different
process. However, in the weak-scattering limit,
there is no distinction between these two relaxation
times. We also, by a proper choice of the relaxa-
tion time and the Fermi velocity, reduce the CPA
conductivity formula to the customary form in the
weak-scattering limit, which aids in the physical
interpretation of the results. In the strong-scat-
tering case, and in instances where the conductivity
increases with temperature, we interpret the re-
sults as approaching the regime where the thermal
fluctuations assist the motion of highly damped
"quasilocalized" electrons.

Finally, an analysis of the problems associated
with a real transition-metal alloy is given. From
this, we can see how far we are from the goal of
a quantitative theory of transition-metal alloys.

II. DENSITY OF STATES, CONDUCTIVITY, AND

THE GREEN FUNCTION IN A DISORDERED
SYSTEM

Transport properties, such as electrical conduc-
tivity, are often obtained from solutions to the
Boltzmann equation. But the semiclassical
Boltzmann equation is not valid if the uncertainty
in the momentum of the carrier is greater than the
momentum itself ~ This is equivalent to the Landau-
Peierls' criterion for the validity of Boltzmann
equation:

formal expression for the dc electrical conductivity
tensor o is"

(y ~={I/O) J dt J dX(J'~( t-h&)J, (t)), (2)

where J(t) is'the n component of the total-current
operator in the unperturbed Heisenberg picture,

(t) $Xt /tip -kXt/h

and 0 is the volume of the system, v is Boltzmann's
constant, and T is the temperature. In Eq. (3),
3C is the total Hamiltonian of the system before the
field is turned on. The brackets ( ) in Eq. (2)
mean the ensemble average, i.e. ,

(4)

where p, (R) is the equilibrium density matrix. The
Hamiltonian generally includes all the subsystem
Hamiltonians, e. g. , electrons, phonons, spin
waves, etc. , and the interactions among them. We
shall restrict ourselves to an alloy composed of
N atoms and cX electrons. The appropriate Ham-
iltonian of the alloy is

where the one-electron Hamiltonian H takes the
form

H(r) =P /2m+ V(r; R„R„.. . , R„),
where V(r; R„Rz, . . . , R„) is the appropriate
screened-ionic potential when the ions are located
at positions B, through R~. Notice that H depends
on the locations of the ions. The eigenfunctions of
H and eigenvalues are defined by

H(r; R„.. . , R„)4',( r; 0„.. . , R„)

To avoid this difficulty, we have to use a quantum-
mechanical approach to the transport properties.
One approach is to use some quantum transport
equation, such as Van Hove's" generalized master
equation, but the application of this method is not
well developed in the literature, since his integral
equation is too difficult to solve. Other, more
manageable transport equations, such as the
Kohn-Luttinger type, ' ' are perturbation theoretic,
2nd depend on the existence of a small parameter,
such as a small impurity concentration or weak
scattering; therefore, we cannot use such a method
for a concentrated strong-scattering alloy. An-
other, more popular approach will be used here,
namely, the density-matrix method of the Kubo
linear-response theory, "'"which is both rigorous
and convenient. A good comparison of the Kubo
and Kohn-~uttinger methods is given by Moore. "
Our starting point, the Kubo formula for the elec-
trical conductivity, is obtained from a formal solu-
tion to the Liouville equation of the density matrix
to first order in the external electrical field. The

= 8, 4', (r, R„.. . , R//)

In a static alloy the positions of the ions are fixed
so H commutes with H„„, and the Kubo formula,
Eq. (2), can be reduced'7 to the Greenwood for-
mula"

where a and b are quantum numbers defined in
Eq. (7), and v™,is the electron velocity matrix
element

(8)

where P is the Q. component of the electron-mo-
mentum operator. In Eq. (8), {), means an aver-
age over all the substitutional arrangements of the
ions, usually called the "configuration average. "
The function f in Eq. (8) is the Fermi-Dirae dis-
tr ibution

f{S)= I/(e~'~ "'+ I)
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where P = (vT) as usual, and p, is the chemical
potential energy.

In general, the one-electron Hamiltonian H does
not commute with the ionic Hamiltonian K„„. It
is a rather difficult problem trying to carry out the
trace by any kind of perturbation expansion in Eq.
(2). However, we can approximate in the spirit
of the Born-Oppenheimer adiabatic approximation
at this point. Since the ionic motion is slow com-
pared to the electron motion, i. e. , v„„/v„„- 10 ', we can freeze the ionic positions and solve
for electronic states, i. e. , Eq. (7). Then we can
find the expectation value of the electronic quan-
tities in this particular ionic configuration. Fi-
nally, we can average the expectation value over
all possible positions of the ions in the given con-
figuration, and then over all possible configurations
to get the macroscopic expectation value. Apply-
ing this to the electrical resistivity, the Kubo-
Greenwood formula [Eq. (&)] is merely modified
by an extra average,

g 2''e A ~
g g g

(11)
where ( &~ means an average over the ionic posi-
tions. We shall drop the indices from the double
average in what follows.

When Eq. (11) is applied to a liquid metal, we
do not need the configuration average (),. Then
Eq. (11) is identical with the equation used by
Edwards. ' To be explicit, let us define the alloy
electronic spectral density matrices p1, p~, etc. ,
following Edwards:

pg( r g, ry,' E)

—= ( 1 IP, 4',~(r„R„.. . , R~)4', (r,';0„.. . , R„)

x6(h. -Z)]P,(R„.. . , R, ) II, d'H, &,

(12)

H„,(R„.. . , R )C"„(R,. . . , R„)=E'„4'„(R„.. . , R„)
(16)

Equations (12) and (13) serve to define the double
average explicitly. They are also useful to connect
the quantities of interest to'us, i. e. , density of
states and electrical conductivity, to the Green
function, as follows.

The electronic density of states per atom is

St (E) = (I/N) f d r p, ( r, r; E)

The electrical conductivity is related to p~ by

(16)

P~ d'Q —— d 'Y1d f'P

Je lg ii~ ~r .~+1 +2 P2( 1r~ r1ir2ir2 ~ & ~ & ) I f'I r' tr3 rp1

(17)
Let us define a Green function of complex argument
z associated with H,

G(z)=-[~-H] '=Z -- 'i4, &(4, i

z g (18)

which is analytic everywhere except for a line of
poles (8,], which for large 0 is equivalent to a
branch cut along the real axis, where the spectrum
of H lies.

Using the identity~

1 1=6 —+iv5(x)x+i0 x

we can easily show that Eq. (16) is equivalent to

st(E) = ~ (I/H~) rm Tr((G(Z+ iO))),

We can also rewrite Eq. (11)or Eq. (1'7) in the
operator form

g = dq ——Tr((P 5(q —H)P 6(q H) », -2me 5 df 8
m'0

(21)
or, when the delta functions are expressed in terms
of the Green function through Eqs. (18) and (19),
cr becomes

and

P2(r1 rl r2 r2 El +g)

=-((~5, Z„e~(r,)e,(r,')4,*(r,)4,(r,')

x 5(E, —8,)6(E, —8,)»

where

2Fe 5
m'0

——Ipepg g, g
df

(22)

where P,(R„.. . , R„) is the distribution function of
ionic positions (R„.. . , R„) in a particular ionic
configuration, as indicated by the index c. Explic-
itly, P, is

P, =z„~ '(cR„. . . , K„)
~

8 (X/, ,„.e ') '

(14)
where @'„ is the eigenfunction of K„,with the eigen-
value E'„ in a particular configuration c, so that

with

(24)

In Eq. (23), q' means 7) ai0
So far, the formulas, Eqs. (20) and (22), are

still very general; they can apply to any disordered
system. Thus, to solve for the density of states,
we need to average the one-electron Green function
G; while for conductivity, we need, loosely speak-
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ing, an average of the product of two Green func-
tions ((GG)) .

However, the conductivity formula, Eq. (22),
is only an approximation to the exact Kubo for-
mula, Eq. (2). It is valid whenever the ionic mo-
tion can be treated classically, or, equivalently,
when we can neglect the noncommutation of the
ionic momenta and positions. Thus, it is valid to
use Eq. (22) in liquid metals, and solids at high
temperatures. '

Intuitively, we feel that Eq. (22) may still be a
valid approximation for a solid alloy at low tem-
peratures so long as the collision rate of the elec-
trons is much faster than the Debye frequency ~D
of the ionic motion, i ~ e. ,

1/7' » &un (25)

As we have seen in Sec. II, the averaged Green
functions ((G)) and ((GG)) determine the electronic
properties of interest in the alloy: the electronic
density of states X(E) and the electrical resistivity
p. Although there has been some contact between
experiment and some aspects of the theory, as re-
viewed extensively by Mott, plausible approxima-
tion schemes for calculations in real disordered
materials have not been worked out, '~4 but are
rapidly being developed. In what follows, we shall
survey the relevant areas of the field, and state
our own problem and methods against this back-
ground.

In the averaging process, we must first know the
ionic distribution function P, in Eq, (14), the
quantity that leads to the temperature dependence
of the density of states Ot(E) [Eqs. (16) and (12)],
and the conductivity o [Eq. (21)]. In a completely
disordered system with no ionic correlations,
(P,), is the trivial uniform distribution

(26)

In this case, there is no temperature variation in
Ot(E), while the temperature dependence of o is only
characterized by the trivial Fermi distribution
factor ( —df/dry) in Eq. (21). This uniform distri-
bution is not true even in the most disordered ma-
terials like liquid alloys or amorphous material.
The determination of the temperature coefficient
in Ot(E) and o of these materials relies on a genuine
understanding of P„which is always complicated.
However, when the atomic potential is weak, our

This means that the uncertainty in the electron en-
ergy is big compared to the maximum phonon en-
ergy, so that the conservation of energy in the
scattering of one electron by a phonon is of little
significance. Under this circumstance we can ap-
proximate the phonons as "static scatters" and
treat the scattering as elastic as in Eq. (11).

III. SURVEY

Eqs. (17) or (21) can be reduced"'" to the Faber-
Ziman-type formula for the resistivity of liquid
alloys. What we then need is the structure factor,
which can be found from neutron-diffraction ex-
periments or can be calculated as in the work of
Bhatia and Thornton. In a crystalline alloy, the
ions are restricted to vibrate around their lattice
sites. Then the ionic motion can be described in
terms of normal modes, or phonons. The average
over ionic positions can be replaced by a thermal
average over the phonon distribution. In a static-
disordered alloy, which is the most popular topic
in the literature, the average is simply the con-
figuration average ( ),.

More difficult than the determination of P, is the
computation of the average in ((G)) and ((GG)) .
The most trivial approximation to ((G)) is the one
corresponding to ((H)). This sometimes results
in a rigid shift of the band, and then is called the
"rigid-band" model. In the weak-scattering
limit, Edwards, "starting from Eq. (17), summed
up certain diagrams in both the (G), and (GG), ex-
pansion series and was able to rederive the usual
conductivity formula (the one arrived at from the
Boltzmann equation). At low concentration,
Langer used the many-body thermodynamic Green
function ' and a perturbation expansion to get the
conductivity to the first order in concentration.
For strong scattering, but localized potentials,
Beeby' neglected the statistical correlation between
the atomic scattering matrices in the multiple
scattering expansion of (G), and summed up the
series to get the so-called 'average-T-matrix"
approximation. This approximation was somewhat
better tha. n earlier ones but still untrustworthy in
the concentrated strong-scattering case. Later,
Ballentine" used a self-consistent method in the
calculation of the band structure of liquid Al and
Bi. This 'self -consistent virtual-crystal" ap-
proximation (see Ref. 4) gives no splitting of the
alloy band no matter how large the potentia, l
strength is. The first good theory to deal with
alloys of arbitrary concentrations and scattering
strengths is the coherent-potential approximation
(CPA). This approach to (G), was originated by
Soven and was greatly extended by Velicky et al.
Velicky' further extended CPA to attack the problem
of electronic transport in a static alloy, and dis-
cussed the numerical results for 0 in a model al-
loy.

So far, the CPA is still the basic working approx-
imation in the electronic theory of concentrated
strong-scattering alloys. It is also a powerful tool
for other alloy properties. For example, Taylor"
used the same technique for the lattice vibration
problem in alloys, and Onodera and Toyozawa'
applied the same approximation to Frenkel excitons
in mixed ionic crystals. Since we are going to use
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CPA in our model calculation of the temperature
dependence of Ot(E) and a in a crystalline disordered
alloy, the CPA formalism will be discussed in de-
tail in the sections that follow.

The more recent developments in the theory of

((G)) and ((GG)) are either mathematical justifica-
tions or generalizations of CPA. First, Yonezawa
carefully analyzed and generalized the expansion
series in the self-energy of (G),. Excluding
"multiple occupancy" of a site by more than one
atom, she concluded that the approximate self-en-
ergy obtainable by summing all terms involving
multiple scattering at the same site was identical
with the CPA result. Later, Ziman" conjectured
that for a tight-binding alloy, the "locator" expan-
sion of Matsubara and Toyozawa was superior to
the usual band-propagator expansion and used it
to arrive at a different conclusion from CPA about
the splitting of the band. But in a later paper
Leath, using a diagram technique and taking into
account the "multiple-occupancy" correction,
showed that Ziman's idea was not correct. Fur-
thermore, he also showed that the diagrams of
Edwards, Langer, and Verboven, ' when prop-
erly corrected for "multiple occupancy, " led to
Velicky's CPA electrical-conductivity result. In
an attempt to improve CPA by including random
off-diagonal (hopping) matrix elements, Berk40

restricted himself to the weak-scattering limit, to
avoid the difficulty of the strong-scattering prob-
lem. His work is essentially a different version
of the "self-consistent virtual-crystal" approxima-
tion. An attempt on the same problem was made

by Ewards and Loveluck. ' They used an elaborate
diagram method and summed up a large number of
diagrams. But their result for the density of states
exhibits unphysical band gaps. They also concluded
that the self-consistent method was too complicated
for their case.

The most substantial generalization of CPA,
namely CPn, was recently developed by Freed and
Cohen. They generalized the coher ent-potential
theory from the single-site approximation to x-
atom clusters. The cluster Green function G„- (in
their notation) is self-consistently determined in a
way similar to (G), in CPA but more involved.
However, they showed that uniformly averaging a
finite cluster Green function to get the transla-
tionally invariant alloy Green function could not
produce a different result from CPA. In order to
get nontrivial results, one must go through a subtle
averaging process, called ECPn (extended CPn
approximation). The simplest version of ECPn is
Kohn's notion of periodically compact disordered
clusters. ' The most important results of CPn is
the demonstration of the existence of localized
states (bound states), outside the CPA band, and
in the regions obeying the localization theorem.

Henceforth, we shall consider only crystalline
disordered substitutional binary alloys. Let x and

y be the fractional concentrations of the constituent
A atoms and 8 atoms, respectively, so that x is
the probability of an A atom occupying a given site.
The one-electron Hamiltonian H in Eq. (6) takes
the form

H = Ho + U = Ho +Q„U„ (2'7)

where Ho is the periodic part of II, and U contains
the randomness due to both substitutional and ther-
mal disorder. U„ is the contribution of the nth
site to U. The decomposition in Eq. (2'7) is not
unique. However, a convenient decomposition can
always be chosen for a given system.

Our object is to determine ((G)) and ((GG)).
Here the double average is a thermal average over
the phonon ensemble in a given configuration, fol-
lowed by an average over all configurations. The
coherent-potential approximation (CPA) is a, tech-
nique for finding a self -consistent' solution for the
average Green function. The method4' is outlined
below.

Several interesting uses of CPA have appeared
in the literature. CPA has not been restricted to
the tight-binding approximation. In an early, dif-
ferent version of CPA, Anderson and McMillan '
used a self-consistent equation for the phase shift
to calculate the band structure of liquid iron. Using
a similar method, Soven has applied CPA to a
muffin-tin potential and has been able to deal with
an alloy with constituents of different bandwidths.
CPA also serves as an approximate quantitative
scheme. It has been used to yield the density of
states in Cu-Ni alloys. ' It was also applied to
the magnetic properties of Cu-Ni alloys. Velicky
and Levin have also used CPA to discuss intraband
optical constants in a simple tight-binding band.
Recently Levin and Ehrenreich applied CPA along
with a model Hamiltonian for Ag-Au alloys. By
adjusting a concentration-dependent d-level energy,
they could make the concentration dependence of
the optical-absorption edge agree with experiment.

From this review, it can be seen that the self-
consistent Green function approach to the alloy
problem, with CPA as the basic approximation,
has been fruitful. Although CPn should give better
answers than CPA, at present, when even a model
description of Cpn has yet to be developed and the
CPn two-Green-function average has not even been
discussed in the literature, CPA is the only simple
and practical method to use in an investigation of
the temperature variation trends of st(E) and o in
a concentrated, strong-scattering alloy. It is ex-
pected, however, that the method developed below
can be generalized to CPn.

IV. COHERENT-POTENTIAL APPROXIMATION
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The average Green function can be expressed as

(( G( ) » = G( ) = ( - ff - Z) ' . (28)

This defines Z, the self-energy operatox', which
has the full crystal symmetry since G does. Thus
Z represents an effective potential for the averaged
crystal. Expressing G from Eq. (18) in terms of
G yields

G =G+GTG (29)

T =(U- Z)[1 —G(U- Z)]-'= [1 —(U —Z)G]-'(U- Z)

= (U- Z)+(U- Z)G T (3o)

Now taking the average on both sides of Eq. (29),
we get

((G» =G+G«~ » G,
which is solved by

«T(Z)»=o .

This, as can be seen from Eqs. (28) and (30), is
the self-consistent equation which must be solved
for Z. R can be expressed as a sum of self-energy
operators Z„,

Z =g„Z„ (33)

The choice of the operators Zn is not unique, the
ly t. t . thtt i„' t dd

to the operatox' Z which has the symmetry of the
pure crystal. A particulax choice will be useful
sucI1 thRt eRCI1 Z„ ls localized neRx' its site s Rnd

places an equal contribution on ea,ch site.
Since the potential U is a sum of contx'ibutions

from each site, i. e. , U=g„U„, the scattering op-
erator T can be expressed as

T =Z„q„=Z„q„ (34)

with

q. = (rr. —):.)((.G ) ) = T„[(.(: Z ()„)

=T„+5 T„GT + &~ G T„GT GT, + ~ ~,
m(&n) l (&m) ym(/n )

(35)

total scattering such that the last scattering happens
at site n; while ((I)„, represents the contribution to the
T such that the first scattering is at site n. In
terms of the T„'s, the scattering operator T has
the customary form

TnGT GT, +-. ~

n n&m nymyl
{n&m) {n/m~mA $)

(38)
The ensemble average of Eq. (34) along with Eq.
(32) is

(39)

But from Eq. (35) we have

&(e.»=&(T.(1+G ~ e.)&& . (4o)
m(&n)

The coherent-potential approximation for Z con-
consists of two ingredients: (i) There exists a de-
composition of Z as in Eq. (33) such that we can
neglect the statistical correlation between the atom-
ic T matrix T„and the effective waves coming from
other sites) l.e.,

«Q. »=«T. (1+G ~& Q ))&
m(gn)

=«T.»(1+G & «Q »)
m(A n)

This is a "single-site approximation. " (ii) Z„
satisfies

«T.(Z))) =o . (42)

Equation (42) is the CPA equation for Z, which en-
tirely determines G(z) and thus the density of states
~t%).

For the electrical conductivity, we have to deter-
mine the operator K as defined in Eq. (24). Substi-
tuting G into K from the Eq. (29), and using the
CPA equation, Eq. (32), we can reduce X to the
form

I~(&i,p, &2) = G(~g)[p + f'(~„p",~,)]G(~,), (43)

where the vertex operator 1" is given by

f"(~l,p, ~a) -=&&T(~1)G(~|)p G(~2)T(~2)&& . (44)

The vertex operator 1 may then be rewritten as the
sum of contributions from all sites by using Eq.
(34) for T and Eqs. (35) and (36) for Q„and Q„,
respectively,

=T„+ Z T GT„+ &~ .~& T, GT GT„+ ~ ~

m(W n) l (Am), m(W n)

(36)
The atomic scattering opexator Tn is defined as

T„=(U, —Z.)[1-G(U.—Z„)1 '

= (U„—Z„) + (U„—Z„)G T„ (3V)

In multiple scattering language, Q„, as seen from
Eqs. (34)-(36), represents the contribution to the

f'=Z. Z.«e. GP GV.»

=Z„Z.«T„(1.G 2- e,)GP™G(1.& e.G)T.».
p(& n)

(45)
CPA for E; has a further single-site approximation
in addition to Eq. (41), i. e. ,

«T„(1+G Z q„)GP G(1+ Z q, G)T.»
g(&m)
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=((T„(((1+G Z Q„)GP G(1+ Z Q, G))& T )),
p(& n) s(&m)

(46)
which is zero for n wm, since T„and T are then
independent, and each averages to zero, by Eq.
(42). Thus we arrive at the following result:

((Q. Gp GQ. )&=((Q.Gp GQ.»5..
=- ~n &nm (4'I)

This, in two-resolvent language, means that we
have neglected all the statistical correlations be-
tween two particles unless they are scattered at
the same site. In other words, we have neglected
the statistical correlation between the scattered
waves from two different sites.

Using Eqs. (35), (36), and (46) we find

r„=(&Q„Gp GQ„))

=((T„(((1+G &~ Qq)GP G(1+ Z Q, G) )) T„))
s(&n)

=((T„((GP G+G( )~ ((QqGP" G Qq&&)G&& T„))
P(& n)

=((T„G(p + Z F,)GT„)) (48)
p(&n)

In Eq. (48) we have used the CPA results ((Q„)&
=&(Q.» =o.

Combine Eqs. (43), (45), (47), and (48) to obtain
the closed equations for E,

f~=G(P +g„r„)G, (49)

I'„=((T„ET„))—((T„GI'„G T„))

which yield the f ormal solution for I':

F=Z«T. GP GT.»

(50)

+ ~ ((T.G&(T Gp GT »GT.»+
(nA na)

Equations (49) and (50) complete the CPA formal-
ism. They are still formidable. %e have to obtain
the self-energy from Eq. (42) in order to get G,
then try to sum the series in Eq. (51) to get I', and.

finally insert I' into Eq. (43) to find E. In Sec. VA
a simple band model Hamiltonian will be used to
reduce the operator eqU. ations to simple scalar
equations.

H=HO+D+e

where

a, =K' ~n&f„&m~
num

(52)

V. MODEL CALCULATION

A. Simple Band Model

%e shall use the simplest possible model electron
Hamiltonian that includes both substitutional im-
purities and thermal disorder,

represents the part of the Hamiltonian off-diagonal
in site indices, and the t„are assumed to be
periodic, and independent of alloying and lattice
distortion,

D=E„~.& h„&.
~

(54)

represents the "impurity" Hamiltonian with 8„
either 8~ or 8~, according to whether an A or 8
atom is on site n, and

e=r„~~& e„&~) (55)

is the electron-phonon interaction. The phonon
operator en depends on which ion occupies site n
and on the phonon coordinates. This model is a
generalization of the Koster-Slater one-impurity
case, and is identical with the model exploited by
Velicky et al, with the addition of the phonon con-
tribution.

A few words are appropriate here about some
assumptions, definitions, and redefinitions that
we are making. Some of the problems about
which we shall be speaking are already present in
the Koster-Slater case, although they are custom-
arily (and unnecessarily) ignored. The heart of
the problem is the definition of the site basis and
implications of the choice. Let us take in& to be
an atomic or Wannier function centered at 0„. Fol-
lowing the convenient custom, we pretend that the

(i n&j are not only very localized, as are atomic
wave functions, but also orthogonal, as are %annier
functions. In other words, we assume that the dif-
ference between Wannier and atomic wave functions
can be neglected, as is true in a good tight-binding
case. Now usually, in an exposition of the Koster-
Slater model, the (}n&) are all taken to be one type
of wave functions, e.g. , pure A-crystal Wannier
functions associated with a single atomic orbital,
but this is highly unphysical —the true wave function
cannot generally be approximated well on such a
basis without multiplying the number of bands taken
into account. Therefore, let us initially take i&&

to be in„& or in~&, the state appropriate to the type
of atom at the site n, in& being centered on the
actual position R„, rather than the official lattice
position P„. We assume that the tails of the atomic
basis are almost the same, so that we can neglect
differences in the off-diagonal matrix elements of
energy and momentum t„and p„and assume them
to be independent of alloying. The phonon contri-
bution is restricted to be diagonal only for the re-
sulting mathematical convenience in the CPA for-
malism.

Now let us redefine our point of view or notation.
Using the basis described above, for a particular
configuration, let us convert all operators, such
as C, K, etc. , into matrices, and regard all the
CPA equations as matrix equations. Equivalently,
we could turn these matrices into operators by using
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I
n& = (1/N ' 2) Z»-, e»"' ))

I
k& (59)

Since the site-diagonal matrix elements of Gp

are site independent, i.e. ,

F,( )-=& IG, ( )I &=&0IGo( )Io&

1 1
= —Z

N -„z—e(k)

the pure crystal density of states per atom, %~,
according to Eq. (20), is

an abstract periodic basis. The final results will
not be affected, of course, but some very clumsy
notation and language is being avoided, without
pretending that Schrodinger's equation is insensi-
tive to the potential (the literal use of one type of
In)).

Let us apply the CPA formulation of Sec. IV to
the sir.lple band model. In the "mock-periodic"
crystal described by IIp, the Green function is

G, (z) = (z —a, )-'=Z jk&&k i

(56)

where the Ik& are the "mock Bloch states" of Ho
defined by

Ik& -=(1/N ) Q e»"'
In& (57)

with energy e(k) given by the usual expression

e(k) =~&„e»"'".t„, , (56)

and k is the usual wave vector in the Brillouin zone
associated with the static crystal lattice. The
Wannier or atomic states ln& of the site basis are
then related to the "mock Bloch states" by

erator equation, Eq. (42), becomes the scalar
equation

1 — 8„+8„—Z E (66)

Dt(Z) =+ (I/»») ImF(Z+ io) (oo)

To obtain an expression for the conductivity, we
first prove that the vertex correction I" in Eq. (51)
vanishes. Each term in the series expansion, Eq.
(51), contains a factor T„GP"G T„. Since T„ is
site diagonal, I =0, if &nl Gp" G l n& = 0. But we
have

&nIGp Gl. &

1~ mv (k)
(=N

„- [z, —e(k}—Z(z, )][z, —e(k) —Z(z, )J
'

where v'$) is the n component of the velocity, de-
fined by

v (R)=(1/m)&kIp Ik& (7o)

Time-reversal symmetry gives the relations

This equation for Z reduces to Eq. (22) of Ref. 4,
if 8„-0„i. e. , in the static alloy. However, in
the static alloy the equation for Z is merely alge-
braic, whereas here, with phonons included, it is
an integral equation.

Once we obtain Z from Eq. (66), we can obtain
F from Eq. (63) in terms of Fo [see Eq. (60)],

F(z) = F,(z —Z) (67

since Z is independent of k. The density of states
per atom X(Z) is then, from Eqs. (20) and (63),

OI, (Z) =+ (I/v) imF, (Z+iO) . (61) v"(-k) = —v™(k), (71)

z-.(k -Zz k

(63)
Here we have used Eq. (28) and the general peri-
odic property of the self-energy,

Z(z) =~; Ik& Z(z, k )&k (64)

Another useful relation between Fp and ~p, obtain-
able from Eq. (60), is

F,(z)= JdZOI, (Z)/(z-Z) . (62)

The averaged finite-temperature alloy described by
G(z) ha, s the full crysta. l symmetry. Thus, cor-
responding to Eq. (60), we can define

e(-k)=e(k) .

Therefore, the summation in Eq. (69) vanishes
identically. Thus, from Eq. (49),

E=GP G

Combining Eqs. (22), (23), (70), and (73), and
defining g(k, z) as

g(k, z) -=&kI G(z)Ik& = [z —e(k) —z(z)] '

the conductivity becomes

e™kg k Imgk, g'

(72)

~„= In& z(nI (65)

Thus, T„[Eq. (37)] is site diagonal, and the op-

In the coherent-potential approximation we obtain
the self-energy from the solution of Eq. (42). A

scalar solution for Z can be found, so that the self-
energy is a sum of site contributions, i. e. , Or, following Velicky, ' we have the alternate form

2eh df ~(n)
nn ( - - n())»' nn'n(n))
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&
& Z v'(k)v (k)6{)—e(k)), (76) ~.,=e =Z„ln»„&nl . (80)

We make the standard, excellent approximation"
where 0, is the volume per atom and A and 6 are
defined from the self-energy Z, e„=Z, [y,(n)b, + y~(n)bt], (al)

and

A(q) -=ReZ((7+io)

~(q) =
I
lmz(q+f0)

I

(77)

(78)

We have now set down the expressions for the
model Hamiltonian conductivity and density of,
states. In Sec. VB, we shall discuss the phonon
system and the phonon averaging process in the
self-energy equation, (66).

B. Electron-Phonon Interaction and
Distribution Function for 0„

In the harmonic approximation, the atomic mo-
tion of the alloy in a given configuration can be
described by the Hamiltonian

3P

H»=Z Sv, (& +btb, ) (7O)

where b, and b, are the creation and destruction
operators for a phonon in states, with frequency
co, . However, in a concentrated alloy the phonon
quantum number s can no longer be identified with
the crystal momentum. The electron-phonon in-
teraction, which does not conserve crystal momen-
tum, is represented in our model [Eq. (55)] by
the local Hamiltonian

where y, (n) is the coupling constant for an electron
at the nth site to absorb a phonon with quantum
number s. Notice that y, (n), b„and e„are con-
figuration dependent. Notice also that since 8„ is
an operator, the self-consistent equation, Eq. (66),
is a phonon-operator equation. However we can
reduce it to a scalar form as follows.

The phonon average of any function f (8„) of the
operator 8„ is

&f(a.)&, = »»[p»f(e. )j, (82)

where

p" = e '""(»» [e '" "jj ', (83)

and the trace is over all states of the lattice mo-'

tion. The average (f(e„)&~ can also be written in
terms of the probability distribution P„(r/) as

(f(e.)&, = f dn f(r/)P„(n), (84)

which in turn is defined as

q'„(X) = Tr,„[p» e'" ]

Explicitly, the characteristic function is

(86)

where P„(()) is defined in terms of its characteristic
function y„(X),

P„(g) = (1/2w) J dXe '""y„(&) (85)

y(X) = Tr»(exp[ —p Z, Sa&,(—,
'

+ b~~ b, )]exp[i' Q, (y, (n)b, + y,*(n)bt)]] (Tr» [exp{- p ~F, h'u&, (—,
' + bt b, ))]) '

= Tr „((g,p, )g exp[iX{y (n)b ys( )bt)]}

=II, y.,„[...™'(]]=-rr &( (.)

(87)

(88)

(ao)

In the above expression, we have defined
DO

p, =exp[- Pe(o, (-,'+b,'b, )] Z exp[ —Pa(o, (-,'+n)]
n~1

(ao)

and

q, (n) = y, (n)b, + y,*(n)bt

and have used the commutation relation

[p„q,.(n)]=0, s ~s' (»)
Note p„' (X) is the characteristic function of q, (n),
which is essentially the displacement of a one-
dimensional quantum oscillator, so that we use the
standard result

~(8)(y) e-m„x /s (I)

where

o. ' =
I y (")

I
coth(-,' pIf(d, ) (84)

P (r/) —(27)(( )
(/ e " /sin (85)

Applying Eqs. (84) and (95) to the self-consistent
equation (66), we have a scalar integral equation
for Z,

-1/2 e~ / „n

Note that n„" is proportional to the Debye-Wailer
factor times the square of the electron-phonon
coupling constant. Since the characteristic function
y„(X) is a, Gaussian, its Fourier transform, the
distribution function, is a Gaussian too. Thus the
distribution function is
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I et us define a local distribution P„(t)), which
is the average of P„(t)) over all configurations with
an A atom at the nth site, and define Pz(t)) simi-
larly. Then Eq. (96) becomes more explicit,

&~+n-~
S~+ q —ZE

The equation for Z thus depends on the pure crys-
tal density of states and the distribution function.
In Sec. VC we shall further simplify the model in
order to get a qualitative idea of the temperature
dependence of density of states and the conductivity.

C. Mo el Density of States, Velocity-Dispersion, and
Local-Distribution Functions

I et us first review the procedure for calculating
the self-energy Z, the density of states X, and the
conductivity 0, and then describe some model func-
tions that we have actually used in our computa-
tions.

To calculate the self-energy Z, we need to (i)
obtain E,(z) from the dispersion relation z(k), using
Eq. (60), or from the pure crystal density of states
Xo(E), using Eq. (62); (ii) express E as a function
of Z by Eq. (67); (iii) specify the electron-phonon
parameter y, (n), then get o.„ from Eq. (94), and
perform the configuration average on P„(t)) to get
P„(t)) and Pz(t)); (iv) solve the integral equation
(97) for Z.

once the self-energy is obtained, we compute
the density of states z, (E) from Eq. (68).

To compute the conductivity, we assume a cubic
lattice, so that the averaged conductivity is iso-
tropic,

For pure crystal density of states, we have
adopted the Hubbard ' ellipse model,

j)2/w)(l-z')"', Izl Slo, fzf )I
where the energy unit is a half-bandwidth M. This
model is essentially an approximation to a simple
cubic tight-binding s-band density of states. It
also behaves like a free-electron density of states
around the bottom of the band. This is a model
that has been used extensively in calculations of
electronic properties in alloys. '

Corresponding to Eq. (102), we have

(lo2)

Eo (z ) = 2z —2(z' —1)'i '

so that

E(z) = Fo(z —Z) = 2(z —Z) —2[(z —Z)' —1]'~'

(108)

(104)
The simplest form for the local distribution func-
tions P„and P~ can be obtained by assuming that
the electron-phonon interaction is independent of
configurations,

P~(n) =Ps(tl) =(2vo') '"e (105)

Instead, and intuitively more attractive, we take

P„z(t)) = (2wn„, s)'~'e " ~' » (106)

which could, for example, be obtained by taking a
typical term in the configuration average leading
to P„and P~. The input parameters n„and n~
are linear in temperature at high temperatures
[see Eq. (94)]. Rough estimates of n values can
be found in Appendix A.

The spectrum z(k), and therefore v (E), cannot
be uniquely derived from sto(E). Following
Velicky, ' we chose the form

eg0 =06 z (98) t'(Z)=v'(1 —E'),
where, according to Eq. (76),

2e'I df ~ a(t))
wn,

"
dq (n —A(n) —))' s'(n))

x P ~'(k)6(( —z(k))

If we define the velocity dispersion v(z) by

v'(&) = [I/Ax, (Z)] g„- v'(k)5(e —z(k)),
then

(loo)

df ~'(&)st, (( )~'(n)
&[n- A(n) —~]"~'(~P'

(101)
Since we are investigating the general trends, it
is neither convenient nor profitable to start our
calculation from a detailed z(k) and y, (n). Instead,
we shall use simple model forms for Sto(E), vz(E),
and local distributions P& and P~ as follows.

which corresponds well with our model &,(E), and
with the simple band structure we just mentioned.
Here v is the maximum velocity in the band.
Combining Eqs. (101), (102), and (107), we obtain

~'(n)(I —&')"'
([g —t' —A(n )]'+ ~'(n )]'

For later convenience, let us define a function
~(n) by

(lo8)

~'st'(tt) 6 n(tt)
16 a(t)) vst(t))

(110)

d
A'(n)

~ )
f [n -

&
- A(n)l' ~'(n)~]

(lo9)
or, after integration (see Appendix B),
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For a metal alloy, ( —df/dq) is a sharply peaked
function of p at the Fermi energy g = e~, and we can
then express 0 in the usual approximation

In deriving Eq. (115), we have used Eq. (104),
which can be rewritten as

(116)

4e Svo= [Z(e~)+-,' z 2 "(ez)()(:T)'+ ]

Since 2())) is a smooth function of q except at
the singular points of the density of states, terms
involving 2 "(zz) and higher derivatives are small
compared to Z(ez) and may be neglected. Thus,
if c~ is not too close to a band edge, or other
singularity, it is sufficient to keep only the first
term in the expansion of Eq. (111), so the conduc-
tivity becomes

)T'e'h v'„st'(z~) 6s(zz)
120, h(ez) vK(zp)

(112)

The temperature dependence of the density of
states and the conductivity can now be investigated.
The details and results of numerical calculation
will be presented in Sec. VD. However, a quicker
understanding of some features of this theory can
be obtained by investigating the weak-scattering
limit. This topic is treated in Appendix C.

D. Calculational Procedures

Here all the energies are in units of the half-band-
width.

To solve for Z from the integral equation (97),
it is convenient to express it in a different form
which is useful for iteration,

Let us review the input parameters needed for
the computation. For a binary alloy A„B„atfinite
temperature T, x and y are the concentrations of
A and B atoms, S„and 8~ are the strengths of
static random potentials around A and B atoms,
respectively, and, n„and n~ are the electron-
phonon interaction parameters which are linear in
temperature at high temperatures. Indeed, a„and
n~ can be thought of as the mean square of the
thermal fluctuation in the atomic-potential strengths
bz and 8~, respectively. It is convenient to define
the origin of energy and a scattering strength 5 by

The iteration procedure is as follows. Start with
some appropriate E, compute Z from Eq. (115),
which provides a new E from Eq. (104), and so on.

The convergence of Z depends on a good choice
for the initial E. Notice that E is the site-diagonal
matrix element of a translationally invariant
Green function. In iterating, good convergence
tends to depend on starting out close to the final
answer. Since the phonons usually have a small
effect compared with the alloying, the best initial
trial value to use for F is generally the static alloy
E' '. The speed of convergence also depends on
the energy. There is always better convergence
at the band center than at the band edges. So, in
the actual computation, we solve for the static
alloy E' ' (to be discussed shortly), then we start
iterating at an energy corresponding to the peak
of the static density of states, iterating Eq. (115)
to get the temperature-dependent self-energy Z
at that energy. Then we use this Z or the corre-
sponding E as the initial value for a neighboring
energy, and continue this procedure to the tails of
the band. In the case of split bands, we carry out
the procedure for each subband separately. The
self-energy Z' ' and the corresponding E' ' of the
static alloy have been discussed in detail in Ref.
4. Here we only quote the results of Ref. 4 when-
ever they are needed for our computation. It is
convenient to solve for E' ', which satisfies a cubic
equation

(117)

where 7 is the averaged energy xS„+yh~. When

Eq. (117) is solved for a real energy z =E in the
band, there are three roots. We only choose the
correct root corresponding to z =E+i0, i.e. , the
imaginary part of E' ' must be negative in order to
give a positive density of states [see Eq. (68)].

In the process of iteration in Eq. (115), we al-
ways encounter the following average:

1 —8„+6)„-ZE 1 —8„+8„-ZE

which can be simplified further to

(114)

2

J (2mn„)
dn

' „,e" ""(z—8„—n —,'F)'—
~,(, e ' ""'(z —. 8, —q —l E) ')

(2mo. z)'

(115)



2908 CHEN, LEIS Z, AND SHER

-t2

W(z„,~)
—= dt

&~,a —~

where

(119)

1 l
~AIB 1/2 (~ ~A, B + +)

(2o,„~) (120)

Since, for a real energy z =E in the band, E will
have a negative imaginary part, we have

Imz„, ~ &0 (121)

Except for a, constant, the integral in Eq. (119),
is a complex error function. A discussion of this
function and the tabulated values for certain ranges
of the argument are given in Ref. 54. In the actual
calculation, we used the series expansion for
I Rex„,~) & 2. 8 and lImz„, ~) &1.4, while outside
this range we used the ten-point Gaussian-Hermite
quadrature formula. " The convergence for most
cases is very fast.

Once the self-energies inside the bands are ob-
tained, I' follows immediately, yielding in its turn
the density of states from Eq. (88). It is then

easy to obtain the conductivity as a function of the
Fermi energy, since we have expressed the con-
ductivity in terms of the density of states and self-
energy [see Eq. (112)]. But if we want the conduc-
tivity as a function of temperature, we have to cal-
culate the Fermi level at each temperature. This
can be done by solving for e'~ in

c =2 J de f (e)9t(e) =2 J de K(e) (122)

where c is the average number of electrons per
alloy atom and is given by

c =xC„+y C~ (128)

Here C~ and C~ are numbers of electrons per atom
for pure A and 8 crystals.

E. Results of Numerical Calculations and Discussion

Because we do not have a definite alloy in mind,
all the parameters are free to vary for different
alloys ~ We shall only pick some representative
values for each parameter for numerical illustra-
tions. However, an understanding of salient fea.-
tures of these examples should give some insight
into the nature of the model.

In Fig. 1(a)-(c), the self-energy is plotted as a
function of energy. Each figure represents an alloy
with a definite concentration x and scattering
strength 5 but at two different temperatures. The
solid line represents the static alloy while the
dashed line stands for the alloy at T WO. Figure

+y[z-h, —(2o.,)'"t] 'j . (118)

In other words, we have to carry out the integration

1(a,) represents an alloy in the virtual-crystal limit,
in which x=0. 1, 5=0. 5. We shall refer to a situa-
tion as having "virtual-crystal" character when 6

is small, and Z relatively slowly varying (so that
perturbation theory is reasonable). The scattering
nature of the static alloy is characterized by a
hump of 6 at the top of the band. When thermal
disorder is introduced, 6 increases in the whole
range of energy inside the band. But the increase
of 6 in the lower-energy part of the band is greater
than that around the hump of the static 6, in con-
trast with the usual proportionality to the density
of states [see Fig. 2(a)]. The real part of the self-
energy A of the static alloy is almost a constant
in the lower part of the band, but has interesting
structure in the "impurity" part of the band. The
thermal disorder affects the "host" part and "im-
purity" part equally, so that we have a shift of the
spectrum from the center of each component band
to both wings. This is reflected in the change of
A. As we go from the lower-energy region up to
higher-energy, we have a negative change in A,
then a positive change, then the change in A tends
to become negative when we enter the impurity
part, and finally positive at the very top of the
band. In Fig. 1(b), where x =0. 5, 8=0. 8, the alloy
is concentrated, and the scattering strength is
moderately large. The static-alloy ~ has a very
sharp peak at the center of the band where the im-
purity scattering is most effective. The thermal
disorder causes a positive change in both wings of
the band but a negative change at the center. The
decreases in 6 happen at the energies correspond-
ing to the strongest damping in the static alloy.
As will be clear from our later discussion of g,
this implies that the highly scattered electrons at
these energies are in more nearly "Bloch-like"
wave functions in the warm alloy than in the static
alloy. The change in A has the same general char-
acter as in the first case discussed, and here again
it shows the tendency towards a spreading of the
spectrum. In Fig. 1(c), x=0. 1, 6 =1.0, the static-
alloy band is split. The static alloy is character-
ized by a virtual crystal 6 in the host subband, and
a very high 6 in the impurity subband strongly
peaked near the band gap. As expected from the
previous two cases, the thermal disorder increases
6 in the virtual-crystal region, but decreases 6
at energies of very high damping. Since the static
band is already split, the shift of the energy spec-
trum for each subband causes a stretching of the
band.

We would like to emphasize the unusual behavior
of 6 caused by the thermal disorder when the alloy
scattering is strong. We find that the change of b,

due to thermal fluctuation of the electronic energy
depends on the scattering character of the static
alloy. For low static-alloy 4, thermal disorder
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FIG. 1. Real part (A) and the absolute value of the
imaginary part (4) of the self-energy for the static alloy
(solid line) and the alloy at a finite temperature (dashed
line) characterized by 0,'z ——0.'~ = 0' =0.015. The three
figures are for three alloys with (a) x=0.1, 6=0.&; (b)
x=0.&, 0=0.8; and (c) x=0.1, 6=1.0. Note that, in the
figures as in the text, all apparent energies are in dimen-
sionless units, since they are norm. alized to the half-
bandwidth w.
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increases the electron damping 4 monotonically for
all energies. However for the highly impurity
damped, short coherence-length states, that might
be called "quasilocalized, " the thermal disorder
actually decreases h. While no analytical proof
has been extracted from the self-consistent integral
equation to support our intuitive physical interpre-
tation for the behavior of 4, we speculate as fol-
lows. Thermal disorder can do two things to the
electrons: It scatters the electrons when they are
in more or less "Bloch-like" states, or it can
assist the hopping of the highly damped, "quasi-
localized" states. Thus, for small static-alloy 6,
thermal disorder increases A. However, for

highly damped electrons (large static-alloy 6), we
are nearing the hopping regime, so that the ther-
mal fluctuations can mix the states so as to extend
the coherence length and thus reduce A.

The density of states as a function of tempera-
ture for the alloys of Fig. 1 are shown in Fig. 2.
Several values of the temperature parameter n are
represented in each plot. There is no visible
structure in the density of states in Fig. 2(a), and
increasing the temperature only stretches the band
and smears its edges. Figure 2(b) shows that the
dip in the static density of states is gradually filled
and disappears. The same long band tails appear
for big values of n In Fig. 2(.c), we start with a
split static-alloy band. But the band gap is very
small, so the thermal fluctuation in the energy can
easily close the band gap, and fill it up completely
for big n values.

The electron-phonon interaction, of course, can
cause different fluctuations in the scattering
strengths for A atoms and B atoms, so that n&+ n~.
Figure 3 shows the plots corresponding to those
in Figs. 1(b) and 2(b). The only difference is that
n„ is set to be four times as big as n~, i.e. ,
n„/o. s =4 and n~ = o. . The effect on the self-energy
is a bigger change in both A and b in the upper
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Fermi level is easily obtained from Eg. (112).
Figures 5(a)-(c) are the corresponding conductivity
for alloys with the same parameters as shown in

Figs. 2(a)—(c), while Fig. 5(d) is the one corre-

sponding to Fig. 3(b). In the virtual crystal [i.e. ,
Figs. 2(a) and 5(a)j, the change in the density of
states for small n is not visible, but the change in
the conductivity is very big. Thus, in this case the
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'll d1 d' rder is introduced, the ba g pnd a sarefi e

nonzero. How-so that the conductivity becomes no
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In ractice, the conductivity of an alloy is inves-
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In practice, e
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To use perturbation theory based on the static al-
loy, we need to know the three-Green-function
average (G,(BG,B&~G,&, very well, which is an
unsolved problem to date. Therefore, we use the
alternate method of the self-consistent CPA equa-
tions.

The Kubo-Greenwood formula for electrical con-
ductivity in CPA and our model has been reduced
to the very simple and explicit expression, Eq.
(112), which is only a function of the density of
states X and the absolute value of the imaginary
part of the self-energy b, at the Fermi energy.
Notice that, for a free-electron band with concen-
trated scatters, we get Eq. (112) without the 6h/
est correction term (see Appendix E). The form
of Eq. (112) makes for easy comparison with the
elementary formula for resistivity, '

FIG. 8. Electrical conductivity as a function of the
number of electrons per atom per spin for the alloy with
x = 0.5, g =0.1, G.z = nz = n. The three curves represent
the static alloy ( ) and the alloys with & =0.006 (—-)
and e =0.012 (- — -}.

where D(ez) is the density of states per unit volume
at the Fermi energy (including both spine), v is
the collision time, and v~, the velocity of the elec-
tron at ez. The comparison should be meaningful
only near the low-collision-rate regime, where
Eq. (134) is accurate. We can identify

will first ask what help perturbation theory can
give us. Then, we compare the elementary expres-
sion for conductivity with the CPA formula, both
generally and in a limiting case. In the process,
we discover a need to reexamine the meaning of
the self-energy. Finally, the complications in-
herent in real transition-metal alloys are consid-
ered.

In a concentrated, strong-scattering alloy, the
electron-phonon interaction is small compared to
the "impurity" scattering, but it is the essential
mechanism governing the temperature dependence.
(In our case it is the only mechanism. ) It is be-
lieved that the lowest-order contribution of the
electron-phonon interaction to the resistivity, cal-
culated by the usual perturbation theory, should
give the correct answer. In our case this tech-
nique is prohibited by our poor knowledge of the
nature of the static alloy. For example, let us ex-
pand the Green function G [Eq. (18)] in terms of
the static-alloy Green function G„

D(e~) = (2/Q, )SI(e~)

and force

0,9-

0.6-

Cl

(135)

G = G, + G,OG, + G,OG,BG, + ~ ~ ~ (131)
X:0.5
6:0.8

where G, is defined as [see Eq. (52)]

G, —= (z —Ho —D) ' (132)

0.0
0,0 02 04 06 08

NUMBER OF ELECTRONS /ATOM SPIN

I.O

«G» = (G, &, + &G,&BG,B&, G, &. + (133)

When we average on both sides on Eq. (131), we
get

FIG. 9. Conductivity as a function of electrons per
atom per spin for the alloy with x = 0.5, p = 0.8, and nA
=40.~4~. The three lines are for three temperatures
characterized by 0.'=0.0 ( ), 0.'=0.0075 (-—), and
0. =0.015 (-~ —~ -).
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w'v'x'(a )

( Ba)()) ) (138)

How are we to identify v~ and 7. on the right-hand
side of the equation? Can 7' be identified with

8/2t)? This is a temptation that we shall show is
fully justified only for low scattering rates. We
need to understand the physical meaning of &(ez)
or the whole self-energy Z in order to answer
these questions.

The basic definitionof the self-energy is Eq. (28).
We get a better feeling for Z if we think of ((G(z)))
as a propagator, and use the relation between the
ensemble-averaged time evolution operator ((U(t)))
and ((G(z))),

((U(t))) = ( —I /2 vi) g dz e "'((G(z))) . (137)

The clockwise contour includes the real axis and
surrounds the lower half z plane. Consider how

an eigenstate of Ho, say a "mock Bloch state" (k)
in our case, evolves. Since Z is diagonal in I k),
the probability amplitude for finding a state surviv-
ing after a time t is

nf«) =(kl « ft(t)))lk)

=(-I/»i) 5 dze "'(kl(z-Ifo —Z) 'Ik)

= ( —I/2wi) g dz e '" [z —e(k) —Z (z, k) j '

= (- 1 /2 vi) f dz e '"g(k, z) (138)

Or, after integration,

(t) e-keg())&t (139)

where z, (k) is the pole of g(k, z) inside the contour.
Thus, the real part of z, is the shifted spectrum
corresponding to e(k), and the imaginary part of
z, measures the ensemble-averaged decay of the
"Bloch" states (k). The decay time of the (k)
state is

~;=h/2[-Imz, (k) j (140)

But the location of the pole at z, and the self-energy
Z(z, ) are closely related by

AvE k 5E E

1 t)(E, k)
v [E —e(k) —A(E, k)j + LB(E,k)

as is well known from elementary Green-function
theory. In our case, the self-energy is independent
of k, so we have

A.„E',k 5 E —E'

1 t),(E)
7r [E —z(k) —A(E)j +t) (E) (145)

Thus, if we take Eq. (145) as giving us the spectral
density of a typical exact energy state of the alloy,
then d(E) gives us a spectral width in terms of the
pure perfect crystal spectrum z(k). In other words,
the alloy energy state is composed of "Bloch"
states ranging over k, with a spread h(E), in z(k),
so that the lifetime of coherence of the alloy wave
function, when it is in a pure perfect crystal, is

7, =a/2t(E) .

Thus, our conductivity formula does not manifestly
contain the usual collision time of a Bloch state.
However, in the virtual-crystal limit there is not
much difference between these two relaxation
times. The CPA result for the self-energy in this
limit is (see Appendix C)

Z(z) =z+(xy5'+xn„+ynz)FO(z —Z) . (14t)

In order to find the pole of g(k, z), we need z, —Z
= e(k), so that Eq. (147) becomes

However, the self-energies in the formulas for
the density of states and conductivity [see Eqs.
(20), (22), (23), and (24) j are at the energies
z =E+i0. These are not necessarily the poles of
g(k, z). Thus, we have a, physical interpretation for
Z(z, ), but what we need is the meaning of Z(E ai0)

Suppose we construct states (g„z) with a sharp
energy E in a particular alloy and phonon configura-
tion, and this state has the expression

I P„)=4„.A„(E,k)
I
k) (143)

Then the average energy-momentum density of
states, i.e. , the spectral function, is

and

Rez, (k) = z(k) +ReZ(z„k)

Imz, (k) = ImZ (z~, k)

(141)

(142)

z, —e(k) =Z(xy5 +„xny +)Ene( (k0)z+i0), (148)

where we have set z(k) to z(k)+i0 in order to have
a negative imaginary part for z, . Using Eq. (140),
we have

Therefore, the self-energy at the poles of g(k, z)
has a very simple physical meaning: The real
part of Z is the shift of the energy level z(k) in the
alloy, the imaginary part is the uncertainty of this
energy level in the ensemble.

1 2m'—= —(xy5 +xn„+y nz)Sf, (z(k)) (149)

On the other hand, if we find the self-energy at
Z+e(k)+i0, we have
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Z(e+ e(k)+fo) = e+ (xy5'+xn„+yn, )F,(e(k)+fo),
(150)

so that

b(e ye (k)) = (xy5'+xn„+yns ) m&0 (e(k)) (151)

The collision rate corresponding to the coherence
time 7, 1s

1 2a(Z+ e(k })
~,(Z+ e(k))

= —(xy5'+xn„+yn, )&0(e(k)), (152)

which is identical with 1/sf, in Eq. (149).
Now that we have examined the relation between

5 and the collision time, we shall consider the v„
factor. The average of the squared velocity taken
over all states at the Fermi energy c~ may be cal-
culated in CPA and within our model (see Appendix
F) with the result,

«v,')) = »&((p/m)'5(e, —&)))l»&«(e, —W))1 '

g' mN 3h 4h
4 N

(153)

vp —4 7f v R,p~( p —ee )

v (e(k))
I a&i& e~-e (155)

Also, in the weak-scattering limit, we can drop the
second term in Eq. (112) for the conductivity. Then
the CPA results reduce to the elementary formula
Eq. (134). However, for a concentrated, strong-
scattering alloy, when perturbation theory and the
Boltzmann equation are not valid, the contributing
factors to the elementary conductivity formula, as
well as the formula itself, tend to lose their
simple meaning. As should have been expected,
the elementary formula, Eq. (134), is lost alto-

When we substitute the values for 3t and 6 for the
50-50-static-alloy case, with the Fermi energy at
the center of the band, ez =0, we find (see Appen-
dix G),

((v~2)) = v' (1 ——,
' 5') (154)

This has the correct value ~ at 5 =0 and decreases
with increasing 5, as it should.

Remember that in CPA and our model the vertex
correction for the current vanishes [see Eq. (73)].
In the weak-scattering limit, the vanishing of the
net backward scattering, and, the current relaxa-
tion time in the Boltzmann equation equals the
single-particle collision time. Thus, for an iso-
tropic band we can obtain the resistivity, correct
to order 5 and n, by assigning a collision time 7'~

at the Fermi energy ez = e(k)+7 as in Eq. (149)
or (152), and a Fermi velocity vz by dropping the
correction term in Eq. (153) (see Appendix C),

gether in the general case. Indeed, the substantial
increase of the conductivity with temperature, as
in Fig. 5(b) for a half-filled band, is reminiscent
of activated-hopping-type conductivity, rather than
the free conduction implied in Eq. (134). This
thought is in harmony with the tendency toward
wave-function localization that is reflected in the
high values of the static-alloy 6 (and 6/'X) found in
the same cases. This tendency to localization
seems to be reduced there, by the thermal dis-
order. Note, however, that CPA is not reliable
near band edges, a situation that we may begin to
approach in Fig. 5(b) near ez=0, i.e. , near the
top of the bottom band and the bottom of the top
band. Although we cannot trust the exact calculated
magnitudes, we believe that the CPA result indi-
cates a real trend.

A word is in order here on the difficulties and
complications that still separate a calculation like
the present one from a realistic treatment of the
transition-metal alloys. In the first place, these
metals have a complicated band structure. ' At
least six bands are involved, instead of one, none
of the bands~ having a true tight-binding character,
and most of the bands (the d bands) being extremely
sensitive to small changes in the potential, e' or
crystal structure. This sensitivity implies that the
self-consistent-field (SCF) potential may be hard
to take into account, the potential at one atomic
cell being dependent on the configuration in its
neighborhood, the electronic structure dependent on
the potential, the electronic density on electronic
structure, the potential on the electronic density,
and so on, in a vicious circle. The change in band
structure with temperature, due to expansion and
other effects, may be difficult and important. In
addition, not all configurations are equally likely,
but rather there is some correlational clustering
of atoms at best, and defects could be important
in transition-metal alloys made with a minimum
of correlational clustering. Then, one may be ex-
tremely near a significant band edge, as in con-
stantan, ' and generally transition-metal conduction
bands are jungles of singularities. Under such
conditions, cluster effects are very important and
CPA inadequate, as we have mentioned earlier.
The electron-phonon interaction, also, is nontrivial
in the transition metals, and all the more so in the
alloys. Even the phonon spectrum itself changes
significantly with alloying. One of the most
serious problems, along with the band-structure
complications mentioned above, is that all of the
transition metals tend to have various magnetic
properties. There are giant "polarization clouds"
in at least some carefully made Cu-Ni alloys,
and a Kondo-like resistivity-minimum-type effect
is probably extremely important, and should be
explored in a semiempirical way separately from



2918 CHEN, WEIS Z, AND SHE R

all the other influence that we have mentioned.
One element of simplicity in the problem is that
in Ni-Cu alloys, the "s electrons" apparently carry
most of the current. This idea, which has been
present in the literature for many years on the basis
of a vague hypothetical picture of the transition-
metal band structure, turns out to be accurate '
for Cu-Ni (but probably not in some other transi-
tion-metal alloys) as a result of an involved numer-
ical balance among several competing effects. A

hopeful sign is that some theoretical results based
on fairly realistic atomic potentials should be
available in the near future. We have a long way
to go, but some of the basic questions are now
within reach.

If we identify the root-mean-square energy fluc-
tation of the relevant d subband with the typical
shift of the d-band edge, ~„ then

n=(~Z, )' . (A4)

The typical edge shift is just one-half of the root-
mean-square broadening of the bandwidth, 5W„,
i. e. ,

b,E,= —,
'

5W, (A5)

Since the d bandwidth W„ is proportional' to R
where R is the lattice constant, we can roughly
estimate the root-mean-square change of the width,

5W„, by estimating the root-mean-square change
of the radius of an atomic cell 5R,
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APPENDIX A: ROUGH ESTIMATES OF THERMAL
FLUCTUATION PARAMETER n AT HIGH TEMPERATURES

1. Nearly -I'ree-Electr on Case

with

5R = (N„) '~ 5R,„a (A7)

where N„ is the coordination number of the lattice
and 6R,» is the typical root-mean-square atomic
displacement. M,» can be related to the dilata-
tion by

5R,ya= a Rr(x) )aj
' =a R(0. 04T/T )' . (AS)

In a nearly-free-electron model, an approxima-
tion to the fluctuation of the electron energy caused
by lattice vibrations can be found from deformation-
potential theory. The energy fluctuations 5$ are
mainly due to the charge shift needed to keep a con-
stant chemical potential throughout the crystal when

the crystal is distorted by a phonon

Combining Eqs. (A4)-(A8), we find

Q= — " Q. 04 — -- =0.03
25 W„' T W„' T

n t5 m

In a fcc crystal N„= 12, and a is

n = 0. 003 Wa T/T

(A9)

(A10)
(Al)

n =(5$'), =—', $~(Z)'), (A2)

where & is the dilatation. Then n is just the mean
square of the energy fluctuation

For a Ni-Cu alloy, the whole d bandwidth W~ is
approximately 0.4 Ry. The effective width for the
top "subband" is taken to be 0. 15 Ry, so that our
energy unit is 0. 075 Ry. Therefore, an estimate
for n is

The mean square of the dilatation can be related to
the melting point by using the I indemann melting
criterion, with the result"

Q 4 T Ta =0.003 — — =0.075—
m

APPENDIX 8: EVALUATION OF L'(q)

(A11)

n = 0.02T/T (A3)

2. TyPical d Band in Noble and Transition Metals

The d bands have too much structure to be rep-
resented well by a semiellipse density of states
curve. Therefore, our rough estimate must be
made carefully. For alloys with a nearly full d '.

band, e.g. , Ni-Cu, we may focus our attention on
the topmost d-band region or "subband, "which has
a marked peak in the density of states.

(n), = o. o4 T/T. ,

where T is the absolute temperature and T is the
melting point. If the Fermi level is at the center
of the band, then S~ = 1 in units of half-bandwidth,
and we have

The quantity Z(q) is defined in Eq. (109) as

ba(q)(1 $a)ala

"(tn-A(n) —~)"~ (n)&'
wg

where A, 6 are defined as the real and imaginary
parts of the self-energy

Z(t) ~aO) =A(q)+agq) .

It is convenient to define an auxiliary complex func-
tion

e(.)= ('d]" "'
z —g

(1 za) "d~(' ~)
z —$~-1
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+ d 8+ 1

Then in terms of C, R(q) may be rewritten as

8 1
g()7) = ———Imc (g+i —Z(rl'))

2 86

1 8
Im[C (q+iO —Z)]+ —,'Im —C'(e+iO —Z)

2b, 84

(84)
Using Eqs. (62) and (102), Eq. (83) may be re-

2(')l) = ——1+ —2lP —(q —A)'
2A

4~ ~x

(z —A)zzzz') . (818)

Then Eq. (116) can be used to connect Z and F:
E(n') = n- I/F(n') —.'-F(n'),

(815)

or, taking the imaginary part of both sides of Eq.
(814), we obtain

~=.X(I/iFi'--,') .
written as

c (z) = —,'~(i —z') d$ + z zz d)&0($)
&o(h)

However, we know that

iF~'=(ReF)'+v'X' .

= —,
' v[(l —z')F, (z) +z] (85)

)l(Z)= 4(z Im((z)+ Im((z)) (86)

Next evaluate Imp(z),

imp(z) = —wet(q) —(Rez') [-vm(q)] —(Imz')(ReF)

= —zsl - [(q - a)' —n.'](- met) —2~()7- a)(ReF)

= —vst[I —(g —a)'+ n,'+ (2~/vet)(q ft)ReF—],
(»)

and its derivative,

e e ez d()(z)
85 86 86 dz

Zm((z)=Zm —((z)=rm —
)

8 d 8

Using Eq. (86) and Eq. (103), we can write

' = —((I -z')[2Z -2(z'-I)"']]
dz dZ

= 2 —3z[2Z —2(z —1) i ]=2 —3ZF(q+ f0)
(811)

so the real part of Eq. (Bll) becomes

Re dg(z) w3t 2h 3h
(q —b.) ReF —362

dz 6 m& mN

(812)
Substituting Eqs. (89), (810), and (812) into (88)
yields the equation

There is no contribution to Z()7) from the —,'vz term
in C, since

1 8
Im(rl +f0 —Z) + Im(r) +i0 —Z) = 084

If we define still another function,

C(z) -=(1 -")F,(z), z =v+f0 —E(n'), (86)

then, from Eq. (67), g(z) can also be expressed as

C(z) =(1 -")F(n.fO) .

Then in terms of )t)(z), Z(g) becomes

Solving Eqs. (815) and (816) for ReF, we get

(ReF)'=(~/vX+ ,') '-HX' -. (817)

The real part of (814) yields

1 1 a 1
)7 —A = —

~ + — ReF = —. + —ReF . (816)
I
I') 4 w% 2

Substituting g —A from Eq. (816) and (ReF)3 from
(817) into Eq. (813), and collecting terms, yields

z'm'
(, Szz)

APPENMX C: VIRTUAL-CRYSTAL LIMIT

In the notation of Sec. VD, the scattering strength
is defined by 8& =

& 6, S~ = ——,'-5. In the weak-
scattering limit 5«1 and n„and a~«1, so a
perturbation expansion in powers of these param-
eters is useful. The CPA self-energy Z can be
expressed as

Z = ((8„+e„))+ (((8„+e„)F7„)) z

where v„ is the site-diagonal matrix element of T„
[see Eq. (66)], i.e. ,

S„+6 -Z
1 —(8„+e„-z)F

=b +e —z+(8 +e —z)F(8 +e —z)+".
(C2)

Let us evaluate the first three Z"', defined as Z
correct to powers of 5' and n'~2 in CPA. The first
three moments of (((h„+e„)')) are

((h„+ e„))= (x -y)5/2 =-Z

(((8„+e„)')) = —,
' 5'+xn„+y nz

(((8„+e„)')) = (x -y)5/6+ ,'x5o(„—-', y5c(z-

The first three self-energies are
g(0) 0

z")=((6„+e„))= z
Z") =((8„+e„))+(((8„+e„)'))F-((h„+e„))Z")F
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—'E + ( y '5 +Xug +g(1&&)E—EF'

= 6+ (X/5 +XQg+PAe)Q

In Eq. (C4), E must be correct to order of 5' and
n' . The density of states per atom or(E) is then
approximated by

Or (Z) = —(1/~) lmr(z+io)

Ig e = llm I~ &&(Q)—
(0) ~ 1

at ~P Z —
AyB 4

(1& IAIt 1A, B E
9Q 8F BQ 0

(D4)

(Ds)

= —(1/&t) Imago(E+i0 —Z(E+ i0))

=-(1/~)1m', (z-e) =or, (z- e), (c5)

The zeroth-order equation

x (o) ()+ 1 ()Z —8A ——,F Z —SB —4E (Ds)

which is just the "rigid-band-model" result. To
the lowest order, according to Eq. (112), the con-
ductivity is

is just the self-consistent equation for the static-
alloy E' '. The first-order equation is
F(l) xi(&) yl(&)

A + B
5 e 5 v~ oro(6~ —7)

120, i&, (e~)

and the resistivity is

120 ~(e )
7& e 8v~ oro(ep —6)

(cs) E(1)

(e- 8„--,'E"&)' 4 (z - h„- —,'F"&)'

y E(&) y
(e-h, --.'Z"&)' 4 (e-S, --.'E"&)' '

(D7)
12Q, xy5 +xo.A+ye~

»e'lf v'„or o (ez —e)

Equation (C7) exhibits Matthiessen's rule,

p = pI + pp (cs)

The solution for E'" is then

3 3
E(i) xy hB+yhA

h„h' ——,'xhAh ——,'yh h„

hA, B Z ~ApB 4 F ~

(o)

(Ds)

(D9)
12Q, xy 5

7&e Ifv~ oro(ep —t)
Using the identity, Eq. (116), we can solve for Z

by letting

12B~ xQA +y QB
»e'If v' or', (e~ —e)

(clo)

~(o)
0i

Then we find

(D10)

The "impurity" contribution pI then obeys the
Nordheim rule, because pr ccxy5 . The "electron-
phonon" contribution to resistivity, p&, has a slope
as a function of T which lies between those of the
pure crystals.

APPENDIX D: A PERTURBATION SOLUTION FOR F AND Z

The self-consistent equation for E [Eq. (124)]
is

g(&) E(&)
0 y(0&p (Dll)

In the free-electron model, the unperturbed den-
sity of states per atom, Oro(E), is simply

1 '~' n ~"'
or (z)=- — " E"'-=xz'" .

APPENMX E: CPA DENSITY OF STATES AND CONDUCTIVITY
IN TERMS OF SELF-ENERGY IN FREE-ELECTRON MODEl.

E=xIA +yEB (Dl)

where

I =~~d&r - — — e" ~
1 z z

(2&&t&. )"'

x (e-e„.-0--,'E) ' . (D2)

I et @A =ye and nB = n. If a «1, and E is very
close to the static-alloy value E' ', we can use a
perturbation method to solve for E:

E=-F'"+F")a+. -,

The CPA density of states per atom, N(Z), in terms
of the self-energy Z(E), is

~(z)
[E-il(z)- e(k)l +~'(E)

or.(e)~(z)
» I, [E —A(z) —el'+Z'(E)

where Z(E +i0) = A(E) +ir&, (E) as usual. Using Eq.
(E1), we can rewrite Or(E) as

-(0) (l)
IAMB ~AyB +IA, B+ + ' (ns) ~(z) =~[~(z)i l 1'(E),
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where F(E) is the integral

[E—it(Z) —e]'+ ~'(E) (E4)

2id —2ih

=(v/a)p'"cos-, 'e=(v/a)[ ,'(-p+p)]' '.
Thus St(E) becomes

This integral is easily carried out using a contour
sketched in Fig. 10. Let us define p=E —A(E),
p = (p + h~)'~2, and 8 = tan"'(6/p ). Then it terms
of residues,

&(E)= (A/~2)([(E- ~(E))'.~']"'.E - ~(E)]"'
(Ee)

The CPA conductivity o according to Eq. (99) is

2e 5
0' =

mO,
dQ —— d$ 2 z

— v 5 (-ek (EV)

Since the velocity dispersion v (m) is simply

@2/2

the conductivity is

I= „;[-,'(p- p)]'~'

~, , (p[—.'(p. p)1"'- ~[-.'(p- p)]"'[
2eh 2

' df
cr= -- dg —— ' d$

pQ, 3m dg

N. (t)«'(n)
j [n —~(n) —&]'.~'(n))

=,;.[-.'(p- p)]"",',. pl. —.'(p. p)]"'

Thus we find from Eqs. (E10) and (E14),

(E14)

Using Eq. (El) for No($), we get

(x = dg ——I()))bP(q)
2eh 2A

'
df

mQ, 3m dn

4e AA '(,)( ),
where

(Elo)

2 SA
—,(p[-'(p. p)]'".-'~[-'( p —p)]"']

C

(E15)
Using the result of Eqs. (E4) and (E5), we can see
that %=A[& (P+ p)]'~ . Then o becomes

2e SA 1, )/~ ~ p —P
~ (-*()) V)) )) ~

q ( g), g )
oo ~3/2

I(e~)-=de - —,—, 2 . (Ell)
f [e~ —A(e„) —e]'+ b,'(e~)[' '

Using the same contour as in Fig. 10, and the nota-
tion of Eq. (E5), we can write I(ez) in terms of

the residues of the double poles,

I= xi[Res(p+id) +Res(p —ib, )]

where

( )
3 (P+ia)~~2 (P+ia)3~3

(E12)
2 (2ia)' (2is)'

Treating the Res(p —ib, ) similarly, the integral I

FIG. 10. Contour for
the integrations in Eqs.
(E3) and (E13.).

—[k (p+ p)] "'[l ( p+ p)]
pm

2e SA 1 [, ( )],g~

3nm~ '
2e'h Ot'(e~)

SQ,mA~ n(e~)

Note that this result is identical with Eq. (112)
providing that I)/Ot is taken to be zero, which it is
when an infinite half-bandwidth is used as the en-
ergy unit. Thus, strong scattering here is identical
with weak scattering in the finite band. Naturally,
if the scatterers are attractive, they must not con-
tain bound states, or the theory based on a one-
band model is inappropriate.

APPENDIX F: FERMI VELOCITY

The averaged square of the velocity of electrons
at the Fermi energy e~ in an alloy is

(&~'(e&) &&
= Tr&&(P/~)'5(e& —II)&&[Tr&(5(e,—H) &&] '.

(Fl)
In a single-band model, this can be written as
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((o'(ez))) = —— —Z o'(k) ~im g(k, z„+tO) ~,
~ (F(0&)3 1 (52 1)F(0) 0 (G1)

where

o'(k)=Z, [() (k)]'

(F2)

(F2)

There is no complex solution for 5 &1. For 5&1,
we choose the solution corresponding to F(0)(io),

F '(io) = —2i(1 —5 )'

and g(k, z) is defined in Eq. (74).
In CPA and our model, the self-energy is inde-

pendent of k. In terms of the self-energy, ((v (ez)))
becomes

((o'(er))) =
1 o'(k) S(~e)

)&ÃK -„[zr —e(k) —A(ez)]'+ A'(er)

so that from Eq. (61)

St"'(0) = (2/v)(I —6')"'

a.nd from Eq. (116),

2 ~

(o) 1 1 (o)
( 0) —

~F( &

—gF

(G3)

(a4)

vs' J (e, —t -A)'+A'

x —? v'(k)1(( —a(t)))

1 " t&v'($)sto($)
est ') (e„—&

—A)'+t&'

2, Changes in t),(0) and X(0) due to Small Thermal
Fluctuations

Let us evaluate F'" [Eq. (D8)] in the simple
case:

(&) (. )
1 (h„+he)(h„+hz —h„hz)
2 h„h3(h„hs —+eh„—8 hz )

2A(?' (1 —k')'"'

m d( ~ (F'4)(., -&-A) .~'

In Eq. (F4), we have used the definition of the
velocity dispersion n (() from Eq. (100), the model
velocity v from Eq. (107) and the model density
of states from Eq. (102). Using the definitions for
z, (t) [Eq. (86)], and 4 [Eq. (87)] in Appendix 8,
we can express ((v ()l))) as

Here, h„,z take the values [see Eqs. (D9) a.nd

(G2)1

h„=- ——,
' 6+ —,'t (I —6')"'

h = -6+-i(1 —6 ) t

(G6)

((c'()i)))

-2t)' " ' (1 —$')'t'
Im d$v& ., z —(

—20 . 2vm= ~ Im4 (z) = —-z.— —fz —$(z)]
(( K (( M 2

F'" (tO) = —16t(6' —-')/(1 —5')"'
Then the change in density of states is

16 6 ——'
St(0) -St"'(0) = imF("(tO)& =-

z (1 —6')&~'

(G7)

a 21? 1(q —?)) ?1 + —(Il —)))))e)")
m.

'X
~

7t'%

(F5)
In Eq. (F5), we have used the explicit expression
for Im(t) from Eq. (89). Again, using the results
in Appendix 8, i.e. , Eq. (818) for &I —A and Eq.
(817) for ReF, we find

((,( ) ))
z z'St(ez) S(zr ) 4A(er )

4 ()Ã(e ) est(e )

(F6)

APPENMX 6: SOME ANALYTIC CPA RESULTS FOR 50-50
ALLOYS, WITH eg =ng, AT THE CENTER OF

THE BAND E=o

Z(o' and X(o'

For x = 0. 5 and E = 0, F"' satisfies [see Eq.
(117)]

(as)
and the change in 6 can be obtained by using Eqs.
(Dil), (G2), a.nd (G7)

—42 —5
A(0) —t&,"'(0)= —imZ"'(tO)o. =-

5z)8/z

(G9)
Thus, the changes in 5 and & go in opposite direc-
tions. The change in 6 is negative for 1 &5 & —,',
and positive for 5& —,'.

3. Fermi Velocity for Static Alloy

Using the results for X( '(0) [Eq. (G2)] and
g( &(0) [see Eq, (G4)], we have a simple expression
for the Fermi velocity ((v (0))) appearing in Ap-
pendix F:

62 52
((o (0))) =v (1 —6')+3

4 1 z 1+

(G10)
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Measurements of resistivity, magnetoresistance, and thermopower were made on a series
of compounds of the type LaSn3 „In„for temperatures from 1.5 to over 300 K. In addition,
Hall effect in LaIn& was measured from 10 to 270 K. These experiments are interpreted in

the light of previous data on these compounds with the object of obtaining a better understand-
ing of their electronic structure. The main conclusions are that these compounds are tran-
sition metals which possess neither local moments nor magnetic phase transitions. They con-
tain small pockets of electrons near the Fermi surface for x = 0 which disappear as x approaches
unity. This result is consistent with measurements of magnetic susceptibilities and

superconducting properties. Finally, arguments are presented based on thermopower mea-
surements which indicate that Ce in LaIn& is a Kondo system.

I. INTRODUCTION

Intermetallic compounds of the form LaX3 „Y„
with X'or Y representing Sn, In, Pb, or Tl have
been studied extensively in recent years. ' These
papers have been motivated by the possibility of
studying superconductivity and magnetism as a
function of electron or rare-earth impurity concen-
tration in these compounds. The LaX3 „Y„com-
pounds are also easy to work with experimentally
as they possess a simple crystal structure (sim-
ple-cubic Bravais lattice), are single phase, con-
gruently melting, and can be grown as large single
crystals. '

As a result of the previous work on these ma-
terials, several questions concerning their elec-
tronic structure have arisen. The dramatic varia-
tion of T, with x near x=0 in LaSn3 „In„, as well
as the unusual results for y(T) in LaSn, has lead to
speculation that LaSn3 possesses local moments or
strong exchange enhancement. ' Here 7.', is the
superconducting critical temperature and X(T) is
the magnetic susceptibility as a function of absolute
temperature T.

Havinga et al. have done an extensive series of
experiments on Ty(3 KOO), and S(300 K) vs elec-
tron concentration in these compounds, where S is
the thermopower. The oscillations in these quan-
tities plotted as a function of electron concentra-
tion have been ascribed by them to expansion of a
simple-metal Fermi surface through a Brillouin-
zone boundary as electron concentration is in-

crea.sed. In addition, they interpret S„(300 K) vs
x by assuming that umklapp processes dominate the
thermopower. (In the present paper a subscript
x denotes a property measured as a function of the
concentration x of In in Lasn, „In„.)

The present measurements of transport proper-
ties in LaSn3 „In„vs x were performed in order to
test these ideas and to clarify our understanding of
the electronic structure of these compounds. We
have measured p(H), p(T), and S(T) vs x for l. 2
& T & 350 K (p is the resistivity), and in LaIn, have
measured the low-field Hall coefficient R„ for 10
& T & 270 K. The behavior of p(H) and p(T) has led
to the conclusion that these compounds do not
possess local moments nor magnetic phase transi-
tions as a function of x or T. Low-temperature
measurements of p(T) have led us to reject the
suggestion that these materials are simple metals,
while S„for different temperatures suggests that
the behavior of S vs x is not explainable on the
basis of umklapp processes. Rather, the present
measurements, especially p„(H) for 0&x& 1, sug-
gest that the unusual behavior of LaSn3 „In, near
x=0 can be explained by the LaSn3 Fermi surface
possessing small pockets of electrons which dis-
appear as one alloys with In at x= l.

Our measurements of S,(T) indicate that Ce in
LaIn3 (but not in Lasna) is a. Kondo system, while
p(H) vs T for LaIna and Laan~, and R„(T) for LaIns
indicate that the number of holes or electrons in
these compounds is not temperature dependent.
We have also inferred a structural phase trans-


